
Multi-Fidelity Optimization of Microwave Structures Using 
Response Surface Approximation and Space Mapping 

 
 

Slawomir Koziel 
 

Engineering Optimization and Modeling Center, School of Science and Engineering,  
Reykjavik University, IS-103 Reykjavik, Iceland  

 
koziel@ru.is 

  
Abstract  ─ A computationally efficient method for 
design optimization of CPU-intensive microwave 
structures is discussed. The presented technique 
exploits a response surface approximation surrogate 
model set up using data from the coarse-mesh EM-
based model being a relaxed-accuracy representation 
of the microwave structure in question. The 
surrogate model is further subjected to the classical 
space mapping optimization. It is demonstrated that 
the new technique is able to provide a satisfactory 
design with a few electromagnetic simulations of the 
original structure. Because of using functional 
approximation, no circuit equivalent coarse model is 
necessary, which makes the presented approach 
particularly suitable for structures for which the 
development of the reliable coarse model is 
problematic (e.g., antennas).  
  
Index Terms ─ Computer-aided design (CAD), 
multi-fidelity optimization, response surface 
approximation, space mapping, electromagnetic 
simulation, engineering design optimization. 
 

I. INTRODUCTION 
Due to the increasing complexity of 

contemporary microwave devices and structures as 
well as the demand for higher accuracy of 
electromagnetic simulation, the evaluation of 
microwave structures is becoming more and more 
time-consuming. Therefore, computer-aided 
design optimization—a critical part of modern 
microwave design process—faces fundamental 
difficulties. Direct optimization involving 
numerous evaluations of EM-simulation-based 
objective functions is typically impractical 
because of its high computational cost, and, in 

many cases, because of its infeasibility which is 
due to poor analytical properties of EM-based 
objective functions as well as the lack of 
sensitivity data or sensitivity being too expensive 
to evaluate. This means, in particular, that the 
traditional, gradient-based techniques become 
obsolete. On the other hand, certain modern 
techniques such as evolutionary algorithms [1] or 
particle swarm optimizers [2] permit to handle 
some issues that are problematic for the classical 
optimization (e.g., objective function 
discontinuity, lack of derivative information, 
multiple local optima). However, these methods 
are even more CPU-intensive because they 
typically require a huge number of objective 
function evaluations. 

One of the possible approaches to alleviate this 
problem is decomposition, i.e., breaking down an 
EM model into smaller parts and combine them in a 
circuit simulator to reduce the CPU-intensity of the 
design process [3]-[7]. This is only a partial solution 
though, because the EM-embedded co-simulation 
model is still subjected to direct optimization. 

Space mapping (SM) is a technique that has 
been successfully applied to microwave engineering 
design problems as well as in other engineering 
fields [8]-[13] and seems to be one of the most 
efficient approaches to date. SM allows efficient 
optimization of expensive or “fine” models—
usually implemented with a CPU-intensive EM 
simulator—by means of the iterative optimization 
and updating of the so-called “coarse” models, less 
accurate but cheaper to evaluate. The coarse model 
is supposed to be a physically-based representation 
of the fine model. In order to take advantage of the 
space mapping principle, the coarse model should 
be computationally much cheaper than the fine 
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model. Therefore, equivalent-circuit models or 
models exploiting analytical formulas are preferred 
[8]. Reliable equivalent-circuit models, however, 
may be difficult to develop for certain types of 
microwave devices (e.g., antennas, waveguide 
structures). Moreover, an extra simulator must be 
involved in the optimization process. 

In this paper, another method is proposed that 
is a combination of a response surface 
approximation (RSA) approach [14] and space 
mapping, and does not require a circuit-based 
coarse model. Therefore, it can be implemented 
using a single EM-simulator, here, FEKO. The 
presented method uses a space-mapped RSA-
based surrogate established with the coarse-mesh 
EM-based model and a generic surrogate-based 
optimization principle [15]. Design optimization 
examples are provided to demonstrate the 
robustness of the proposed approach. 
 

II. OPTIMIZATION APPROACH 
A. Design Optimization Problem Formulation 
The goal is to solve the following problem 

           * arg min ( )f fU
x

x R x  (1)
where Rf  Rm denotes the response vector of a fine 
model of the device of interest, e.g., the modulus of 
the reflection coefficient |S21| evaluated at m 
different frequencies. U is a given scalar merit 
function, e.g., a minimax function with upper and 
lower specifications. Vector xf

* is the optimal design 
to be determined. As mentioned in the introduction, 
Rf is assumed to be computationally expensive so 
that the direct optimization is usually prohibitive. In 
this paper, Rf is evaluated using FEKO. 
B. Initial Surrogate Model 
A basis of the proposed approach is a 
computationally cheap surrogate model. We assume 
that the surrogate model is a response surface 
approximation (RSA) model. Here, we exploit a 
radial basis function (RBF) interpolation [16]; the 
surrogate will be denoted as RRBF. Normally, RSA 
model would be set up using a sampled fine model 
data. However, in order to reduce the computational 
overhead, the surrogate is constructed using a 
simplified representation Rc of the fine model. Rc is 
evaluated in the same EM simulator as the fine 
model, however, with much coarser mesh. This not 
only results in a much shorter evaluation time, but 
also introduces some inaccuracy, which will be 
dealt with in Section II.C. 

Let XB = {x1, x2, …, xN} denote a base set, such that 
the responses Rc(xj) are known for j = 1, 2, …, N. 
Here, the base set is selected using a modified Latin 
hypercube sampling algorithm [17] that gives a 
quite uniform distribution of samples in the design 
space. Figure 1 shows an example allocation of 50 
base points in the unity interval [0,1]  [0,1]. 
We shall adopt the notation 
Rc(x) = [Rc.1(x) … Rc.m(x)]T, where Rc.k(x) is the kth 
component of the response vector Rc(x). The radial 
basis function model RRBF is defined as 
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where || . || denotes the Euclidean norm. The 
parameters k.j are calculated so that they satisfy 

  , 1, 2, ...,k k k m  λ F  (3)
where k = [k.1  k.2  ...   k.N]T,  
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   x x  
is a normalization factor representing an average 
distance between base points (n is the number of 
design variables). 

In this paper we use a Gaussian basis function 
defined as 

2

( ) , 0, 0crr e r c     (6)
Parameter c is adjusted to minimize the 

generalization error calculated using cross-
validation [15]. Figure 2 shows the example of the 
scalar RRBF model surface. Note that the RBF 
model has an interpolation property (guaranteed 
by the condition (3)), i.e., the response surface fits 
exactly the Rc model at all base designs. 
 
C. Space Mapping Correction of the Response 
Surface Approximation Model 

The surrogate model RRBF is computationally 
cheap but it is not as accurate representation of the 
microwave structure in question as the fine model 
Rf. This is not only because RRBF is set up using a 
limited number of base points, but, most 
importantly, because it is constructed using the 
data from the coarse-mesh model Rc instead of the 
original fine model Rf. Therefore, before 
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optimization, the model RRBF has to be corrected to 
improve its (local) accuracy with respect to the 
fine model. 
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Fig. 1. Example of the base set for the RBF 
surrogate model RRBF: 50 base points allocated in 
the unity interval [0,1]  [0,1] using the modified 
Latin hypercube sampling [17]. 
 
           

 
 

Fig. 2. Example of the (scalar) RRBF model. Base 
points denoted using black circles. 
 

In this paper the surrogate model is corrected 
using a classical space mapping (SM) approach 
[13]. The corrected surrogate model RSM is defined 
as follows 

( ) ( ( ( , )), )SM L RBF R R LP PR x R x p p  (7)
where SM parameters are obtained using a 
parameter extraction (PE) process 

,
( , ) argmin || ( ) ( ( ( , )), )

PE

L R f L RBF R
X

P P


 y z x
p p R x R x y z (8)

Here, PL is an output-SM-like mapping (e.g., 
PL(R,pL) = PL(R,A,d) = A·R + d) [13], PR is an 
input-SM-like mapping (e.g., PR(x,pR) = PR(x,B,c) = 
B·x + c) [8], whereas XPE is the set of points 
(designs) used in PE. 
D. Optimization Procedure [18] 
The proposed optimization procedure establishes an 
RSA model RRBF using sampled data from the 
coarse-mesh model Rc. The space-mapping-

corrected RSA model, RSM, is then created using (7), 
(8) with the parameter extraction based on a current 
design at which the fine model response is known. 
Subsequently, a new design is found by means of 
optimizing the RSM model. The surrogate models are 
set up in a restricted domain, being the 
neighbourhood of a current design. More 
specifically, the neighbourhood is defined by a 
small deviation δ from the current design; the value 
of δ is updated after each iteration of the 
optimization algorithm. 
The optimization procedure can be formalized as 
follows [18]: 
Step 0 Set i = 0; Initialize control parameters: 

δ  (0,1) and N (positive integer); optimize 
the model Rc to find an initial design x(0) = 
arg min{x : U(Rc(x))};  

Step 1 Assign lower bounds xmin and upper bounds 
xmax for the design variables: xmin = (1–
δ)·x(i) and xmax = (1+δ)·x(i); 

Step 2 Select the base set XB = {x1,…,xN} # so that 
xmin ≤  xj ≤ xmax (component-wise), j = 1, 
…, N; evaluate Rc at all designs from XB; 

Step 3 Establish the surrogate model RRBF 
according to (2)-(6); 

Step 4 Establish the corrected surrogate model RSM 
according to (7) and (8) using XPE = {x(i)}; 

Step 5 Find a new design x(i+1) by optimizing RSM: 
x(i+1) = arg min{xmin ≤  x ≤ xmax : U(RSM(x))}; 

Step 6 Update δ: δ = max{j = 1, ..., N : | xj
(i+1) – xj

(i)
 

|/| xj
(i+1)

 |} $; Set i = i + 1; 
Step 7 If the termination condition is not satisfied, 

go to 1; else END; 
# The base set is selected using a modified Latin 
hypercube sampling [17]. 
$ xj

(i) and xj
(i+1) are the jth components of x(i) and 

x(i+1), respectively; the updating procedure assumes 
positive values for all design variables. 
 
Note that the updating rule for δ ensures that the 
new surrogate model domain is not larger than the 
previous one. The algorithm is terminated after 
user-defined maximum number of iterations or if 
the value of δ becomes sufficiently small.  
Computational cost of the optimization process is 
determined by the evaluation time tc of the coarse-
mesh model Rc and the evaluation time tf of the fine 
model Rf (other factors such as the cost of setting up 
RRBF and RSM models can be neglected). The total 
optimization time can be calculated as 
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0
( 1)


   itern

opt c i iter fi
t t N n t  (9)

where niter is the number of iterations of the 
optimization algorithm, N0 is the number of 
evaluations of Rc necessary to find x(0) (cf. Step 0), 
and Ni, i > 0, is the number of new base points at 
iteration i (may be smaller than N because some 
base points from previous iterations are reused). 
To measure the computational efficiency of the 
proposed algorithm a relative time trel is used that is 
the number of fine model evaluations required to 
complete the optimization procedure: 

0
1 ( / )


    itern

rel iter c f ii
t n t t N  (10)

It should be noted that it is possible to use the 
coarse-mesh model Rc directly as a coarse model 
in the SM optimization algorithm. However, the 
computational cost of such a process is expected to 
be much higher than for the technique proposed 
here because of the larger total number of 
evaluations of Rc (both parameter extraction and 
surrogate model optimization would be performed 
directly on Rc). Also, analytical properties of the 
coarse-mesh EM model may be poor (the model 
may be non-differentiable or even discontinuous) 
in contract to the RSA-based model which is 
always smooth. 

 
III. EXAMPLES 

A. 2nd-Order Tapped-Line Microstrip Filter 
[19] 

Consider a second-order tapped-line microstrip 
filter [19] shown in Fig. 3. The design parameters 
are x = [L1  g]T. The fine model Rf is simulated in 
FEKO [20]. The number of meshes for the fine 
model is 360. Simulation time for the fine model is 
204 s. The design specifications are |S21|  –3 dB 
for 4.75 GHz    5.25 GHz, and |S21|  –20 dB 
for 3.0 GHz    4.0 GHz, and 6.0 GHz    
7.0 GHz.  

The coarse-mesh Rc is the structure in Fig. 3 
also simulated in FEKO, however, the number of 
meshes is only 48. The number of meshes for Rf 
and Rc correspond to xc = [6.0 0.1]T mm. The 
simulation time for Rf-c is about 8 s. Initial design 
x(0) = [3.83 0.103]T mm is found by optimizing Rc 
and requires 34 model evaluations using xc as a 
starting point (small number of evaluations is due 
to using relaxed tolerance requirements). The 
number of base points to set up model RRBF is N = 
25. Initial value of δ is 0.3. The space-mapping-

corrected model RSM uses only output SM of the 
form: RSM(x) = A·RRBF(x) with A = diag{a1, a2, …, 
am} (i.e., PL(R) = A·R, and PR(x) = x). This choice 
comes from the fact that a relatively small 
surrogate model domain allows us to assume that 
the misalignment between the surrogate model and 
the fine model has similar character throughout the 
domain. 

We performed three iterations of the 
optimization algorithm. Figure 4 shows the 
responses of models Rf and Rc at the initial design 
(fine model specification error +0.9 dB), the Rf 
response at xc (specification error +1.0 dB), as 
well as response of Rf at the final design x(3) = 
[3.92 0.145]T mm (specification error –0.7 dB). 
Figure 3 shows the surrogate model domains, base 
sets, and the evolution of the design for all three 
iterations. The total number of evaluations of 
model Rc is 59 and it is smaller than 3N = 75, 
which is because some of the base points were 
reused as indicated in Fig. 5. Table 1 indicates that 
the total optimization time corresponds to only 7.6 
evaluations of the fine model. 

For the sake of comparison, an SM optimization 
of the filter was also performed using directly Rc as 
a coarse model and the same output SM surrogate. 
The optimization time was 48 minutes, almost 
twice as much as for the proposed technique (with 
the total evaluation time of Rc being almost three 
times larger), even though the SM matrix A can be, 
in this case, obtained analytically without 
performing the parameter extraction process (8). In 
case of using any kind of input SM [8], the 
optimization cost would be much higher. 

The first example is provided mostly to 
illustrate the operation of the proposed 
optimization algorithm (cf. Fig. 5). Other design 
problems are provided in the next sub-sections. 

 

 
Fig. 3. Geometry of the second-order tapped-line 
microstrip filter [19]. 

603KOZIEL: MULTI-FIDELITY OPTIMIZATION OF MICROWAVE STRUCTURES



Table 1: 2nd-order tapped line filter: optimization cost 
Algorithm 

Component 
Model  

Involved

Number of 
Model 

Evaluations 

CPU Cost 
topt 

[min] trel 

Optimization of Rc Rc 34 4.5 1.3 
Setting up base sets 

for RRBF Rc 59 7.9 2.3 

Evaluation of Rf Rf 4 13.6 4.0 
Total optimization 

time N/A N/A 26.0 7.6 
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(b) 

Fig. 4. Second-order tapped-line filter: (a) 
responses of Rf (solid line) and Rc (dashed line) at 
initial design x(0) and response of Rf at xc (dotted 
line); (b) response of Rf at the final design. 
 

B. Patch Antenna [21] 
Consider the patch antenna [21] shown in 

Fig. 6. This antenna is printed on a substrate with 
relative dielectric constant r = 2.32 and height h = 
1.59 mm. The design parameters are the patch 
length and width, i.e., x = [L W]T. The objective is 
to obtain 50  input impedance at 2 GHz. The fine 
model Rf is simulated in FEKO [20]. The number 

of meshes for the fine model is 1024, which 
ensures mesh convergence for the structure. 
Simulation time for the fine model is 41s.  

The coarse-mesh model Rc is the structure in 
Fig. 6 also simulated in FEKO, however, the 
number of meshes is only 100. Simulation time for 
model Rc is 0.6s. The number of meshes for Rf and 
Rc correspond to xc = [50 100]T mm. 

Initial design x(0) = [50.85 101.86]T mm is 
found by optimizing Rc and requires 39 model 
evaluations. The number of base points to set up 
model RRBF is N = 30. Initial value of δ is 0.01. As 
before, the space-mapping-corrected model RSM is 
of the form RSM(x) = A·RRBF(x).  

The fine model response at the initial design is 
38.15 . The response of Rf at the design obtained 
after four iterations of the proposed optimization 
procedure, x(4) = [50.25 101.09]T mm, is 49.94 . 
The total number of evaluations of model Rc is 97. 
For illustration purposes, Fig. 7 shows the 
response surface of the fine model, the RRBF 
model, and the space-mapping-corrected RBF 
model RSM at the first iteration of the optimization 
procedure. Table 2 summarizes the computational 
cost of the optimization: the total optimization 
time corresponds to only 6.8 evaluations of Rf. 
 

 
 

Fig. 6. Geometry of the patch antenna [21]. 
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    (a)              (b)                 (c) 

Fig. 5. Surrogate model domains, base sets (circles) and updated designs (filled circles) after: (a) first 
iteration, (b) second iteration, and (c) third iteration of the optimization procedure. Initial design is 
marked as a square. 
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(a)       (b) 

Fig. 7. Patch antenna: (a) fine model response surface (bottom) and the RRBF model response surface (top) 
at the first iteration of the proposed optimization procedure. Initial fine model response is denoted as the 
filled circle; (b) fine model response and the SM-corrected RBF model RSM at the first iteration. Initial 
fine model response, optimal response of the RSM model and the corresponding fine model response 
denoted as the filled circle, empty circle and the filled rectangle, respectively. 
 
. 

The direct optimization of the fine model using 
Matlab’s fmincon routine was performed for 
comparison purposes using x(0) as a starting point. 
Direct optimization required 54 evaluations of Rf to 
obtain a comparable design (almost 40 minutes of 
CPU time compared to less than 5 minutes required 
by the procedure discussed in this paper). 

It should be noted that in case of the patch 
antenna no circuit equivalent model is available. 
This is a serious problem for the standard space 
mapping technique. In [21], the coarse-mesh FEKO 
model was used as a coarse model for space 
mapping algorithm to optimize the same patch 
antenna. Special meshing techniques had to be used 
to make the coarse model optimizable, and cost-
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saving termination conditions were used. 
Nevertheless, the computational cost of SM 
optimization was about 50% to over 100% higher 
than that reported here (depending on the space 
mapping type used to build the surrogate model). 
 
Table 2: Patch antenna: optimization cost. 

Algorithm 
Component 

Model  
Involved

Number of 
Model 

Evaluations 

CPU Cost 
topt 

[min] trel 

Optimization of Rc Rc 39 23 0.6 
Setting up base sets 

for RRBF Rc 97 57 1.4 

Evaluation of Rf Rf 5 205 5 
Total optimization 

time N/A N/A 285 7 

 
 
C. 2nd-Order Capacitively-Coupled Dual-Behavior 
Resonator (CCDBR) Microstrip Filter [19] 

Consider a second-order capacitively-coupled 
dual-behavior resonator (CCDBR) microstrip filter 
[19] shown in Fig. 8. The design variables are 
x = [L1 L2 L3]T. Parameter S is set to 0.05 mm. The 
fine model is simulated in FEKO [20]. The number 
of meshes for the fine model is 1134. Simulation 
time for the fine model is 37.7 min. The design 
specifications are |S21|  –3 dB for 3.8 GHz    
4.2 GHz, and |S21|  –20 dB for 2.0 GHz    3.2 
GHz and 4.8 GHz    6.0 GHz.  

 

 
Fig. 8. Geometry of the 2nd -order CCDBR filter 
[19]. 
 

The coarse-mesh model Rc is the structure in 
Fig. 8 also simulated in FEKO with the number of 
meshes equal to 130. The number of meshes for Rf 
and Rc correspond to xc = [2.89 6.24 0.92]T mm 
(optimal solution of the circuit equivalent ADS 
model [22]). The simulation time for Rc is 37 s. 

Initial design x(0) = [2.97 4.69 1.54]T mm is 
found by optimizing Rc and requires 63 model 

evaluations (small number of evaluations is due to 
using relaxed tolerance requirements). The number 
of base points to set up model RRBF is N = 50. 
Initial value of δ is 0.1. As before, the space-
mapping-corrected model RSM is of the form 
RSM(x) = A·RRBF(x). 

Figure 9 shows the responses of models Rf and 
Rc at the initial design (fine model specification 
error +0.8 dB), the Rf response at xc (specification 
error +6.7 dB), as well as the fine model response 
at the final design, x(3) = [3.21 4.63 1.27]T mm, 
obtained after three iterations (specification error –
1.5 dB). The total number of evaluations of model 
Rc is 112. Table 3 summarizes the computational 
cost of the optimization: the total optimization 
time corresponds to only 6.8 evaluations of Rf. 

For comparison purposes, the direct 
optimization of the fine model using Matlab’s 
fminimax routine was performed using x(0) as a 
starting point. The design obtained after 100 
evaluations of Rf (over 63 hours of CPU time; the 
algorithm was terminated without convergence) 
corresponds to the specification error of –0.6 dB. 

On the other hand, SM optimization of the 
filter using directly Rc as a coarse model resulted 
in the design comparable with the one obtained 
using the proposed technique, however, the 
optimization time was 390 minutes, 50% more 
than for our method (with the total evaluation time 
of Rc being 120% larger). For this example, the 
SM parameters can be determined analytically; 
otherwise (e.g., in case of using input SM [8]), the 
optimization cost would be substantially higher. 

 
Table 3: CCDBR filter: optimization cost 

Algorithm 
Component 

Model 
Involved

Number of 
Model 

Evaluations 

CPU Cost 
topt 

[min] trel 

Optimization of Rc Rc 63 39 1.0 
Setting up base sets 

for RRBF Rc 112 69 1.8 

Evaluation of Rf Rf 4 151 4.0 
Total optimization 

time N/A N/A 259 6.8 
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Fig. 9. 2nd-order CCDBR filter: (a) responses of Rf 
(solid line) and Rc (dashed line) at initial design x(0) 
and response of Rf at xc (dotted line); (b) response of 
Rf at the final design. 
 

IV. CONCLUSION 
An efficient algorithm for microwave design 

optimization is discussed that combines response-
surface-approximation-based surrogate modeling, 
space mapping and multi-fidelity electromagnetic 
simulations. Unlike classical space mapping, the 
proposed technique does not require a circuit-
equivalent or analytical coarse model, which 
makes it particularly suitable for problems where 
finding such a coarse model may be problematic, 
e.g., antennas. Although our technique is 
illustrated using microwave structures evaluated 
with FEKO, it can be used with any other 
electromagnetic simulator. It is demonstrated that 
the presented method is able to yield satisfactory 
design with the optimization time corresponding to 
a few evaluations of the fine model. 
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