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Abstract – This paper proposes a fractal monopole an-
tenna based on a sectoral-shaped patch. To improve the
gain of the proposed antenna over a larger bandwidth,
the matching was enhanced by attaching two rectangular
stubs to the feeding line. The antenna, which is built on
an FR4 epoxy substrate with εr =4.3 and a loss tangent
of 0.018 has a compact size of 28 mm×31 mm×1.6 mm.
The antenna covers the UWB range and extends to about
the 22 GHz frequency, as well as offers omnidirectional
radiation patterns. The optimized configuration was fab-
ricated and tested. The impedance bandwidth of the pro-
posed antenna is about 155% with a reflection coefficient
better than −10 dB and has a maximum gain of nearly
4 dBi with a relatively stable omnidirectional radiation
pattern.

Index Terms – bandwidth extension, fractal antennas,
monopole antennas, stubs, UWB.

I. INTRODUCTION
Since the FCC has designated the frequency band

(3.1–10.6 GHz) for unlicensed commercial UWB com-
munications in the United States [1], extensive research
has gone into the development of UWB antennas. With
the development of many communication systems, larger
bandwidths are still needed. The microstrip printed an-
tenna can provide such desired features if the problem
of the narrow bandwidth is solved. Traditional geometri-
cal shapes such as triangular, circular, and elliptical disc
monopoles were used in many proposed designs of the
UWB-printed antennas [2–5]. The aim was to use dif-
ferent shapes to obtain enough bandwidth that may be
able to go above and beyond the UWB requirement. The
dipole type of antenna has also been proposed and in-
vestigated aiming to provide UWB properties, where cir-
cular, square, triangular, and other shapes for the two

arms have been employed [6, 7]. Most of the presented
design methods were based on choosing a certain shape
followed by some sort of trial and error procedures to
obtain enhanced performance. Initial designs are then
developed by customizing corners, slots, slits, or para-
sitic parts to obtain the desired features. One example
was a circular disk monopole that was developed by cut-
ting a small sector to form what was called a packman-
shaped antenna [8]. Another example was the use of
a circular patch with a sawtooth-like circumference for
the extension of the bandwidth and size reduction [9].
A rectangular monopole antenna was developed by cut-
ting rectangles and adding strips to improve the band-
width [10]. The deployment of advanced simulation soft-
ware packages like CST and HFSS has aided the above
search for the desired antenna characteristics. The in-
fluence of many of the antenna parameters on the an-
tenna characteristics is explored aiming to achieve an
optimized design. However, there exist some more ef-
ficient approaches for designing UWB antennas such as
the self-complementary geometries [11, 12].

A large impedance bandwidth can be achieved by
exploiting the concept of fractal geometry to obtain a
multiband performance covering a wider band [13, 14].
Fractal geometry is a type of geometry that uses rules
to repeat and scale a specific shape. The repeated shapes
produce a multi-resonance operation in which the reso-
nance frequencies are inversely proportional to the sizes
[15]. A tree-shaped monopole, created by arranging sev-
eral squares or triangles, was proposed in [16] for the en-
hancement of the antenna bandwidth. The concept was
further developed in [17] by proposing the flower frac-
tal geometry, which is inspired by the geometry of flow-
ers where the shape of the petal is scaled, rotated, and
repeated a few times. The antenna achieved bandwidth
exceeding the UWB range. The shape repetition results
in a multi resonance that leads to a wide bandwidth as
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compared to the single monopole antennas or the dipole
antenna [11, 12]. In [14, 16] the scaling factor can be
chosen by the designer to achieve the desired perfor-
mance. Thus, giving more flexibility as compared to the
conventional fractals where the scale factor is fixed as in
Sierpinski fractals [13] and Koch fractals [18]. There-
fore, the multi-resonance frequencies manifest them-
selves individually instead of forming a unified band.

This paper proposes a fractal monopole antenna
based on a sectoral-shaped patch that is scaled down,
rotated then repeated to form a fractal geometry. Two
or three iterations can be employed to achieve the re-
quired bandwidth. To provide proper matching for higher
frequencies, two stubs are attached to each side of the
feeding line. Thus, the proposed fractal antenna cov-
ered the UWB range and further to the 22 GHz fre-
quency. In section II, the proposed fractal is presented,
while section III describes the antenna configuration.
In section IV, the parametric investigations are used
to improve the matching and expand the bandwidth.
Section V explains how to improve matching in the up-
per half of the operating band. In section VI, the an-
tenna’s fabricated prototype is tested, and in section
VII, the achieved antenna characteristics are compared
to those of other antennas. The conclusions are listed in
section VIII.

II. THE PROPOSED FRACTAL GEOMETRY
The proposed fractal employs the shape of a circu-

lar sector, which is iterated by scaling down and repeti-
tions many times as required. The first iteration is rep-
resented by two adjacent sectors that are symmetrically
placed with respect to the axis of symmetry, as shown in
Fig 1. Each of the two sectors is defined by three points;

iterations can be employed to achieve the required 

bandwidth. To provide proper matching for higher 

frequencies, two stubs are attached to each side of the 

feeding line. Thus, the proposed fractal antenna covered 

the UWB range and further to the 22 GHz frequency. 

II. THE PROPOSED FRACTAL GEOMETRY 
The proposed fractal employs the shape of a circular 

sector, which is iterated by scaling down and repetitions 

many times as required. The first iteration is represented 

by two adjacent sectors that are symmetrically placed 

with respect to the axis of symmetry, as shown in Fig.1. 

Each of the two sectors is defined by three points; the 

center of the circle, which is placed at the origin, and two 

corners points (𝑥0, 𝑦0), (𝑥1, 𝑦1), which are given by: 

𝑥0 = 0,                                                           (1. 𝑎) 
𝑦0 = 𝑅0 ,                                                        (1. 𝑏) 
𝑥1 = 𝑅0 𝑠𝑖𝑛(𝜃0),                                          (2. 𝑎) 
𝑦1 = 𝑅0 𝑐𝑜𝑠(𝜃0),                                         (2. 𝑏) 

 

where 𝑅0 is the radius of the sector and 𝜃0 is the 

subtended angle, which is measured from the axis of 

symmetry (Y-axis). The 1st iteration comprises a scaling 

of the radius and the angle by a factor S, resulting in a 

new radius of 𝑅1= S𝑅0, and subtended angle of 𝜃1 = 

S𝜃0 , The generated sector is placed adjacent to either of 

the former ones, with their center at the origin. The 

corners of the new sector on the right side are given by: 

𝑥2 = 𝑆 𝑅0 𝑠𝑖𝑛((𝜃0),                                       (3. 𝑎) 
𝑦2 = 𝑆 𝑅0 𝑐𝑜𝑠((𝜃0),                                       (3. 𝑏) 
𝑥3 = 𝑆 𝑅0 𝑠𝑖𝑛(𝜃0 + 𝑆 𝜃0),                            (4. 𝑎) 
𝑦3 = 𝑆 𝑅0 𝑐𝑜𝑠(𝜃0 + 𝑆 𝜃0),                            (4. 𝑏) 

Thus, at the nth iteration, the parameters of the sector can 

be described by: 

 

Rn=Ro Sn                                            n=1, 2, 3           (5.a) 
 

θn = θ0 (1+ ∑𝑛
𝑖=1 𝑆i )            n=1, 2, 3            (5.b) 

 

The fractal geometries for the first three iterations were 

plotted by a MATLAB program, and are shown in Fig.2. 

 

 
Fig. 1. Coordinates of the various corners of the 

circular sectors for generating the proposed fractal. 
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Fig. 2. The geometries of the proposed fractal for the 

iterations; 0, 1, 2, and 3, corresponding to one, two, 

three, and four sectors. 

 

III. ANTENNA DESIGN 

Fig. 3 depicts the general configuration of the 

proposed fractal monopole UWB antenna. The design is 

based on the 2nd iteration of the fractal geometry that is 

described in section II and shown in Fig 2-c. In this 

design, the scaling factor S is chosen to be smaller than 

unity, and the total angle θ2 is less than 90o so that the 

radiating patch (monopole) does not overlap the ground 

plane. The prototype antenna is built on a 28 × 31 mm2 

FR4 substrate with εr = 4.3, loss tangent of 0.018, and 

Fig. 1. Coordinates of the various corners of the circular
sectors for generating the proposed fractal.

the center of the circle, which is placed at the origin, and
two corners points (x0,y0), (x1,y1), which are given by:

x0 = 0, (1.a)
y0 = R0, (1.b)
x1 = R0 sin(θ0), (2.a)
y1 = R0 cos(θ0). (2.b)

where R0 is the radius of the sector and θ0 is the sub-
tended angle, which is measured from the axis of sym-
metry (Y-axis). The 1st iteration comprises a scaling of
the radius and the angle by a factor S, resulting in a new
radius of R1= SR0, and subtended angle of θ1 = Sθ0.
The generated sector is placed adjacent to either of the
former ones, with their center at the origin. The corners
of the new sector on the right side are given by:

x2 = S R0 sin(θ0) , (3.a)
y2 = S R0 cos(θ0) , (3.b)
x3 = S R0 sin(θ0 +S θ0) , (4.a)
y3 = S R0 cos(θ0 +S θ0) . (4.b)

Thus, at the nth iteration, the parameters of the sec-
tor can be described by:

Rn = R0Sn n = 1,2,3 (5.a)

θn = θ0(1+Σ
n
i=1 Si) n = 1,2,3. (5.b)

The fractal geometries for the first three iterations
were plotted by a MATLAB program, and are shown in
Fig. 2.
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III. ANTENNA DESIGN
Figure 3 depicts the general configuration of the pro-

posed fractal monopole UWB antenna. The design is
based on the 2nd iteration of the fractal geometry that
is described in section II and shown in Fig. 2 (c). In this
design, the scaling factor S is chosen to be smaller than
unity, and the total angle θ 2 is less than 90o so that the
radiating patch (monopole) does not overlap the ground
plane. The prototype antenna is built on a 28 × 31 mm2

1.6 mm thickness. A microstrip feeding line is used to 

excite the antenna assembly. The length and width of the 

microstrip lines were determined using the empirical 

formulas in [19], resulting in a length of 15.5 mm and 

3.1 mm width to insure a 50 Ω line impedance. 

 
 

(a) 

 
(b) 

Fig.3. The configuration of Antenna I; (a) Front view, 

(b) back view 

 

The Computer Simulation Technology (CST) 

version 2018, which focuses on a finite integration 

technique (FIT), is used to study the effect of various 

parameters on the antenna characteristics, thus 

optimizing the structure of the proposed fractal 

monopole form antenna (Antenna-I). We need to 

describe the surfaces in the CST simulations using 

equations in terms of R, S, and θ0 so that changing the 

shape in the parametric analysis is much simpler.     

The conducting ground plane on the other side of the 

substrate has a length of Lg=15.2 mm, and thus it covers 

only a portion of the microstrip feed line. The same 

metallic material (copper) was used to model the fractal-

shaped patch and the ground plane. 

 

 

IV. SIMULATION AND PARAMETRIC 

ANALYSIS 
The impact of various parameters on the response of 

the proposed Antenna-I is discussed in this section. The 

following parameters must be optimized: 

● The radius R0 of the sector, 

● The angle 0 (in radians), 

● The scale factor S. 

On the other hand, the other parameters of Antenna-

I are kept constant. The antenna performance is initially 

characterized in terms of the reflection coefficient as 

shown in Fig.s 4-6. The following paragraphs address the 

effects of the sector radius Ro, scale factor S, and angle 

θ0 on the reflection coefficient response. 

Fig. 4 shows the variation of the reflection 

coefficient with frequency for various patch radii, R0, 

with S= 0.64 and θ0 = 0.78 radians. The radius R0 has a 

moderate impact on the lower and upper frequencies, as 

well as on matching, as shown in Fig. 4. It was found that 

the best patch radius is R0 =13.9 mm. 

 
Fig.4. Simulated Antenna-I reflection coefficient as a 

function of frequency for various patch radii Ro. 

 
 5 depicts the fluctuation of the reflection coefficient 

(S11) with frequency for different values of the scale 

factor S with R0 = 13.9 mm and θ0 = 0.78 radians. The 

scale factor S has a small effect on the lower frequencies, 

but it has a significant impact on the reflection 

coefficient at the upper frequencies. With better 

matching at lower values of S, the upper limit of 

frequency decreased as S increased. The best scale factor 

was found to be S = 0.65, which results in a larger 

bandwidth. 

 6 displays the simulated reflection coefficient as a 

function of frequency for various values of the initial 

angle θ0. The angle θ0 has a minor impact on the lower 

and upper frequencies, but it improves matching as the 

angle θ increases. In terms of reflection coefficient and 

bandwidth, it was found that the case θ0 = 0.8 radians 

provides a better response. The scale factor was set to 

0.65 and radius R0 was held at 13.9 mm. 

Fig. 3. The configuration of Antenna I; (a) Front view,
(b) back view.

FR4 substrate with εr = 4.3, loss tangent of 0.018, and
1.6 mm thickness. A microstrip feeding line is used to
excite the antenna assembly. The length and width of
the microstrip lines were determined using the empiri-
cal formulas in [19], resulting in a length of 15.5 mm
and 3.1 mm width to insure a 50 Ω line impedance.

The Computer Simulation Technology (CST) ver-
sion 2018, which focuses on a finite integration tech-
nique (FIT), is used to study the effect of various pa-
rameters on the antenna characteristics, thus optimizing
the structure of the proposed fractal monopole form an-
tenna (Antenna-I). We need to describe the surfaces in
the CST simulations using equations in terms of R, S,
and θ 0 so that changing the shape in the parametric anal-
ysis is much simpler.

The conducting ground plane on the other side of the
substrate has a length of Lg=15.2 mm, and thus it cov-
ers only a portion of the microstrip feed line. The same
metallic material (copper) was used to model the fractal-
shaped patch and the ground plane.

IV. SIMULATION AND PARAMETRIC
ANALYSIS

The impact of various parameters on the response of
the proposed Antenna-I is discussed in this section. The
following parameters must be optimized:

• The radius R0 of the sector,
• The angle l0 (in radians),
• The scale factor S.

On the other hand, the other parameters of Antenna-
I are kept constant. The antenna performance is initially
characterized in terms of the reflection coefficient as
shown in Figs. 4–6. The following paragraphs address
the effects of the sector radius Ro, scale factor S, and an-
gle θ 0 on the reflection coefficient response.

Figure 4 shows the variation of the reflection coeffi-
cient with frequency for various patch radii, R0, with S=
0.64 and θ 0 = 0.78 radians. The radius R0 has a moderate
impact on the lower and upper frequencies, as well as on
matching, as shown in Fig. 4. It was found that the best
patch radius is R0 =13.9 mm.

Figure 5 depicts the fluctuation of the reflection co-
efficient (S11) with frequency for different values of the
scale factor S with R0 = 13.9 mm and θ 0 = 0.78 radians.
The scale factor S has a small effect on the lower fre-
quencies, but it has a significant impact on the reflection
coefficient at the upper frequencies. With better match-
ing at lower values of S, the upper limit of frequency de-
creased as S increased. The best scale factor was found
to be S = 0.65, which results in a larger bandwidth.

Figure 6 displays the simulated reflection coefficient
as a function of frequency for various values of the initial
angle θ 0. The angle θ 0 has a minor impact on the lower
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Fig. 5. Simulated Antenna-I reflection coefficient as 

a function of frequency for different scale factors S. 

 
Fig. 6. Simulated Antenna-I reflection coefficient as 

a function of frequency for various angles θ0. 

 

Table 1 shows the optimized parameters for 

Antenna-I. Fig. 7a depicts the optimized 

Antenna-I simulated reflection 

coefficient as a function of frequency. 

This figure shows that Antenna-I has a 

reflection coefficient ≤ -10 dB at 4.09 

GHz, 8.7 GHz, 12.9 GHz, 17.6 GHz and 20.9 GHz 

of -20.3 dB, -36.7 dB, -28.8 dB, -12.7 dB and -12.5 dB 

respectively. Fig. 7b displays the optimized antenna 

realized gain versus frequency. A maximum gain of 4.62 

dBi was achieved in the direction of theta =90o across the 

band of interest. However, the gain drops at both sides of 

the operation band. 

 

Table 1: Optimized parameters of the Antenna-I. 

Paramete

r 

Value 

(mm) 

Parameter Value 

(mm) 

W 28 Lg 15.2 

L 31 R 13.9 

t 1.6 S 0.65 

Lf 15.5 θ 0.8 

radian 

Wf 3   

 
Fig.7a. Simulated reflection coefficient for optimized 

Antenna-I. 

 
Fig.7b. Simulated realized gain for optimized 

Antenna-I. 

V. IMPROVED PERFORMANCE 
A double-stub matching network was added on each 

side of the feed line of Antenna-I to produce the 

developed design Antenna-II, as shown in Fig. 8, aiming 

to achieve better performance in terms of matching, gain, 

and impedance bandwidth. The CST program is also 

used to evaluate and refine the Antenna-II structure  to 

obtain better dimensions of the double-stub matching 

network, which resulted in improved performance for the 

Antenna-II. 

Fig. 9 demonstrates the variation of Antenna-II 

simulated reflection coefficient versus frequency for 

various left stub lengths (x). According to practical 

experience, the stub length should be close to ¼ the 

effective wavelength [19], and the optimization of the 

stub length should begin from there. 

        

 
Fig.8. The configuration of the proposed fractal patch 

monopole antenna (Antenna-II) with the added 

double-stub network.  
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Fig. 7. (b). Simulated realized gain for optimized
Antenna-I.

Table 1: Optimized parameters of the Antenna-I
Parameter Value

(mm)
Parameter Value

(mm)
W 28 Lg 15.2
L 31 R 13.9
t 1.6 S 0.65
Lf 15.5 θ 0.8 ra-

dian
Wf 3

was achieved in the direction of theta =90o across the
band of interest. However, the gain drops at both sides of
the operation band.

V. IMPROVED PERFORMANCE
A double-stub matching network was added on each

side of the feed line of Antenna-I to produce the devel-
oped design Antenna-II, as shown in Fig. 8, aiming to
achieve better performance in terms of matching, gain,
and impedance bandwidth. The CST program is also
used to evaluate and refine the Antenna-II structure to ob-
tain better dimensions of the double-stub matching net-
work, which resulted in improved performance for the
Antenna-II.

Figure 9 demonstrates the variation of Antenna-II
simulated reflection coefficient versus frequency for var-
ious left stub lengths (x). According to practical experi-
ence, the stub length should be close to 1/4 the effective
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The effect of different separations of the right stub
(y3) from the feeding line upper end of Antenna-II on
the reflection coefficient is shown in Fig. 12. It is clear
that increasing y3 has no impact on the frequency band
lower edge but it causes an improvement in the reflection
coefficient for frequencies greater than 8.5 GHz.
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VI. ANTENNA FABRICATION AND
RESULTS

Table 2 lists the optimum parameters for the double
stub matching network (x, x1, y1, and y3) of Antenna-
II, while the other parameters of Antenna-II are left un-
changed as they are in Antenna-I. The low-cost antenna
is small and simple to fabricate using traditional PCB
techniques. The proposed Antenna-II was fabricated as
shown in Fig. 13. The antenna was tested by a vector
network analyzer (Rode and Schwarz ZVL13) operat-
ing up to 13.6 GHz. Figure 14 shows the measured re-
flection coefficient, compared to the simulation results,
where the −10 dB band extends from 3.3 GHz to the
upper frequency measurable by the VNA. As a higher
frequency analyzer was not available to the authors, the
fullly achieved bandwidth cannot be confirmed. It can
be seen that the antenna bandwidth extends beyond the
UWB, but the simulated results of 20 GHz were not con-
firmed. Three regions of very low reflection coefficient
can be seen around the frequencies; 4.3 GHz, 6.5 GHz,
and 10 GHz. These frequencies are proportional to the
numbers 0.43: 0.65: 1. These figures are in proportion to
S2: S:1, i.e., to the fractal scale factor of 0.64 which was
used in the design of the antenna (see Table 1). There-
fore, the designer can control the multi-resonance fre-
quencies by choosing a proper value for the scale factor.

Figure 15 shows a comparison between Antenna-
I and Antenna-II simulated gain versus frequency. It is
noted from the figure that the addition of the double
stubs improves the gain for frequencies above 16 GHz.
The gain response becomes with fewer fluctuations.
However, the gain drops from its former values in the
frequency range of 10.2 GHz to 15.8 GHz. The use of
the two stubs has resulted in reducing the ripples in the
gain response.

Figure 16 shows the simulated 3-dimensional far-
field radiation patterns for Antenna-I and Antenna-II for
various frequencies. The two antennas show almost uni-
form radiation in the horizontal plane, (the plane perpen-
dicular to the antenna), but antenna-II shows better cov-
erage at frequencies above 8.6 GHz. The radiation from
Antenna-I exhibits splitting when the frequency is above
9 GHz, but the pattern of Antenna-II keeps its unifor-
mity at frequencies higher than 9 GHz. Thus antenna-II
shows better radiation pattern stability with frequency as
compared to Antenna-I.

Table 2: Optimized parameters for x, x1, y1, and y3 of the
Antenna-II
Parameter Value

(mm)
Parameter Value

(mm)
x 1.25 x1 2
y1 6.7 y3 3.47
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better coverage at frequencies above 8.6 GHz. The 

radiation from Antenna-I exhibits splitting when the 

frequency is above 9 GHz, but the pattern of Antenna-II 

keeps its uniformity at frequencies higher than 9 GHz. 

Thus antenna-II shows better radiation pattern stability 

with frequency as compared to Antenna-I. 

 

Fig. 17 shows a comparison between simulated and 

measured 1-D radiation patterns of Antenna-II for three 

frequencies (4.4 GHz, 8.6 GHz, and 12.8 GHz). The 

patterns were calculated and measured in the plane 

perpendicular to the antenna. The patterns show the 

omnidirectional property of the monopole antenna. 

  

4.4 GHz 

Fig. 15. Comparison of Antenna-I and Antenna-II simu-
lated gain as a function of frequency.

Figure 17 shows a comparison between simulated
and measured 1-D radiation patterns of Antenna-II for
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Fig.16. comparison of 3-D far-field radiation patterns 

of (a) Antenna-I (without double stubs) and (b) 

Antenna-II (with stubs) for various frequencies. 
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Fig.17: Simulated and measured far-field radiation 

patterns of the proposed Antenna-II at XZ-plane; 

simulation (red), Measured (blue) at 4.4 GHz, 8.6 

GHz, and 12.8 GHz. 
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WORKS 
Table 3 compares the parameters and characteristics 

of the optimized antenna reported in this paper to those 

of several UWB antennas disclosed in recent 

publications. The table shows that the proposed antenna-

II achieved the 2nd largest bandwidth after that in [11] but 

at 36% of the size of the antenna in [11]. As regards the 

size, the proposed antenna has a smaller size than those 

in [7, 8, 9, 11, and 18]. The proposed antenna has gain 

values that are comparable to other antennas. The 

proposed antenna offers a competitive performance of 

gain, bandwidth, and size. 
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Fig. 16. comparison of 3-D far-field radiation patterns of
(a) Antenna-I (without double stubs) and (b) Antenna-II
(with stubs) for various frequencies.
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Fig.16. comparison of 3-D far-field radiation patterns 

of (a) Antenna-I (without double stubs) and (b) 

Antenna-II (with stubs) for various frequencies. 
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Fig.17: Simulated and measured far-field radiation 

patterns of the proposed Antenna-II at XZ-plane; 

simulation (red), Measured (blue) at 4.4 GHz, 8.6 

GHz, and 12.8 GHz. 

 

VII.COMPARISON WITH PREVIOUS 

WORKS 
Table 3 compares the parameters and characteristics 

of the optimized antenna reported in this paper to those 

of several UWB antennas disclosed in recent 

publications. The table shows that the proposed antenna-

II achieved the 2nd largest bandwidth after that in [11] but 

at 36% of the size of the antenna in [11]. As regards the 

size, the proposed antenna has a smaller size than those 

in [7, 8, 9, 11, and 18]. The proposed antenna has gain 

values that are comparable to other antennas. The 

proposed antenna offers a competitive performance of 

gain, bandwidth, and size. 

 

          Table 3. Comparison between recently published UWB 

antennas and the proposed antenna in this work. 

Fig. 17. Simulated and measured far-field radiation pat-
terns of the proposed Antenna-II at XZ-plane; simula-
tion (red), Measured (blue) at 4.4 GHz, 8.6 GHz, and
12.8 GHz.
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three frequencies (4.4 GHz, 8.6 GHz, and 12.8 GHz).
The patterns were calculated and measured in the plane
perpendicular to the antenna. The patterns show the om-
nidirectional property of the monopole antenna.

VII. COMPARISON WITH PREVIOUS
WORKS

Table 3 compares the parameters and characteris-
tics of the optimized antenna reported in this paper to
those of several UWB antennas disclosed in recent pub-
lications. The table shows that the proposed antenna-II
achieved the 2nd largest bandwidth after that in [11] but
at 36% of the size of the antenna in [11]. As regards the
size, the proposed antenna has a smaller size than those
in [7–9, 11] and [18]. The proposed antenna has gain val-
ues that are comparable to other antennas. The proposed
antenna offers a competitive performance of gain, band-
width, and size.

Table 3: Comparison between recently published UWB
antennas and the proposed antenna in this work
[Ref] Dimensions

[mm]
Frequency
range
[GHz]

BW
[%]

Gain
[dB]

[4] 17×7.6×1.0 4-10.0 85.7 N/A
[5] 25×30×1.6 3.6-14.7 121.6 4
[6] 40×10×0.8 2.8-10.9 118 2.4-6.2
[7] 36×36×1.27 3.1-11 121 N/A
[8] 25×38×1.6 2.9-13 127 3 − 9
[9] 40×32.4×1.5 3-11 114 0 − 5
[10] 16×20×1.6 4.8 – 13.7 96.22 2 − 4
[11] 52×46×1.6 1.8 up to

17.7
162 N/A

[15] 14×22 ×1.6 3.05-13.57 125 N/A
[18] 36.2×41×1.52 3.05-10.95 113 1.4-5.7
This
work

28×31× 1.6 3.34 up to
22

155 0.5-
4.0

VIII. CONCLUSION
A compact fractal patch monopole antenna with

wide bandwidth and good omnidirectional radiation pat-
tern covering a frequency range beyond the UWB is pro-
posed. A sectoral patch was scaled down and added to
the initial one to form the proposed sectoral-shaped frac-
tal. In this way, a design rule has been presented and
demonstrated. To improve the proposed antenna gain,
two rectangular stubs were attached to the feeding line.
The proposed antennas were designed, analyzed, and
the optimized design was fabricated. The antenna was
able to cover a frequency range of 3.34 GHz up to
22 GHz. The proposed antenna is ideal for UWB ap-
plications because of its small size and high impedance
bandwidth.
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