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Abstract─ The Runge-Kutta high-order finite-difference 

time-domain (RK-HO-FDTD) method is adopted to solve 

the time-dependent Schrodinger equation. The update 

equations of the RK-HO-FDTD method have been 

presented for wave function. The simulation results of 

the 1D potential well strongly confirm the advantages of 
the RK-HO-FDTD scheme over the conventional FDTD. 

 

Index Terms ─ Dispersion, potential well, RK-HO-

FDTD, stability, the Schrodinger equation. 

 

I. INTRODUCTION 
Recently, more and more numerical solutions are 

employed to solve the Schrodinger equation [1]. The 

finite-difference time-domain (FDTD) [2] method also 
has been played an important role in quantum 

computational fields. The first attempt to use the FDTD 

algorithm for the Schrodinger equation was Goldberg et 

al. in 1967 [3], but it didn’t get a lot of attention. 1990 

years later, the topic began to cause greater attention  

[4-6], which is based on the Crank-Nicholson scheme. 

Soriano et al. rigorously formulated an efficient FDTD-

Q algorithm and distinguished its application for 

quantum systems [7]. FDTD-Q method is one of the 

commonly adopted methods to solve the time-dependent 

eigenvalue problem of the Schrodinger equation, but it 

suffers from large dispersion errors in a long erm 
simulation [8-9]. The symplectic algorithm has been 

proposed to solve the Maxwell–Schrodinger (M-S) 

system for investigating light-matter interaction [11], but 

it suffers from intolerable dispersion errors in a long-

term simulation. 

The RK-HO-FDTD are proposed in [10] and has the 

better dispersion error and convergence. In this paper, 

the RK-HO-FDTD [10] scheme is used to solve the 

Schrodinger equation for one dimensional (1D) potential 

well problem. The paper is organized as follows. First, 

the basic theory and algorithm are introduced in Section 
II. The dispersion and stability for different methods are 

shown in Section III. Numerical example is given in 

Section IV. The simulation results show better numerical 

dispersion than the traditional FDTD and the HO-FDTD 

approach.  
 

II. THEORY AND ALGORITHM 
The time-dependent Schrodinger equation is written 

as follows: 
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where   is wave function of a particle related to 

position and time t, m is the mass of the particle, 
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the Hamiltonian operator. The variable (r, )t  is a 

complex number that can be written as: 
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Substituting (2) into (1), the equations can be 

obtained as: 

 
2( , ) ( , ) 1

V( ) ( , )
2

R I
I

r t r t
r r t

t m x

 


 
= − +

 
, (3) 

 
2( , ) ( , ) 1

V( ) ( , )
2

I R
R

r t r t
r r t

t m x

 


 
= −

 
, (4) 

where R  is the real part of wave function  , I  is the 

imaginary part of wave function  . 

The equation can be rewritten as: 
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According to [10], we use the pth-order p stage  

SSP-RK scheme to discretized the temporal system in 

equation (5).  

The SSP-RK scheme is written as follows: 
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where ( )n nF F t= , and the coefficients 
,p l  [12] are 

given by: 

  
Based on the Staggered difference, the wave function 

  can be written as: 
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Using the fourth order staggered difference to 

replace the spatial derivative in x-axis as follows: 
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Employing the SSP-RK algorithm to substitute time 

derivates and the Taylor series to replace spatial 

derivates, the update equations for the real part of the 

RK-HO-FDTD method can be derived as follows: 
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(10) 

where Δx, Δy, Δz is the cell size and i, j, k is the spatial 

grid index in x, y, z direction, respectively, and Δt is the 

time step size, 1x , 2x , 1y , 2y , 1z  and 2z  are the 

coefficients of the HO-FDTD and ( )1 1 1= = = 1x y z a   , 

2 2 2= = = (2)x y z a    as given in Table 1. 

 
 

Table 1: Coefficients for HO-FDTD method 

 ( )1a  ( )2a  

FDTD   

HO-FDTD (2,4) 4/3 -1/12 
 

III. NUMERICAL STABILITY AND 

DISPERSION 

A. Stability of RK-HO-FDTD for the Schrodinger 

equation 

The solution of the wave function can be represented 

as a superposition of plane wave on the basis of the von 

Neumann stability method as follows: 

( ) 0, , , exp( ( ))m x x y y z zx y z t A j i k j k k k = −  +  +  , (11) 

where 
0= sin cosxk k   ,

0= sin sinyk k   ,
0= coszk k  , 

k0 is the wave number and 
0 pmk = , pm is the 

momentum, (θ,  ) is the wave propagation angle in 

spherical coordinate, j0 is the imaginary unit.  

For simplicity, we consider the Schrodinger equation 

in one dimension (1D) and set the potential energy zero 

(V=0). Using the 'm th-order difference to discretize the 

spatial derivatives as follows: 
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coefficients of m′th-order spatial difference which is 

listed in Table 2. 

 

Table 2: Coefficients of m′th-order spatial difference 

[14-15] 

Order (m′) C1 C2 C3 C4 C5 

FDTD 1 -2 1   

HO-FDTD (2,4) 4/3 -1/12 -5/2 4/3 -1/12 

 

Equation (5) can be rewritten as: 
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where H is spatial growth matrix, the eigen equation of 

H is written as I- =0H which can be used to solve the 

eigen value, the positive sign solution of the eigen value  
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can be derived as follows: 
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where λj is the imaginary part of λ. 

Equation (7) of the SSP-RK method can be rewritten 

[9], [12] as: 
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where G is the total gain factor of F,   is the gain factor 

of F when H =  . The SSP-RK algorithm is stable and 

convergent under the condition of │G│≤ 1 and│ │≤ 1, 

and the solution of the equation (17) can be written as 

 j ft C   , Cf is a constant. The stability condition of the 

RK3-HO-FDTD (2, 4) when p = 3 for the Schrodinger 

equation can be derived as: 

 
3 3

0

0 0

1 1
 = ( ) ( ) 1

! !

l l

j

l l

t j t
l l

  
= =

 =    , (19) 

 

2 3

0

2 2

2 3

4 2 2

6 4

1 1
1 ( )  - ( ) 1

2 6

1 1
1 ( )  - ( ) 1

2 6

1
    1+ -( ) +( ) +

4

1 1
                          - 1

36 4

1
                            (

36

j j j

j j j

j j j

j j

t j t t

t t t

t t t

t t

  

  

  

 

   
−  +      

   

   
−  +      

   

  

  

（ ）

（ ） （ ）

2 1
)

12
j t  

 (20) 

3. j t  

In equation (20) Cf   = 3 and Cf  is dependent on the 

order of the time discretization, then Cf  of the RKp-HO-

FDTD (2, 2m′) can be deduced in the same way. From 

the equation (16), it can be found that the spatial stability 

condition is dependent on λj correspond to the spatial 

discretization order m. To sum up, the stability condition 
of the RK-HO-FDTD method for the Schrodinger 

equation is decided by equation (16) and (20), then the 

general form of stability condition for the RKp-HO-

FDTD (2, 2m′) [11] can be given as: 
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where =x y x =  =   , 'L is the number of the 

coefficients in Table 1, d is the spatial dimension, equation 

(21) is the Courant-Friedrichs-Lewy (CFL) stability 

condition,   is the CFL stability factor which is shown 

in Table 3. The investigation is that the RK3-HO-FDTD 
(2, 4) has the looser stability condition than other 

methods and the SSP-RK method can increase the 

algorithm stability. 
 

Table 3: Stability factor for different methods 

 FDTD 
HO-FDTD 

(2, 4) 

RK3-HO-

FDTD (2, 4) 

RK4-HO-

FDTD (2, 4) 

  1 d  0.7059 d  1.2226 d  1.9965 d  

 

B. Dispersion of RK-HO-FDTD for the Schrodinger 

equation 

In Maxwell’s equation, the dispersion relation of the 

free electron in free space can be written as: 
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where c is velocity of light, k is the wave vector with the 

amplitude k, and kx = ksinθcos , ky = ksinθsin , kz = 

kcosθ, (θ,  ) is the wave propagation angle in spherical 

coordinate. Similarly, the theoretic velocity of the 

Schrodinger equation is  = 
2m


 
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 

 and the numerical 

velocity is 
2

0

=p
k


 . The dispersion relation can be 

derived from the expansion of the plane wave and the 

SSP-RK theory [13] as follows: 

  = Arg( )t  . (24) 

According to the CFL stability condition, defining 

the stability factor  = ( 2 )S t m  = 0.25, and with the 

wave propagation angle θ = 0° and   = 0°. 

 

 
 

Fig. 1. Dispersion errors against N of the FDTD and RK-
HO-FDTD method.  
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Fig. 2. Dispersion errors against   with the incident 

angle θ = 30° of the FDTD and RK-HO-FDTD method. 

 

Figure 1 shows the dispersion errors vp  / v versus the 

number of cells per wavelength N for the FDTD, RK3-
HO-FDTD(2, 4) and RK4-HO-FDTD(2, 4) methods. The 

results show that the RK-HO-FDTD methods have the 

lower numerical dispersion and the higher order allows 

coarser cells within a given accuracy. The dispersion 

characteristic of the RK3-HO-FDTD is not good, the 

reason maybe the temporal order 3 is not matching with 

the spatial order 4. There is no difference between  

RK4-HO-FDTD (2, 4) and FDTD when N is greater than  

20. Figure 2 demonstrates that RK-HO-FDTD method 

present the better dispersion error. 

 

IV. NUMERICAL SIMULATION 
In order to demonstrate the efficiency of the  

RK-HO-FDTD methods for 1D infinite potential well 

simulation is presented. Considering a particle trapped in 

an infinite potential well as: 
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where d is the length of the well and x is the position of 

the particle in axis. 

Without loss of generality, the size of the d is 

0<d<10-9m and the cell size Δx is 10-11m. The total time 

step is 2000. The eigenenergies of the quantum well are 

quantized as: 
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The wavefunction calculated with the FDTD and 

RK-HO-FDTD schemes are drawn in Fig. 3. It shows 

that the RK-HO-FDTD schemes accord closely with the 

theoretical predictions than FDTD method. Table 4 gives 

the temporal discretization, spatial discretization, total 

computational domain, total time steps and CPU time. 

From the data, we know that the CPU times of the HO-

FDTD (2,4) is more than the FDTD. The conclusion is 

the better dispersion need more computational time with 

the same computational condition. 

 

 
 
Fig. 3. The comparisons of the wavefunction calculated 

in different methods and theoretical value in 1D infinite 

well. 

 

Table 4: Computational time for FDTD and RK-HO-

FDTD method 

 

V. CONCLUSIONS 
The characteristics of the RK-HO-FDTD methods 

have been discussed in this paper for solving the 

Schrodinger equation. The RK-HO-FDTD and FDTD 

method are implemented to mode the wave function  

of a particle in 1D infinite potential well. The results  

show that the scheme can increase the accuracy of 

wavefunction simulation. 
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