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Abstract ─ In the framework of the multilevel fast 

multipole algorithm (MLFMA), effective construction 

of the sparse approximate inverse preconditioner (SAIP) 

for the volume-surface integral equation (VSIE) is 

discussed. A high quality SAIP for the entire VSIE 

matrix is constructed by using the sub-matrix of the near-

field interactions between the surface basis and testing 

functions arising from the surface integral equation 

alone. In addition, a simple sparse pattern selection 

scheme based on the geometrical information of nearby 

basis functions and octree regrouping strategy is 

proposed to enhance the efficiency of the SAIP. In 

contrast to the existing sparse pattern selection schemes, 

the proposed scheme utilizes the near-field matrix in  

the MLFMA more effectively with only one tuning 

parameter. Numerical results indicate that with the 

proposed scheme, both the memory usage and setup time 

for constructing an effective SAIP are significantly 

reduced without compromising the efficiency and 

robustness. 

 

Index Terms ─ Method of moments (MoM), multilevel 

fast multipole algorithm (MLFMA), sparse approximate 

inverse preconditioner, volume-surface integral equation 

(VSIE). 

 

I. INTRODUCTION 
The volume-surface integral equation (VSIE) [1],  

in conjunction of the method of moments (MoM) [2],  

is one of the most attractive methods to calculate  

the electromagnetic (EM) scattering or radiation of 

composite objects involving both conductors and 

inhomogeneous dielectrics. For the objects with 

electrically large sizes, fast EM algorithms, such as the 

multilevel fast multipole algorithm (MLFMA) [1], are 

highly required to alleviate the computation overhead. 

Based on the addition theorem of Green’s function and 

diagonalization of the translation operator, the MLFMA 

drastically reduces the overall computational complexity 

from the order of O(N2) to O(NlogN), where N is the 

number of unknowns [1]. During the implementation of 

MLFMA, the MoM matrix equation is decomposed into 

two parts as: 

 𝑍𝑛𝑒𝑎𝑟𝐼 + 𝑍𝑓𝑎𝑟𝐼 = 𝑉,   (1) 

where Znear and Zfar are the N×N impedance matrices 

representing the reactions between the basis and testing 

functions in the neighbor and far leaf boxes at the finest 

level of the MLFMA, and I and V are the N×1 vectors of 

unknown expansion coefficients and generalized voltage, 

respectively. Besides, only the near-field matrix Znear  

is explicitly computed and stored, while the far-field 

interaction part ZfarI is implicitly computed through three 

processes: aggregation, translation, and disaggregation. 

Although the VSIE is a second-kind integral 

equation, it is still necessary to apply the preconditioning 

techniques to speed up the convergence during the 

iterative solution of the matrix equation. Among related 

preconditioning techniques, the sparse approximate 

inverse preconditioner (SAIP), which is based on directly 

approximating the inverse of the preconditioning matrix, 

has been proved that it is not only one of the most 

effective preconditioners for the surface integral 

equation (SIE), but also easy for parallelization [3-6]. In 

the MLFMA, utilizing Znear can provide effective SAIP. 

Further, benefited from the octree structure of the 

MLFMA, the setup time for constructing the SAIP can 

be decreased substantially [3, 4]. But meanwhile, the 

construction process of SAIP is very sensitive to the 

average number of unknowns belonging to the leaf 

boxes. Especially for the VSIE, because of the three-

dimensional volumetric unknowns which are densely 

distributed in each non-empty leaf box, the setup time for 

SAIP will be very long. To reduce the time cost, several 

sparse pattern selection schemes have been reported. In 
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[5], performances of various selection schemes based on 

algebraic or geometrical information were compared 

through a large set of numerical experiments, while it 

was concluded that the ones based on geometrical 

information of the basis function distributions are more 

effective. 

However, most of the existing discussions on the 

SAIP were focused on its applicability in the solution of 

SIE, while its effectiveness on the VSIE is rarely studied. 

In this paper, how to effectively use the SAIP in the 

VSIE solution is investigated. Based on the geometrical 

information of nearby basis functions and octree 

regrouping strategy, an effective sparse pattern selection 

scheme for the SAIP construction is proposed. 

Compared to the conventional selection schemes, the 

proposed one is more effective and robust with only one 

tuning parameter. 

 

II. SAIP FOR THE VSIE 
In the MLFMA, only the near-interaction matrix 

Znear needs to be stored explicitly [1]. If we use Z̅ to 

denote the preconditioning matrix extracted from Znear to 

construct the SAIP, then the preconditioner M can be 

constructed as an approximate inverse matrix of Z̅ . 

During the construction process, the Frobenius norm 

minimization is usually chosen since it can decouple the 

entire constrained minimization problem into N 

independent linear least-square problems as: 

 
2 2

2
1

min min
N

k kF
k

E ZM e Zm


   ,  (2) 

which can be parallelized naturally. In (2), E is the 

identity matrix, and ek and mk are the kth column of the 

matrices E and M, respectively, while M is constrained 

by a certain sparse pattern. Since Z̅ is sparse, as done in 

[3, 4], let J denote the column structure of nonzero 

elements of Z̅, and I denote the set of row indices of the 

nonzero entries of Z̅(:, J), the least-square problems in 

(2) are reduced into: 
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which can be efficiently solved by QR factorization, and 

the computational complexity is determined by the size 

of Z̅(I, J). The QR factorization requires asymptotically 

n1n2
2 flops, where n1 and n2 are the number of elements 

in the sets I and J, respectively. If we assume that each 

row of Z̅ has n nonzero entries in average, both n1 and  

n2 are the order of O(n). Thus, the total computational 

complexity of (3) is in the order of O(Nn3). In the context 

of the MLFMA, when we choose Z̅=Znear, it is found that 

any testing function in a given leaf box will couple with 

the same set of basis functions located in the boxes of the 

near-interaction list of the given box [3]. By using this 

fact, the computation overhead of (3) can be reduced to 

O(Ngn3), where Ng is the number of non-empty leaf 

boxes. Therefore, the setup time for constructing M can 

be reduced several-fold without any loss of accuracy. On 

the other hand, O(Ngn3) indicates that the SAIP setup 

time is very sensitive to n. In other words, when n is 

relatively large, the setup time for constructing M will  

be very high. To alleviate this problem, after careful 

investigation, we find that there are two possible ways to 

reduce the SAIP computational effort for the VSIE. 

The first way is to choose appropriate sub-matrices 

to construct the SAIP. In the VSIE, particularly, Znear can 

be represented by four sparse sub-matrices as: 

 SS SV

near

VS VV

Z Z
Z

Z Z

 
 
 

,  (4) 

where ZSS, ZSV, ZVS and ZVV denote the self/mutual 

interactions between two types of basis/testing functions 

in the near-interaction lists (S stands for surface 

functions and V for the volume ones). Because the SAIP 

can be applied to any square matrix, there are three 

optional schemes to construct the preconditioner M: 

using ZSS only (denoted by SS), using both ZSS and ZVV 

(SS&VV), and using the entire Znear matrix (Tot). For 

composite objects involving open conducting structures, 

ZSS stands for the interactions between surface basis and 

testing functions used in the electric field integral 

equation (EFIE) which is a first-kind of integral 

equation, while ZVV represents the interactions between 

volume basis and testing functions for the volume 

integral equation (VIE) that is second-kind. In general, 

ZVV is more well-conditioned than ZSS. Therefore, it is 

reasonable that applying SAIP to the sub-matrix ZSS 

alone to improve the condition number of ZSS might be 

enough for the calculation of composite objects. Besides, 

compared with SS&VV and Tot, SS is apparently the most 

memory- and time-efficient for constructing M. During 

the implementation of SS, M is considered as: 

 
1

SS
M

M 
 
 
 

,  (5) 

where MSS is an approximate inverse matrix of ZSS as: 

 SS SSZ M E ,  (6) 

which can be efficiently solved using (2). 

On the other hand, the objects including thin 

conducting structures are needed to be discretized by fine 

meshes. If Z̅ is still chosen the same as Znear, Z̅ will be 

very dense, resulting in a large n as well as high 

computation complexity of (3). In order to overcome this 

difficulty, it is necessary to select effectual sparse pattern 

from Znear, i.e., extracting a sparser matrix Z̅ from Znear 

by pre-filtering technique before constructing M, which 

can evidently reduce the value of n. There are two main 

types of schemes reported to achieve this goal: 1) 

dropping entries with tiny magnitudes in Znear as done in 
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[6]. However, improper setting of the dropping threshold 

may even degrade the convergence [5]. Thus, this 

scheme is not widely used; 2) dropping entries based  

on the geometrical information during the MLFMA 

implementation as done in [3]. Specifically, for a given 

testing function Xk located in the leaf box G, when drops 

the entries from Znear to reduce into Z̅(I, J), two filtrations 

are used to determine the sparse pattern for Xk as: 

 
  

  

1

2

dist ,

dist ,

J j j S G j

I i i S i J





  

  
,  (7) 

where S is the sparse pattern of Znear, dist(G, j) is the 

distance between the center of box G containing Xk and 

that of the jth basis function, and dist(i, J) is the distance 

between the center of the ith testing function and that of 

boxes containing all basis functions whose index j∈J. 

Thus, in order to select Z̅(I, J) for Xk, we need to draw a 

sphere of radius τ1 with the same center of box G. The 

jth column entries Z̅(:, j)  will be kept in Z̅(:, J)  if the  

jth basis function is exactly contained in this sphere, 

otherwise  Z̅(:, j) will be dropped. The similar procedure 

is also executed in the second filtration for row indices 

selection with a sphere of radius τ2. However, during the 

first filtration, if the testing function Xk and two basis 

functions Xj1
, Xj2

 reside in the MLFMA leaf boxes (black 

line) as shown in Fig. 1, then the distance between Xk and 

Xj1
 will be smaller than τ1, which leads to a strong mutual 

interaction Zkj1
. But according to the selection criterion 

(7), Zkj1
 is dropped. In contrast, although the distance 

between Xk and Xj2 is larger than τ1, the resultant matrix 

entry Zkj2
 that represents a relatively weak interaction 

between Xk and Xj2
, is still included in Z̅(I, J). The similar 

situation will occur once again during the second filtration. 

Therefore, this two-parameter filtration scheme may not 

utilize the nonzero entries reasonably and effectively in 

some situations. 

 

O
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MLFMA-tree

SAI-tree BII

BI
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1j
X
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X
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X

k
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Fig. 1. Locations of Xk, Xj1
,  Xj2

 and Xj3
 in the MLFMA 

leaf boxes and in the SAI-tree. 

To solve this problem, we build a new octree 

structure with smaller box size RSAI compared with the 

MLFMA leaf box, called SAI-tree which is shown in Fig. 

1 (blue dashed line), to construct the SAIP. That is to say, 

we can use the SAI-tree to control the sparse pattern and 

to generate the matrix Z̅, i.e., Z̅ is considered as the near-

field matrix in the SAI-tree. As shown in Fig. 1, in the 

SAI-tree, box BII that contains Xj1 is one of the neighbor 

boxes of box BI containing Xk, so the entry Zkj1 

representing strong interaction between Xk and Xj1will be 

included in Z̅. On the contrary, since Xj2 does not belong 

to any neighbor box of BI, Zkj2 that denotes the relatively 

weak interaction between Xk and Xj2 will be naturally 

filtered. On the other hand, however, in some extreme 

situations as shown in Fig. 1, in the SAI-tree the box BIII 

that contains Xj3
 is one of the neighbor boxes of the box 

BI containing Xk, while in the original octree of the 

MLFMA, the entry Zkj3
 representing the interaction 

between Xk and Xj3
 is not included in the near-field 

matrix Znear. In this situation, Zkj3
 needs to be calculated 

individually during generating Z̅. 

The proposed sparse pattern selection scheme 

exhibits two advantages over the conventional ones: 

(1) Effective utilization of the nonzero entries. The 

proposed scheme can more “accurately” keep the 

generally strong interactions and drop the weak ones 

based on the geometrical information provided by the 

SAI-tree. 

(2) Easy implementation. It has only one tuning 

parameter RSAI, while RSAI can be chosen to be smaller 

than the size of the leaf box in the MLFMA. If we still 

use Ng and n to denote the number of non-empty boxes 

in the SAI-tree and the average number of nonzero 

entries in each row of Z̅ respectively, a smaller RSAI leads 

to a larger Ng and a smaller n, which will further decrease 

the SAIP setup time since the computational complexity 

is about O(Ngn3) as mentioned previously. Furthermore, 

the value of RSAI can be automatically fixed according to 

the average discretized mesh size, which will greatly 

simplify the process of tuning an appropriate parameter 

for a certain problem. It is worth mentioning that the 

proposed scheme needs additional time to construct the 

SAI-tree, but due to the utilization of the fast binary-tree 

searching algorithm, the additional time is very limited. 

Applying the proposed sparse pattern selection 

scheme based on the SAI-tree, the implementation 

process of constructing M is described as follows: 

(1) Determine the value of RSAI according to the 

average discretized mesh size. According to a large 

amount of numerical experiments, RSAI is recommended 

to be two times of the average mesh size. 

(2) Build the SAI-tree in which the box size is set to 

RSAI. 

(3) Select the sparse pattern according to the index 

of near-field interactions in the SAI-tree. 
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(4) Generate Z̅ according to the selected sparse 

pattern. If the entry in Z̅ also belongs to Znear, then extract 

it from Znear directly; if not, calculate it individually. 

(5) Construct the preconditioner M according to (2). 
Moreover, for the objects with extremely large 

electrical size, Znear becomes insufficient to approximate 

the entire impedance matrix, due to the inefficiency of 

the preconditioners constructed from Znear. One way to 

alleviate this problem is to use the far-field interactions 

during constructing the preconditioners [7, 8]. In these 

approaches, a cheaper MLFMA version called approximate 

MLFMA is used as the preconditioner to iteratively solve 

a closely related matrix equation. In the practical process, 

a secondary preconditioner is needed to accelerate the 

iterative solving process of the closely related matrix 

equation. The SAIP applying the proposed sparse pattern 

selection scheme can be adopted as this secondary 

preconditioner. 

 

III. NUMERICAL RESULTS 
To validate the effectiveness of the proposed SAIP, 

EM radiation and scattering of composite dielectric-

conductor objects are calculated. In our implementation, 

the RWG [9] and SWG [10] basis functions are used  

to model the equivalent surface and volume currents, 

respectively. The restarted GMRES with a restart 

parameter m is used as the iterative solver to reach 

convergence with relative residual error of 0.001 [11-13]. 

Zero vector is taken as initial approximate solution for 

all calculations. The leaf box size of the MLFMA is 

0.25λ (λ is the wavelength in the free space). All 

computations are in single precision and carried out on a 

workstation with 2.4 GHz CPU and 384 GB RAM. 

 

A. Microstrip patch antenna array 

The first example is the EM radiation of an antenna 

array composed of 64 microstrip patch antennas at the 

operating frequency of 14.5 GHz as shown in Fig. 2. All 

antennas are excited with the same magnitude and phase. 

The relative dielectric constant is εr=2.2-j0.00198. The 

average mesh size is about 0.08λ, and the number of 

discrete triangles, tetrahedrons and unknowns are 9,375, 

21,062 and 63,340, respectively, while the octree of 

MLFMA has 6 levels. The restart parameter of GMRES 

is m=100. To compare with other kinds of preconditioners 

limited to sequential implementation such as the 

preconditioners based on incomplete Lower-Upper 

decomposition (ILU), the whole computation process is 

executed serially. Table 1 shows the performance details 

of three schemes to construct SAIP from selecting 

different sub-matrices (SS, SS&VV, and Tot) with various 

tuning parameter RSAI. This table contains the memory 

usage of preconditioner (PC-Mem), the additional time 

to construct the SAI-tree and generate Z̅ (Tadd), the setup 

time (TPC) to construct preconditioner, the average 

number of basis functions in the non-empty boxes of the 

SAI-tree (Δ), and so on. Besides, none means that the 

computation is executed without any preconditioner. 

From Table 1, the first finding is that the three different 

sub-matrix selection schemes need similar number of 

iterations to reach the target convergence, while the 

memory usage and setup time for constructing M by SS 

are much less than those by SS&VV and Tot. Therefore, 

for the VSIE solution, using sub-matrix ZSS alone to 

construct the SAIP might be an appropriate choice.  

 

 
 

Fig. 2. The structure of antenna array composed of 64 

microstrip patch antennas at the operating frequency of 

14.5 GHz. 

 

The second finding is that large value of RSAI does 

not always mean less total computation time, while the 

proper value of RSAI is found to be about twice as large 

as the average mesh size. The reason is that enlarging  

the value of RSAI will make Z̅  denser, which would 

dramatically increase the setup time and the memory 

requirement for constructing preconditioner M. This 

phenomenon also demonstrates that enlarging the number 

of nonzero entries in matrix Z̅ does not always lead to 

better preconditioning performance. It is worth to point 

out that some effective preconditioners can be constructed 

based on the Schur complement, which are specially 

designed to work in conjunction with the VSIE [14]. 

However, this kind of preconditioners usually needs to 

calculate both of the inverse of ZSS and ZVV directly or 

approximately. Thus, it is concluded that the memory 

usage and setup time of this kind of preconditioners 

based on the Schur complement are on the same level as 

SAIP by SS&VV, which are evidently larger than SS. For 

this reason, this kind of preconditioners does not be 

adopted in this paper. 

From the above, we may draw the conclusion that in 

the VSIE solution, using ZSS alone to construct the SAIP 

is an appropriate choice. However, whether this SS 

scheme can be successfully utilized to other kinds of 

preconditioners is worthwhile of further research. Table 

2 lists the detailed computation information with various 

kinds of preconditioners on the first example, such as the 

SAIP with two tuning parameters τ1, τ2 reported in [3] 

(denoted by conv), the ILUT preconditioner [15] which 

is based on a dual dropping rule with two tuning 

parameters: the fill-in p and the threshold drop tolerance 

τ, and the variant approach of ILUT, called SuperLU  

[16], with three tuning parameters: the fill-ratio γ, the 

threshold drop tolerance τ, and the pivoting threshold η. 

Besides, only ZSS is used to construct the preconditioner. 
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For conv, the parameter setting refers to [3]. Since the 

leaf box size of the MLFMA is 0.25λ, then, 

     1 2 1 20.125 , 0.5 and        .            (8) 

For the ILU type preconditioners, as stated in [15,  

16], a more effective and robust ILUT or SuperLU 

preconditioner can be constructed with larger p or γ. In 

fact, when the preconditioning matrix is denser, it is 

indeed necessary to set a relatively larger p or γ in  

the ILUT factorization to achieve better performance. 

For this calculated antenna array, since it contains thin 

structures, dense meshes are needed to model the details, 

due to a relatively dense Znear as well as ZSS. As a 

consequence, p or γ needs to be set to a large value. From 

Table 2, it is obtained that when p<200 or γ<10, the 

ILUT or SuperLU preconditioner will be failure. Another 

finding is that the value of τ does not affect very much 

the convergence rate during the iterative solution, which 

is in accordance with [15]. Comparing Table 1 with 

Table 2, it is found that different kinds of preconditioners 

improve the convergence in varying degrees. Comparing 

the proposed scheme (prop, i.e., SAIP with SS scheme) 

with conv, when an appropriate combination of tuning 

parameters is used (RSAI=0.15λ versus τ1, τ2=0.25, 0.5), 

prop shows less iterations (169 versus 384) and less total 

time (188s versus 323s) to achieve convergence with 

similar memory usage (1141.8 MB versus 1139.4 MB). 

Compared with ILUT and SuperLU, prop shows the 

similar robustness, while the memory usage of SAIP is 

several times less than that of ILUT or SuperLU. More 

importantly, prop can be naturally parallelized, while the 

ILU-type preconditioners are limited to sequential 

implementation. 

 

Table 1: Detailed performance of different sub-matrix selection schemes and RSAI on the proposed SAIP 

SAIP 

Style 

RSAI 

(λ) 

PC-

Mem 

(MB) 

Tadd 

(s) 

TPC 

(s) 
n Ng Δ 

Solution 

Time (s) 
Iterations 

Total 

Time (s) 

Peak 

Memory 

(MB) 

None —— 549 897 592 1130.6 

SS 

0.125 8.26 0.72 5.97 82.2 2228 5.9 521 757 583 1138.4 

0.15 11.70 1.54 19.2 116.4 1479 8.9 125 169 188 1141.8 

0.2 19.74 1.73 29.8 196.7 987 13.3 116 151 190 1198.3 

0.25 29.54 0.17 81.5 294.3 732 18.0 101 129 232 1209.4 

SS&VV 

0.125 113.8 0.73 306 252.5 2939 21.6 556 753 914 1294.9 

0.15 174.3 3.28 811 361.0 2048 30.9 134 163 987 1356.7 

0.2 299.5 4.21 2421 619.5 1152 55.0 132 149 2599 1478.1 

0.25 447.7 0.23 5342 926.4 785 80.7 119 127 5501 1627.2 

Tot 

0.125 183.3 0.74 816 379.3 2939 21.6 581 739 1442 1364.3 

0.15 261.5 3.92 1641 541.1 2048 30.9 136 161 1823 1443.9 

0.2 447.9 4.56 4713 923.5 1152 55.0 137 144 4892 1629.1 

0.25 699.5 0.24 10852 1385.5 785 80.7 124 121 11021 1881.3 

 

Table 2: Detailed performance of different types of preconditioners 

Preconditioner 

Style 
Parameters 

PC-Mem 

(MB) 
TPC (s) 

Solution 

Time (s) 

Iteration

s 

Total 

Time (s) 

Peak 

Memory 

(MB) 

Conv 

(τ1, τ2) 

0.2, 0.4 6.94 5.01 * 1137.7 

0.2, 0.5 7.92 8.66 358 512 402 1138.6 

0.25, 0.5 8.79 9.33 269 384 323 1139.4 

0.3, 0.5 19.8 19.6 262 355 325 1150.3 

ILUT 

(p, τ) 

150, 0.001 38.6 8.2 * 1213.9 

200, 0.001 42.7 10.4 146 178 201 1218.1 

200, 0.0001 62.8 30.3 133 165 206 1237.6 

300, 0.001 46.6 11.9 139 172 194 1220.2 

SuperLU 

(γ, τ, η) 

5, 0.001, 0.5 76.1 24.3 * 1223.1 

10, 0.001, 0.5 108.8 32.2 138 140 216 1254.0 

10, 0.0001, 1.0 149.0 42.9 140 135 239 1293.5 

15, 0.001, 0.5 113.2 38.1 125 127 208 1259.8 
Note: “*” refers to no convergence after 1000 iterations. 

 

As mentioned before in this paper, the restarted 

GMRES, which is a famous Krylov subspace method for 

solving nonsymmetric linear systems, is used as the 

iterative solver. However, as argued in [11-13], the 
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restart parameter m will deeply influence the convergence 

of this Krylov subspace method. In order to investigate 

how m influences the performance, Fig. 3 shows the 

iterations for four preconditioners (prop, conv, ILUT, 

SuperLU) with respect to different values of m, while the 

relative residual error is fixed to 0.001. It is observed that 

when m is too small, none of the four preconditioners  

can prompt GMRES to reach the target convergence 

after 1000 iterations. Along with the increase of m, the 

iterations will sharply decrease, and be followed by a 

steady decrease. When m is about 30, prop can achieve 

the convergence after hundreds of iterations, while for 

other three preconditioners, conv, ILUT and SuperLU 

can achieve the same convergence when m is about 60, 

50 and 40, respectively. This illustrates that compared 

with conv, ILUT and SuperLU, prop is cooperated with 

a relatively small m, which has a low memory usage 

during using the GMRES to solve the matrix equation. 

Another finding is that when the value of m is suitably 

fixed, the convergence rate of prop is on the same level 

as that of the ILU type of preconditioners, while the  

conv is relatively slow. Therefore, Fig. 3 illustrates the 

robustness and efficiency of the proposed approach. 
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Fig. 3. Number of iterations for different preconditioners 

with respect to different restart parameter m in the 

GMRES. 
 

B. Dielectric coated conducting sphere 

The second example is the calculation of bistatic 

radar cross section (RCS) of a dielectric coated 

conducting sphere.  The radius of the conducting sphere 

is 10λ, and the thickness of the coating dielectric is 

0.05λ. The average mesh size is about 0.085λ and the 

total number of triangles, tetrahedrons and unknowns are 

168,650, 934,261 and 2,447,096, respectively. RSAI is set 

to 0.17λ which is about twice as large as the average 

mesh size. In this calculation, the OpenMP parallel 

technology is adopted and 16 cores are involved [17]. To 

verify the performance of SAIP, combined field integral 

equation (CFIE) or EFIE is adopted to disperse the 

conducting sphere part, which can be combined with 

VIE to yield the CFIE-VIE or EFIE-VIE type of VSIE. 

Since the matrix equation generated by EFIE-VIE is very  

ill-conditioned, the restart parameter of GMRES is set to 

m=200 for EFIE-VIE which is a relatively large value, 

while m=30 when CFIE-VIE is adopted. Figures 4 and 5 

show the number of iterations and solution time required 

by the SAIP with the three selection schemes (SS, 

SS&VV and Tot) to achieve convergence when the relative 

dielectric constant εr varies from 1.5 to 9.0, respectively. 

Besides, when EFIE-VIE is adopted without any 

preconditioner (none), εr=9 cannot achieve convergence 

after 5000 iterations. From Fig. 4 and Fig. 5, it is clear 

that the proposed SAIP can accelerate the convergence 

rate obviously, while SS, SS&VV and Tot need comparable 

iterations and solution time to reach the target 

convergence. Table 3 lists the computational details in 

terms of the memory usage of preconditioner (PC-Mem), 

the additional time to construct the SAI-tree and generate 

Z̅ (Tadd), the SAIP setup time (TPC), and the peak memory 

usage with m=200 for none, SS, SS&VV and Tot. It is 

found that the memory usage and setup time for SAIP by 

SS&VV or Tot are several times as those by SS, which 

illustrates the efficiency of SS. When εr=2, the numerical 

results are shown in Fig. 6, while the exact result from 

Mie series is also given as a reference. It is observed  

that these numerical results have very high calculating 

precision. 
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Fig. 4. Number of iterations for various εr, sub-matrix 

selection schemes, and VSIE formulations. 
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Fig. 5. Solution time for various εr, sub-matrix selection 

schemes, and VSIE formulations. 
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Fig. 6. Bistatic RCS of a conducting sphere of radius 

10λ coated with 0.05λ thick homogeneous dielectric 

(εr=2) at φ=0 plane, illuminated by a θ-polarized plane 

wave with the incident angle θi=0, φi=0. 

 

Table 3: Details of different selection schemes from  

the proposed SAIP with RSAI=0.17λ and m=200 for a 

conducting sphere of radius 10λ coated with 0.05λ thick 

homogeneous dielectric 

SAIP 

Scheme 

PC-

Mem 

(MB) 

Tadd 

(s) 

TPC 

(s) 

Peak 

Memory 

(GB) 

None —— 70.2 

SS 210.1 1.3 11.8 70.4 

SS&VV 15808.7 19.8 9986.6 86.0 

Tot 19387.2 23.2 14086.8 89.5 

 

C. Dielectric coated conducting almond 

The monostatic RCS of a coated PEC almond is 

calculated, the geometric equation of which is listed in 

[18], while its position in the Cartesian coordinate is 

shown in Fig. 7. The length of the PEC almond is 10λ, 

the coating thickness is 0.05λ, and the relative dielectric 

constant of the coated dielectric is εr=3.38-j0.0338. 

After discretization, the average mesh size is about 

0.075λ and the total number of triangles, tetrahedrons 

and unknowns are 30,880, 93,085 and 263,508, 

respectively. The coated almond is illuminated by a θ- 

or φ-polarization plane wave, and the observation range 

is θ=90° and 0≤φ≤90° with 91 observation points. 

During the calculation, RSAI is set to 0.15λ, the OpenMP 

parallelization with 16 cores is applied, and CFIE-VIE 

or EFIE-VIE is adopted to disperse the object, while  

the restart parameter of GMRES is set to m=100 for the 

EFIE-VIE or m=30 for the CFIE-VIE. Table 4 shows 

the computational details in terms of the memory usage 

of SAIP (PC-Mem), the SAIP setup time (TPC), and the 

peak memory usage with m=100 for the calculation 

process without any preconditioner (none) or with  

SAIP by different sub-matrix selection schemes (SS, 

SS&VV and Tot), while Table 5 shows the total time of 

the whole process in terms of different incident wave 

polarization modes and different VSIE types. From 

Table 4, it is found that except none, SS shows the least 

peak memory usage and setup time, while Table 5 

shows that SS leads to the minimum total time for both 

VSIE types and both polarization modes. Figure 8 

shows the number of iterations with respect to different 

observation angles for different polarizations and VSIE 

types, respectively. It is observed that compared with 

none, the SAIP with each selection scheme (SS, SS&VV 

or Tot) can significantly accelerate the convergence. In 

addition, in terms of the acceleration performance, SS 

is on the same level as SS&VV or Tot. However, SS 

needs the least setup time and memory usage. This 

example illustrates that even for the calculation of 

monostatic RCS whose solution time occupies most of 

the total calculation time, SS also shows competitive 

effect. 

 

 
 

Fig. 7. The coated PEC almond in the Cartesian 

coordinate. 

 

Table 4: Details of different selection schemes from  

the proposed SAIP with RSAI=0.15λ and m=100 for a 

conducting 10λ length almond coated with 0.05λ thick 

homogeneous dielectric 

SAIP 

Scheme 

PC-Mem 

(MB) 

TPC 

(s) 

Peak Memory 

(GB) 

None —— 8.83 

SS 58.1 7.1 8.89 

SS&VV 1330.9 642.5 10.1 

Tot 1874.4 1802.3 10.6 

 

Table 5: The total time of the whole calculation process 

for a conducting 10λ length almond coated with 0.05λ 

thick homogeneous dielectric (unit: minutes) 

VSIE Type CFIE-VIE EFIE-VIE 

Polarizations θ φ θ φ 

None 39.7 36.0 885.5 372.3 

SS 17.2 14.1 125.1 56.8 

SS&VV 27.9 23.9 134.8 65.1 

Tot 48.2 46.0 151.5 82.7 
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  (b) φ-polarization incident wave and EFIE-VIE type 
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   (c) θ-polarization incident wave and CFIE-VIE type 
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Fig. 8. Number of iterations as a function of incident 

angles for different polarizations and VSIE types. 

 

IV. CONCLUSIONS 
The sub-matrix selection schemes to construct the 

SAIP for the VSIE solution are discussed. For the VSIE, 

a high-quality SAIP can be constructed by utilizing the 

sub-matrix of surface-to-surface interactions in the near-

field matrix alone, which significantly reduces the 

memory usage and setup time. Besides, an effective 

sparse pattern selection scheme with only one tuning 

parameter based on the geometrical information 

provided by the introduced SAI-tree is proposed. 

Numerical results show that compared with the reported 

SAIP and ILU-type preconditioners, the proposed SAIP 

reduces the number of iterations and total computation 

time with enhanced flexibility and stability, while the 

one tuning parameter can be automatically set according 

to the average mesh size. 
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