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Abstract ─ Recently, as a high-efficient uncertainty 

analysis method, the Stochastic Galerkin Method has 

been widely applied in EMC simulations. In this method, 

the original solver must be changed during uncertainty 

analysis. Thus, the realization of the Stochastic Galerkin 

Method may become impossible in some cases. In this 

paper, a novel method named Non-Intrusive Galerkin 

method is proposed in order to sove this problem. The 

performance of the proposed method can be clearly 

shown by calculating a published example. 

 

Index Terms ─ Non-Intrusive Galerkin Method, 
Stochastic Galerkin Method, Uncertainty Analysis, 

EMC simulation. 
 

I. INTRODUCTION 
In actual engineering environment, uncertainties 

exist extensively as the random changes of the geometry 

condition or operating parameters. In order to model 

such situation precisely, stochastic modeling techniques 

have been widely introduced into the Electromagnetic 

Compatibility (EMC) simulation [1]. In this case, the 

inputs of the EMC models are uncertain parameters, and 

many uncertainty analysis methods have been 

introduced to deal with the variability in model inputs.  

The Monte Carlo Method (MCM) is the most widely 

used uncertainty analysis method, and it has been 

testified accurate in the EMC simulation [2, 3]. However, 

low computational efficiency makes the MCM 

uncompetitive. The Method of Moments [4] and the 

Perturbation Method [5] are another two uncertainty 

analysis methods, and both of them cannot achieve high 

accuracy.  

In recent years, the Stochastic Galerkin Method 

(SGM), which is based on the generalized Polynomial 

Chaos (gPC) expansion theory [6, 7], has caught some 

researchers’ attention in EMC field. In the references  

[8, 9], the SGM is presented to solve the stochastic 

Transmission Line Model. The crosstalk calculation of 

the random cables is presented in [8], and the field line 

coupling affection simulation with uncertain parameters 

in field is given in [9]. In the references [1, 10], the SGM 

is introduced into the finite-difference time-domain 

(FDTD) method to solve the stochastic Maxwell’s 

equations. In the examples of the recent research, the 

SGM shows good accuracy and high efficiency [6-10]. 

However, during the uncertainty analysis of the 

SGM, the original solver must be changed. There is no 

doubt that it will be difficult to realize the SGM when the 

solver becomes complex. Especially in some cases, the 

solver can’t be changed like the EMC software, and the 

using of the SGM will become impractical. This paper 

presents a novel method named Non-Intrusive Galerkin 

Method (NIGM), which improves the SGM by using the 

Numerical integration [11]. After calculating a published 

example in reference [12], the performance of the 

proposed method can be shown obviously by the use of 

the Feature Selective Validation [13]. 

The structure of the paper is as follows. Section II 

employs a brief description of the Stochastic Galerkin 

Method; the Non-Intrusive Galerkin Method can be seen 

in Section III; algorithm validation is presented in 

Section IV; Section V provides a summary of this paper. 

 

II. THE STOCHASTIC GALERKIN 

METHOD 
In the traditional EMC simulation, all the input 

parameters are supposed certain. However, in some 

cases, some input parameters need to be regarded as 

uncertain parameters, in order to improve the reliability 

of the EMC simulation results. If the inputs of the models 

are uncertain, the output parameters will be no longer 

deterministic too. And how to obtain such outputs is 

what the uncertainty analysis methods do.  
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The Maxwell’s Equations in 1D are taken for 

example, as (1) and (2) shown. It is the wave propagating 

in a linear isotropic homogeneous material along the  

z-axis, 
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where, Ex (z, t) represents the electric field intensity 

orienting in the x direction, at a position z and time t. 

Similarly, Hy (z, t) is the magnetic field orienting in the  

y direction. The symbols μ, ε, and σ stand for the 

permeability, permittivity and conductivity of the 

medium in which the electromagnetic fields propagate. 

It is obviously that Ex (z, t) and Hy (z, t) are output 

parameters which we are interested in. The material 

parameters, like μ and ε, are the input parameters.  

Suppose that the input parameters μ and ε are 

uncertain because of the lack of the knowledge. Thus, it 

is suitable to use the Uniform distribution parameters or 

the Gaussian distribution parameters to replace input 

parameters, rather than use a certain estimated value. In 

this situation, the lack of the knowledge is called a 

random event θ. Several random variables can be used to 

model the random event θ as (3) shown, 

  1 2( ) ( ),  ( ),   ,  ( ) ,n          (3) 

where, ξ(θ) is the random variable space which is made 

up by the random variables. ξi(θ) is the random variable, 

and every variable has its own distribution. 

After modeling by the random variables, the 

stochastic Maxwell’s equations are obtained like (4) and 

(5): 
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The parameters μ(ξ) and ε(ξ) are uncertain inputs. 

Thus, the output parameters Hy (z, t, ξ) and Ex (z, t, ξ) will 

be influenced by the uncertainty of the inputs. 

According to the gPC theory, firstly, the output 

parameters are expressed in the form of polynomial as (6) 

shown, 

 0 0 1 1 2 2( , , ) ( ) ( ) ( ),yH z t h h h          (6) 

where, φi(ξ) is the Chaos polynomial which is 

determined by the Askey rule, shown in Table 1, and it 

is in the form of the polynomial of the random variables. 

More details about the Askey rule can be seen in 

reference [6, 7]. The coefficient hi is under calculated. In 

a word, the solving process of the gPC theory is a kind 

of Undetermined Coefficients method. 

The polynomials provided by the Askey rule satisfy 

the perpendicularity to each other like (7) and (8): 
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The inner product computation in (7) can be seen in 

(9): 

 ,  ( ) ( ) ( ) ,i j i j w d          (9) 

where, w(ξ) is the weight function, which can be 

obtained by calculating the joint probability density of 

the random variables. 

 

Table 1: The Askey rule 

Random 

Variables 

Wiener-Askey 

Chaos 
Support 

Gaussian Hermite-chaos ( , )   

Gamma Laguerre-chaos [0, )  
Beta Jacobi-chaos [ , ]a b  

Uniform Legendre-chaos [ , ]a b  
 

The Galerkin projection equations by using the 

SGM can be given by (10) and (11): 
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where, ei and hi are the coefficients of the Chaos 

polynomial, which are under calculated. And they  

are the abbreviation of ei(z, t) and hi(z, t). Mμi,j means  

the product computation result of ( ) ( ),  ( ) .i j       

Similarly, Mεi,j means the product computation result of 

( ) ( ),  ( )i j      . 

Obviously, the original solver is changed due to  

the Galerkin projection in SGM process. And after 

calculating the coefficients of (6), the uncertainty 

analysis results can be easily acquired by sampling in 

terms of the distributions of the random variables in (3). 

More details about the SGM can be seen in the references 

[6-10]. 

Due to the Galerkin Process, the solver must be 

changed during the SGM. This character severely limits 

the application of the SGM. In next section, another 

coefficient calculating method is given, and the original 

solver would not be changed in this method.  

 

III. THE NON-INTRUSIVE GALERKIN 

METHOD 
In the NIGM, numerical integration is introduced to 

improve the SGM. 

The inner product computation with φ0(ξ) is carried 

out in both sides of (6), and (12) is obtained, 
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Using the orthogonal property of the Chaos 

polynomial in (7), 0 0( ), ( ) 1     , 0 1( ), ( ) 0     , 

and 0 2( ), ( ) 0     can be gotten. Then (13) is 

obtained: 
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In a similar way, the coefficients calculation can be 

replaced by the integration calculations, shown as (14): 
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where, a(ξ) and b(ξ) are the lower bound and the upper 

bound of the integration calculation. 

In the NIGM, Numerical integration is provided to 

calculate the integration in order to remove the random 

variables. Numerical integration is an approximate 

numerical method, which is used to calculate the 

integration when the integrand function is in a complex 

form. By this way, the coefficients calculation turns to 

be (15): 
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where, the integration points NIi satisfy the character 

1 2 1( ) ( )na NI NI NI b       , and Ai stands for 

the integration weight of the Numerical integration. The 

integration points are chosen according to the Gaussian 

Quadrature formula [11], and the total number of the 

integration points is supposed n + 1. Hy(t, z, NIi) presents 

making the certain EMC simulation result in point NIi. 

Thus, the uncertainty ξ in input is replaced by the certain 

value NIi. In another word, the random variable disappears. 

The value of φ0(NIi) can be easily calculated by 

substituting NIi into it.  

Due to the numerical integration, the uncertain  

EMC simulation is replaced by several certain EMC 

simulations in numerical integration points NIi. Thus, a 

steady EMC solver is enough for the NIGM, and the 

solver can be regarded as a ‘black box’. There is no doubt 

that the realization of the NIGM is much easier than the 

SGM, and the NIGM can be introduced into the EMC 

software to make the uncertainty analysis. 

 

IV. ALGORITHM VALIDATION 
In this section, two typical examples are simulated 

in order to present the performance of the NIGM. 

Because of the high accuracy of the MCM, the 

uncertainty analysis results given by the MCM will be 

regarded as the standard data. 

The first example is one-dimension wave propagation 

example published in reference [12], as shown in Fig. 1. 

The certain EMC simulation method FDTD is used to 

solve the Maxwell’s equations. 

The space step of the FDTD is 21.5 10 m  and the 

time step is 115.0 10 s . The number of discrete points in 

the electric field intensity is 151, and it is 150 in the 

magnetic field intensity. The sine excitation source is in 

the first discrete point with the amplitude 32.7 10 /V m  

and the frequency 91.0 10 Hz . The total number of the 

time steps is 100. 

 

 
 
Fig. 1. One-dimension wave propagation model with 

uncertain inputs in medium parameters. 

 

The dielectric coefficient εr and the conductivity σr 

are supposed to be the uncertain parameters, and they are 

both in the Uniform distribution. The dielectric coefficient 

obeys [1.47, 1.53]( / )U F m , and the conductivity is 

-3 -3U[4.9 10 , 5.1 10 ]( / )S m  . 

Such random event in the inputs can be modeled by 

two random variables ξ1 and ξ2 like (16) and (17). Both 

of the variables are in the Uniform distribution with the 

bound [-1, 1]: 

  *

21 0.02 ,     
r r  (16) 

  *

11 0.02 ,     
r r  (17) 

where, the mean values of the input parameters are 
* 1.5 ( / )r F m    and * -35 10 ( / )r S m    . 

For the SGM, six terms of the Chaos polynomial are 

given in (18). It is the tensor product of one-dimension 

Chaos polynomial, more details can be found in [9]: 
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According to [11], the numerical integration points 

in the NIGM are given by the Table 2, and the integration 

weight Ai is also presented.  

The Probability Density Function (PDF) curve of 

the electric field intensity at the 100th discrete point 

simulation results are shown as Fig. 2.  
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Fig. 2. The PDF of electric field intensity at the 100th 

discrete point. 

 

Table 2: The numerical integration points (ξ1, ξ2) 

Number 1 2 3 

Point (−
√15

5
, −

√15

5
) (−

√15

5
,   0) (−

√15

5
,
√15

5
) 

Weight 
25

324
 

40

324
 

25

324
 

Number 4 5 6 

Point (0, −
√15

5
) (0, 0) (0,

√15

5
) 

Weight 
40

324
 

64

324
 

40

324
 

Number 7 8 9 

Point (
√15

5
, −

√15

5
) (

√15

5
, 0) (

√15

5
,
√15

5
) 

Weight 
25

324
 

40

324
 

25

324
 

 

The results of the MCM are treated as the standard 

data, and 10,000 times of certain EMC simulations were 

done to make sure the convergence of the MCM.  

Furthermore, the Fig. 3 shows the expectation value 

of all 200 discrete points, and the Fig. 4 presents the 

variance information. The expectation value means  

the most possible value, and the variance information 

presents the magnitude of the uncertainty. 

Using the Feature Selective Validation, the Total 

Global Difference Measure (Total-GDM) values are 

shown in Table 3. 

According to the qualitative rule in the Feature 

Selective Validation, if the Total-GDM value is less than 

0.1, it means that the simulation results are in the 

‘Excellent’ level. Thus, all the four values in Table 3 are 

in ‘Excellent’ level, and it is proved that the accuracy of 

the NIGM and the SGM in this example is the same as 

the MCM. It is worth noting that though the Total-GDM 

value of the SGM is less than that of the NIGM, the 

accuracy of the SGM and the NIGM is still in the same 

level. That is the opinion of the Feature Selective  

Validation [13]. 
 

 
 

Fig. 3. The expectation values of all 200 discrete points. 
 

 
 

Fig. 4. The variance values of all 200 discrete points. 
 

Table 3: The Total-GDM value of the results 

Results SGM NIGM 

Expectation 0.006 0.01 

Variance 0.037 0.05 

 
The simulation time of the MCM is 63.2 s, and the 

SGM takes 1.12 s. The NIGM wastes 0.65 s. It is proved 

that the computational efficiency of the SGM and the 

NIGM are in the same level, and much better than the 

MCM. 

The second example is the shielding effectiveness 

calculation of a Perfect Electric Conductor (PEC) box 

with the random hole. In actual situation, the position of 

the hole and the size of the hole might be uncertain 

because of the existence of the manufacturing tolerance. 

Thus, the inputs of simulation model must be random in 

order to model the situation better. 

In this example, the EMC software, CST Studio 

Suite, is applied to calculate the shielding effectiveness. 

As the solver of the software is not open source, the SGM 

cannot be used in this case. Thus, only the results of the  
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NIGM and the MCM are presented. 

 The material of the box is supposed the PEC, other 

space is supposed vacuum. The size of the solution space 

is 0.2m×0.2m×0.2m. If the step of is supposed 2×10-3m, 

the space can be described like 100×100×100. The box 

is in the shape of cube located in the middle of the 

solution space, the length of side is 0.12m. The wall 

thickness is 6×10-3m, 3 times of space step. 

The shielding effectiveness calculation at 100 MHz 

is obtained by the NIGM and the MCM. The position of 

the excitation source is at the point (6, 64, 64) of the 

space. And the excitation source is sinusoidal electric 

field source at single frequency 100 MHz. The shielding 

effectiveness reference point is in the middle of the 

solution space, that is the point (50, 50, 50). The model 

is given in Fig. 5. 

 

Excitation source

 0.12m
 2U[1.16, 1.24]10 m

 

2U[5.4, 6.6]10 m
 

 
 

Fig. 5. The model of the PEC box with an uncertain hole 

on the surface. 

 

The random variables for modeling the random 

event are similar as (16) and (17) shown. Thus, the 

numerical integration points and the weight are same as 

the Table 2 shown. Figure 6 gives shielding effectiveness 

results of the NIGM and the MCM. 

 

 
 

Fig. 6. The shielding effectiveness results given by the 

NIGM and the MCM. 

 

In this example, the result is in the form of PDF. The 

PDF curve has the character that the area surrounded by 

the curve and the horizontal axis is 1. That means that 

the PDF curve will be ‘wane and wax’, unlike the results 

in Fig. 3 and Fig. 4. Thus, judging the accuracy of the 

simulation result by means of comparing the difference 

of two PDF curves is not reasonable. Furthermore, the 

Feature Selective Validation is not suitable at the same 

time. 

The mean value and the variance comparison of the 

NIGM and the MCM are proposed. The mean value of 

shielding effectiveness values calculated by the MCM is 

-56.7 dB, and the variance information of the MCM is 

14.6 dB2. Meanwhile, the mean value of the results given 

by the NIGM is -55.8 dB, and the variance information 

of the NIGM is 15.3 dB2. The error in mean value is 1.6%, 

and that in variance is 4.8%. 

It is demonstrated that the NIGM is as accurate as 

the MCM in the second example. 

The certain simulation times of the MCM are 5,000, 

and these of the NIGM are only 9. It is seen that the 

computational efficiency of the NIGM is much higher 

than the MCM. 

In short, the NIGM is as accurate as the MCM  

and the SGM. Like the SGM, the NIGM owns high 

computational efficiency, and much better than the 

MCM. Like the MCM, the NIGM can realize the 

uncertainty analysis without changing the original solver. 

Thus, the application scope of the NIGM is much wider 

than the SGM. 

 

V. CONCLUSION 
This paper proposed a novel method named the 

Non-Intrusive Galerkin Method, aiming at realizing the 

uncertainty analysis in EMC simulations without 

changing the original solver. By using the Feature 

Selective Validation, it is clearly demonstrated that the 

proposed method is as accurate as the Stochastic 

Galerkin Method in a published example. Furthermore, 

it is proved that the proposed method can be generalized 

into the EMC software like the Monte Carlo method, but 

Stochastic Galerkin Method can’t. It means that the 

proposed method is much better than the Stochastic 

Galerkin Method in the scope of application. 
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