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Abstract – In this paper, a broadband tri-polarization
reconfigurable antenna applied to polarization diver-
sity is proposed. A partially reflective surface (PRS)
is designed to form an air-filled resonator cavity. The
reflection phase of the PRS has a positive phase gradi-
ent in order to achieve the characteristics of the proposed
antenna gain enhancement in the wideband. A metal
patch of a four-arm meander structure is used as the
radiation structure and the feeding is realized through a
four-channel rotating feeding network with equal ampli-
tude and 90◦ phase difference. The feeding network is
connected to the radiation structure through four met-
allized vias. In order to realize the polarization recon-
figurability, the PIN diodes and the corresponding DC
bias circuit are integrated in the rotating feeding network.
The characteristics of horizontal polarization (HP), verti-
cal polarization (VP) and right-hand circular polarization
(RHCP) are realized by changing the ON/OFF states of
PIN diodes integrated in the feeding network. In order
to verify the performance of the proposed antenna, fab-
rication and testing were carried out. The measurement
results show that the −10 dB impedance bandwidths of
HP, VP, RHCP are 11% (12.5-14 GHz), 6.4% (13.7-
14.6 GHz) and 20% (12.2-14.9 GHz), and the peak real-
ized gains are 9.1, 9.2 and 11.5 dBi, respectively. For
RHCP mode, the 3-dB axial ratio bandwidth reaches
about 17% (12.35-13.4 GHz and 13.6-14.9 GHz).

Index Terms – partially reflective surface (PRS),
polarization diversity, rotating feeding network, tri-
polarization reconfigurable, wideband antenna.

I. INTRODUCTION
Antenna with high gain and reconfigurable polariza-

tion plays an increasingly important role in some spe-
cial scenarios such as mobile communication, and has
been studied more and more deeply in recent years.
An antenna that can be applied to polarization diver-
sity can reduce the complexity of the system to a cer-
tain extent. For example, by controlling DC signal, the
polarization states of the antenna can be flexibly and

conveniently adjusted, which greatly reduces the atten-
uation loss, enhances the communication capacity of
the system, and improves the rate of channel multiplex-
ing [1–6]. At present, there are several mature methods
of polarization reconfigurable antenna design, and the
reconfigurable feeding network is one of the effective
ways. In [7], a low-frequency quad-polarization recon-
figurable antenna based on the feeding network is pro-
posed. The mode is switched by controlling the state
of the PIN diode. Since the feeding network does not
have the characteristics of broadband, the bandwidth of
the antenna is relatively narrow, which is not suitable for
scenarios that require wide band. Polarization reconfig-
uration can also be achieved by loading the polarization
conversion surface. For example, in [8], a reconfigurable
polarization converter is proposed to realize the linear-
circular polarization conversion, but the gain of the unit
cell is relatively low.

For the high gain characteristics of antenna, it is gen-
erally realized by combining elements to form an array.
However, for the array, on the one hand, the size of the
array is usually large and cannot be realized in some
small spaces. On the other hand, for most reconfigurable
antennas, the array introduces a large amount of DC bias
circuits. Although the gain can be improved, the sys-
tem becomes very complex. In order to avoid the use of
arrays to increase gain, Fabry-Perot (FP) resonant cav-
ity antenna can be used, and high gain performance can
be achieved by designing a reasonable feed source and
PRS [9–13]. In [14], a FP antenna that uses linear polar-
ization sources and PRS layer to achieve circular polar-
ization is proposed. The improved PRS layer achieves
gain increase and RCS reduction at the same time. Lin-
early polarized waves are converted into circularly polar-
ized waves after passing through the PRS layer, but the
reconfiguration of polarization is not realized. At present,
most polarized reconfigurable antennas operate in low
frequency bands, and there are few broadband and linear-
circular polarization reconfigurable antennas that oper-
ate in high frequency bands, such as Ku-band. In [15],
a linear polarization reconfigurable antenna based on the
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reconfigurable feeding network is proposed. It adopts a
double feed and a positive phase gradient PRS to achieve
high gain performance. Compared with a single feed,
double-feed can indeed further improve the antenna gain.

In this paper, a wideband tri-polarization reconfig-
urable FP resonator antenna operating in Ku-band is pro-
posed. The feeding antenna is composed of a meandering
bend line structure and a rotating feeding network [16].
Four PIN diodes and DC bias circuit are integrated in the
feeding network for switching HP, VP and RHCP states.
The PRS layer is located above the feeding antenna and
forms the resonant cavity. The PRS layer can improve the
antenna gain only when the reflection phase is positive
gradient (reflection phase increase with frequency) and
the reflection coefficient is relatively high. The PRS pro-
posed in this paper can satisfy the above two conditions
well in the whole operating frequency range. Simulation
and measurement results show that the proposed antenna
has high-gain wideband and polarization reconfigurable
characteristics.

This paper is organized as follows: Section II mainly
introduces the operation mechanism of the proposed
PRS’s unit cell, rotating feeding network and feed
antenna. Section III gives the simulation and measure-
ment results of the proposed antenna, and has been ana-
lyzed and discussed. The last section is a brief summary.

II. POLARIZATION RECONFIGURABLE FP
ANTENNA

Figure 1 shows the overall structure of the proposed
tri-polarization reconfigurable antenna with broadband
and gain enhancement. The proposed antenna consists
of the following parts: feeding network, metal ground,
radiation patch and PRS layer. The distance H between
the PRS layer and the metal ground of the antenna is
about 10mm. A PRS array is composed of 11×12 peri-
odic units as the PRS layer to increase the antenna gain.
The PRS layer and the feeding antenna are connected by
four M2 nylon bolts, so the overall size of the proposed
antenna is 45mm×50mm×10mm (2.1λ×2.3λ×0.46λ at
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Fig. 1. Structure of tri-polarization reconfigurable
antenna.

14 GHz). The radiation part is composed of a four-arm
meandering line structure. Its four arms are connected to
a rotating feeding network at the bottom. The PIN diodes
are integrated on the rotating feeding network, and the
radiation mode can be changed by controlling the state
of the PIN diodes.

A. Design of PRS
The PRS has high reflection characteristics and

can be regarded as a reflective surface, which can be
loaded on top of the antenna as a cladding to form
a Fabry-Perot resonant cavity, and the antenna ground
serves as the lower reflective surface. In the resonant
state, the electromagnetic wave generated by the feed
is reflected in the cavity for many times, and the same
phase is superimposed on the PRS, thereby realizing
the characteristics of high-gain unidirectional radiation.
However, the PRS needs to meet the following condi-
tions to achieve broadband gain improvement:

ϕPRS +ϕ − 4π

λ
H = 2nπ,n = 0,1,2..., (1)

where ϕPRS and ϕ represent the reflection phase of PRS
and metal floor respectively. H is the distance between
them, and λ is the operating wavelength of the antenna.
It can be seen from (1) that the reflective phase of the
PRS needs to be positively correlated with the frequency.
That is to say, in order to realize the high-gain FP antenna
operating in broadband, the reflective phase of the PRS
should increase linearly with the increase of frequency
while maintaining the high reflective coefficient of the
PRS.

The PRS designed in this paper can well satisfy the
resonant condition. The proposed PRS is composed of
metal patches with etched square ring and cross groove
as shown in Fig. 2 (a). The structure is printed on
F4B dielectric material with a thickness of 0.933mm,
dielectric constant of 3.0, and loss tangent (tan δ) of
0.001. The dimensions of the proposed PRS unit oper-
ating in the Ku-band as follows: P =3.14mm, a=1.7mm,
w = 0.63mm, d = 0.66mm. In order to better explain
the proposed PRS based on positive phase gradient,
the single-sided cross groove and single-sided square
ring structures are simulated respectively. It can be seen
from Fig. 2 (b) that the reflection coefficient of the
square ring structure decreases with the increase of fre-
quency, that is, it reflects low frequency electromag-
netic waves and transmits high frequency electromag-
netic waves. On the contrary, the reflection coefficient
of the single-sided cross groove structure increases with
the increase of frequency, so it reflects high frequency
electromagnetic waves and transmits low frequency elec-
tromagnetic waves. Therefore, the combination of the
single-sided square ring structure and cross groove struc-
ture can achieve partial reflection characteristics. The
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Fig. 2. (a) Structure of the proposed PRS unit. (b) Reflec-
tion amplitude and phase comparison of the proposed
PRS unit and the single-sided structure.

reflection phase is positively correlated with frequency
while achieving the high reflection coefficient.

In order to further understand the reflection char-
acteristics of the unit, the effects of parameters w and
d on the unit are investigated, as shown in Fig. 3. The
center frequency of unit resonance shifts to high fre-
quency with the increase of parameter d, which can be
attributed to the decrease of capacitance between metal
patches. In addition, with the increase of w, the reflec-
tion amplitude of PRS unit decreases and the reflection
phase slope increases. Therefore, the resonant frequency
can be adjusted without changing the structural period by
adjusting parameter d, and the ideal wideband reflection
phase curve positively correlated with frequency can be
obtained by adjusting parameter w.
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the circular polarization of the antenna, it is necessary
to design a four-channel output rotating feeding net-
work with equal amplitude and 90◦ phase difference.
Figure 4 (b) shows that the feeding network is printed
on Rogers 3003 dielectric material with thickness of
0.508mm, dielectric constant of 3.0 and loss tangent
(tan δ) of 0.001. The rotating feeding network is mainly
designed based on the idea of cascading power dividers
and phase shifters. By designing power divider, inverter
and 90◦ phase shifter, the four output ports can achieve
the characteristics of equal signal amplitude and 90◦

phase difference.
Figure 4 (b) shows the detailed parameters of the

feeding network. Since the proposed antenna needs to
operate in broadband, it is necessary to design a broad-
band feeding network. There are two main reasons why
the feeding network can operate in broadband. First, the
two-stage Wilkinson power divider is different from the
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consist of weak coupled line and short-circuited line, 

which can also operate in broadband. The working 

mechanism of Wilkinson power divider and phase shifter 

can be explained by the odd- and even- mode theory [17-

18]. 
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Fig. 4. Structure of the proposed antenna. (a) Radiation 

structure of meandering curves. (b) Configurations of the 

feeding network and equivalent circuit of the PIN diode. 

The dimensions of the feeding network are given as 
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l6=3.56, l7=2.4, l8=2.65, w1=1.28, w2=1, w3=0.58, 

w4=0.4, w5=0.94, w6=0.36, w7=0.41, S1=2, g=0.12. 
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polarization state. When PIN1 and PIN3 are reverse 

biased and PIN2 and PIN4 are forward biased, the 
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antenna operates in a circularly polarized state.  

 

Table 1: Polarization by different states of PIN diodes. 
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The ON/OFF states of PIN diodes need to be 

controlled by a DC voltage, so the DC bias circuit is 
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the microstrip feed-line are connected by the high-

frequency inductance, which not only realizes the control 

of the PIN diodes, but also achieves the purpose of 

isolating the RF signal and the DC signal. The DC signal 

forms a loop through the ground via in the center of the 

radiating structure. The function of the capacitors is 

mainly to avoid the influence of DC voltage on the RF 

signal and to enhance the isolation of AC/DC. The 

absorption resistances used on the Wilkinson power 
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Since the performance of the proposed antenna 

depends on the performance of the feeding network, a 

full-wave electromagnetic simulation analysis of the 

rotating feeding network is performed separately. Fig. 5 

shows the S-parameters and phase difference curves of 

each port of the proposed rotating feeding network. It can 

be observed that the amplitudes of the four output ports 

are roughly equal and the phase difference is about 90°. 

Fig. 4. Structure of the proposed antenna. (a) Radi-
ation structure of meandering curves. (b) Configura-
tions of the feeding network and equivalent circuit of
the PIN diode. The dimensions of the feeding net-
work are given as follows (unit: mm): a1=3.35, a2=3.8,
a3=3.8, a4=2.5, a5=3, b=3.8, l1=3.53, l2=3.53, l3=2.39,
l4=2.87, l5=5.26, l6=3.56, l7=2.4, l8=2.65, w1=1.28,
w2=1, w3=0.58, w4=0.4, w5=0.94, w6=0.36, w7=0.41,
S1=2, g=0.12.

traditional Wilkinson power divider. The power divider
in this paper belongs to the dual-band coupled-line
divider and there are two resonant points to achieve
the broadband. Second, the 90◦ and 180◦ phase shifters
consist of weak coupled line and short-circuited line,
which can also operate in broadband. The working mech-
anism of Wilkinson power divider and phase shifter
can be explained by the odd- and even- mode theory
[17–18].

Table 1: Polarization by different states of PIN diodes
Polarization PIN1 PIN2 PIN3 PIN4
HP ON OFF ON OFF
VP OFF ON OFF ON
RHCP ON ON ON ON

In order to obtain the reconfigurable polarization of
the antenna, some lumped elements are integrated on the
feeding network, and the polarization state of radiation
wave can be changed by controlling the ON/OFF states
of four PIN diodes (MACOM MADP-000907-14020).
The forward bias state of PIN diode can be equivalent
to the series of resistor and inductor, and the reverse
bias state can be equivalent to the series of capacitor and
inductor, as shown in Fig. 4 (b). Through changing the
states of PIN diodes, it is possible to control whether the
four-arms of the antenna operate or not. When PIN1 and
PIN3 are forward biased and PIN2 and PIN4 are reverse
biased, the proposed antenna works in horizontal polar-
ization state. When PIN1 and PIN3 are reverse biased
and PIN2 and PIN4 are forward biased, the proposed
antenna operates in vertical polarization state. If all PIN
diodes are forward biased, the proposed antenna operates
in a circularly polarized state.

The ON/OFF states of PIN diodes need to be con-
trolled by a DC voltage, so the DC bias circuit is
designed in the feeding network. The DC bias line
and the microstrip feed-line are connected by the high-
frequency inductance, which not only realizes the con-
trol of the PIN diodes, but also achieves the purpose of
isolating the RF signal and the DC signal. The DC sig-
nal forms a loop through the ground via in the center
of the radiating structure. The function of the capaci-
tors is mainly to avoid the influence of DC voltage on
the RF signal and to enhance the isolation of AC/DC.
The absorption resistances used on the Wilkinson power
divider are 91Ω and 300Ω, respectively.

Since the performance of the proposed antenna
depends on the performance of the feeding network,
a full-wave electromagnetic simulation analysis of
the rotating feeding network is performed separately.
Figure 5 shows the S-parameters and phase difference
curves of each port of the proposed rotating feeding net-
work. It can be observed that the amplitudes of the four
output ports are roughly equal and the phase difference
is about 90◦. The simulation results show that the perfor-
mance of the feeding network can meet the requirements
of the circular polarization antenna.

III. SIMULATION AND MEASUREMENT
PERFORMANCE

In order to verify whether the simulation results
of the tri-polarization reconfigurable FP antenna are
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Fig. 5. Simulated results of rotating feeding network 

 

Since the performance of the proposed antenna 

depends on the performance of the feeding network, a 

full-wave electromagnetic simulation analysis of the 

rotating feeding network is performed separately. Fig. 5 

shows the S-parameters and phase difference curves of 

each port of the proposed rotating feeding network. It can 

be observed that the amplitudes of the four output ports 

are roughly equal and the phase difference is about 90°. 

Fig. 5. Simulated results of rotating feeding network.

consistent with the actual measurement results, a the
PRS layer and feeding antenna are fabricated based on
the above structural parameters. Figure 6 shows the pro-
duced antenna prototype and the test environment in an
anechoic chamber. The S-parameter, realized gain and
axial ratio of the prototype antenna were measured in the
anechoic chamber.
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III. SIMULATION AND MEASUREMENT 

PERFORMANCE 
In order to verify whether the simulation results of 

the tri-polarization reconfigurable FP antenna are 

consistent with the actual measurement results, a the 

PRS layer and feeding antenna are fabricated based on 

the above structural parameters. Fig. 6 shows the 

produced antenna prototype and the test environment in 

an anechoic chamber. The S-parameter, realized gain 

and axial ratio of the prototype antenna were measured 

in the anechoic chamber. 

 

 
Fig. 6. Photograph of the proposed antenna and test 

environment. 

 

The reflection coefficient, axial ratio, realized gain 
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for the proposed antenna. Fig. 7(a) shows that the 
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dB is about 6.4% (13.7-14.6 GHz) and the peak realized 

gain is about 9.2dBi. The reflection coefficient and 
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of S11< -10dB is about 20% (12.2-14.9 GHz) and the 

peak realized gain is about 11.5dBic. Fig. 7(d) describes 

the AR performance of the RHCP state. It can be found 

that the 3dB AR bandwidth is about 17% (12.35-13.4 

GHz and 13.6-14.9 GHz). 

The results show that the measured reflection 

coefficient of the proposed antenna is basically 

consistent with the simulation results. The gain and AR 

performance of measurement and simulation are 

different to some extent. The main reason for this 

difference may be that the equivalent circuit of the PIN 

diode is different from the actual parameters, which 

causes more loss. In addition, errors generated during 

antenna fabricating and testing are also included.  
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The reflection coefficient, axial ratio, realized gain
and radiation pattern of the proposed antenna were mea-
sured [19]. Figure 7 shows the simulated and measured
S-parameter, realized gain and axial ratio of the RHCP
for the proposed antenna. Figure 7 (a) shows that the
simulated and measured -10 dB impedance bandwidth
is about 11% (12.5-14 GHz) and the peak realized gain
is about 9.1 dBi for HP state. The measured S-parameter
and realized gain of VP are depicted in Fig. 7 (b). It is
observed that the measured impedance BW of S11<-
10 dBf is about 6.4% (13.7-14.6 GHz) and the peak real-
ized gain is about 9.2 dBi. The reflection coefficient and
realized gain of RHCP state are presented in Fig. 7 (c),
and it can be observed that the measured impedance
BW of S11< -10 dB is about 20% (12.2-14.9 GHz) and
the peak realized gain is about 11.5 dBic. Figure 7 (d)
describes the AR performance of the RHCP state. It

can be found that the 3dB AR bandwidth is about 17%
(12.35-13.4 GHz and 13.6-14.9 GHz).

The results show that the measured reflection coef-
ficient of the proposed antenna is basically consistent
with the simulation results. The gain and AR perfor-
mance of measurement and simulation are different to
some extent. The main reason for this difference may be
that the equivalent circuit of the PIN diode is different
from the actual parameters, which causes more loss. In
addition, errors generated during antenna fabricating and
testing are also included.

Simulated and measured normalized radiation pat-
terns are compared at 12.7, 14 and 14.4 GHz for the
HP, VP and RHCP modes shown in Figs. 8, 9 and 10,
respectively. It is observed from Figs. 8 and 9 that for lin-
early polarized waves, similar pencil-beam patterns can
be obtained on both sides. Due to the meandering curve
structure, the instability of lumped elements integrated in
the feeding network and the coupling between microstrip
lines, the cross-polarization performance under HP and
VP is worse than that of the RHCP. Overall, the radia-
tion patterns of the proposed antenna remain relatively
stable in the operating frequency band.

Due to the limitation of the measurement system,
the 3D far-field radiation pattern of the antenna proto-
type cannot be obtained to calculate its directivity. Here,
the measured efficiency is obtained by the ratio of the
measured gain to the simulated directivity [20], as shown
in Fig. 11. The efficiency of the antenna is more than
60% in the three polarization states. The loss of antenna
is mainly due to DC bias circuit, PIN diodes and poor
match. The loss is studied by replacing the PIN diode
with metal strip and removing the DC bias circuit. Inves-
tigation shows that the loss of DC bias circuit is about
1.5 dB and the loss of the PIN diodes is about 0.3 dB.
Other losses are due to poor match. Therefore, the effi-
ciency of the antenna can be further improved by opti-
mizing the DC bias circuit.

Table 2 presents a comparison among the proposed
antenna and the reported reconfigurable antenna. It can
be noted that the proposed antenna shows the advantages
in high gain and wide BW.

IV. CONCLUSION
In this paper, gain enhancement for wideband tri-

polarization reconfigurable FP antenna is realized by
loading a metallic PRS layer. The designed single-layer
PRS achieves a good performance with a positive gra-
dient of the reflection phase in broadband, and can well
improve the gain of the proposed antenna. Three polar-
ization states, including HP, VP and RHCP states, have
been realized using four PIN diodes integrated into the
feeding network. The measured results have confirmed
that the antenna is able to achieve −10 dB bandwidth
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Simulated and measured normalized radiation 

patterns are compared at 12.7, 14 and 14.4 GHz for the 

HP, VP and RHCP modes shown in Fig. 8, 9 and 10, 

respectively. It is observed from Fig. 8 and 9 that for 

linearly polarized waves, similar pencil-beam patterns 

can be obtained on both sides. Due to the meandering 

curve structure, the instability of lumped elements 

integrated in the feeding network and the coupling 

between microstrip lines, the cross-polarization 

performance under HP and VP is worse than that of the 

RHCP. Overall, the radiation patterns of the proposed 

antenna remain relatively stable in the operating 

frequency band.  
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Due to the limitation of the measurement system, 

the 3D far-field radiation pattern of the antenna 

prototype cannot be obtained to calculate its directivity. 

Here, the measured efficiency is obtained by the ratio of 

the measured gain to the simulated directivity [20], as 

shown in Fig. 11. The efficiency of the antenna is more 

than 60% in the three polarization states. The loss of 

antenna is mainly due to DC bias circuit, PIN diodes and 

poor match. The loss is studied by replacing the PIN 

diode with metal strip and removing the DC bias circuit. 

Investigation shows that the loss of DC bias circuit is 

about 1.5dB and the loss of the PIN diodes is about 

0.3dB. Other losses are due to poor match. Therefore, the 

efficiency of the antenna can be further improved by 

optimizing the DC bias circuit. 
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network 
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Table 2 presents a comparison among the proposed 

antenna and the reported reconfigurable antenna. It can 

be noted that the proposed antenna shows the advantages 

in high gain and wide BW. 

 

IV. CONCLUSION 
In this paper, gain enhancement for wideband tri-

polarization reconfigurable FP antenna is realized by 

loading a metallic PRS layer. The designed single-layer 

PRS achieves a good performance with a positive 

gradient of the reflection phase in broadband, and can 

well improve the gain of the proposed antenna. Three 

polarization states, including HP, VP and RHCP states, 

have been realized using four PIN diodes integrated into 

the feeding network. The measured results have 

confirmed that the antenna is able to achieve -10dB 

bandwidth of 11%, 6.4% and 20% for HP, VP and 

RHCP, and the peak realized gain achieved 9.1, 9.2 and 

11.5dBi, respectively. For RHCP mode, the 3dB axial 

ratio bandwidth of about 17% is achieved. The 

simulation and measurement results show that the 

radiation patterns of E-plane and H-plane in the tri-

polarization states of the antenna are similar and 

symmetrical, with good directivity. In addition, the DC 

bias circuit that controls the state of the PIN diodes can 

be easily integrated into the rotating feeding network. 

The proposed antenna is suitable for polarization 

diversity applications. 
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Table 2: Performance comparison with previously
reported polarization reconfigurable antennas
Ref. [4] [6] [13] This

work
Freq.
(GHz)

2.4 5 7.4 14

Size (λ) - 1.8×1.8
×0.5

2×2×0.6 2.1×2.3
×0.46

Polarization 3 3 3 3
Feeding
network

No Yes Yes Yes

AR
BW(%)

7.9 13.1 4 17

No. of
switches

4 8 2 4

Gain(dBi) ∼9 11.2 15.1 11.5

H-plane in the tri-polarization states of the antenna are
similar and symmetrical, with good directivity. In addi-
tion, the DC bias circuit that controls the state of the PIN
diodes can be easily integrated into the rotating feeding
network. The proposed antenna is suitable for polariza-
tion diversity applications.
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