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Abstract ─ The precise and wideband modeling of 
electromagnetic interferences and their effect on the 
signal integrity of microwave structures is pre-
sented in this paper, via an efficient 3-D dispersion-
optimized method. Introducing a novel frequency-
dependent alternating-direction implicit finite-
difference time-domain algorithm in general curvi-
linear coordinates, the technique establishes a con-
sistent multi-frequency higher-order stencil man-
agement formulation. Moreover, for arbitrary geo-
metric discontinuities and abrupt curvatures, a field 
projection scheme is devised. Thus, the detrimental 
dispersion errors of existing approaches are drasti-
cally minimized and time-steps can now greatly 
exceed the stability condition at any frequency 
range. The proposed method leads to affordable 
simulations and very accurate results, as proven by 
a variety of electromagnetic compatibility prob-
lems.  
  
Index Terms ─ EMC analysis, EMI prediction, 
higher-order ADI-FDTD methods, signal integrity.  
 

I. INTRODUCTION 
An essential issue in the electromagnetic com-

patibility (EMC) realization of modern electronic 
equipment is the fulfillment of certain immunity 
and emission standards. To this aim, the role of 
electromagnetic interference (EMI) is deemed criti-
cal since it can seriously affect the signal integrity 
of most microwave devices. Actually, this issue has 
become the topic of a constant research for the de-
sign of proficient components with the highest 
possible sensitivity and confined intermodulation 
distortions [1-11]. Considering that these structures 
may receive many expensive reconfigurations be-
fore their final form, the need for a cost-effective 

and robust approach offering fast and rigorous EMI 
estimations, is indeed of major importance. Howev-
er, this task is rather cumbersome, especially on a 
broadband basis, as most of the devices have a lot 
of geometric details, arbitrary discontinuities, or 
involve dispersive materials which call for fine 
meshes and prolonged simulations. For these diffi-
culties to be overcome, the combination of the al-
ternating-direction implicit (ADI) concept with the 
finite-difference time-domain (FDTD) method [12] 
can be proven a powerful means [13, 14]. Nonethe-
less, extensive studies revealed that the original al-
gorithm suffers from rapidly growing dispersion 
errors as time-steps increase, a fact that led to sev-
eral noteworthy algorithms for its correction [15-
25].  

The key objective of this paper is the develop-
ment of an accuracy-adjustable class of dispersion-
reduction ADI-FDTD solvers for the enhanced 
analysis of signal integrity and EMI interactions in 
contemporary EMC applications. Being fully wide-
band, the 3-D algorithm associates new higher-
order frequency-dependent spatial/temporal forms 
with optimal stencils that produce generalized dual 
curvilinear grids. Furthermore, for the manipulation 
of small-scale structural details or irregularities, a 
conformal field projection on preselected planes is 
introduced. On the other hand, to preserve consis-
tency amid neighboring areas, a family of boundary 
and continuity conditions is employed to ensure 
smooth transition. In view of its controllable formal 
precision and unconditional stability, the multi-
frequency technique provides certain advantages 
over conventional approaches. Particularly, it per-
mits the choice of time-steps well above the Cou-
rant limit, without creating prohibitive dispersion 
artifacts and enables the construction of coarse, yet 
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sufficiently adaptable, lattices. Therefore, intermo-
dulation deformations are thoroughly resolved and 
signal integrity is reliably estimated. These proper-
ties are numerically validated by an assortment of 
different EMC arrangements, like waveguides, re-
sonators, cavities, junctions, specialized antennas, 
metamaterial structures, and anechoic/reverberation 
test facilities.  

 

 
Fig. 1. Geometry of the dual mesh tessellation. 

 
II. HIGHER-ORDER OPERATORS 
The central contribution of our formulation fo-

cuses on the development of a high-precision non-
orthogonal ADI-FDTD technique, whose actual 
performance – unlike several existing approaches – 
does not depend on dispersion errors as time-steps 
exceed the Courant limit. Moreover, the novel algo-
rithm is intended to be fully generalized in terms of 
adaptive meshing, geometric details, and material 
modeling to successfully simulate all intricate wave 
interactions without needing excessive computa-
tional resources.  

 
A. Discretization and dual-lattice construction 

Starting from the correct interpretation of the 
underlying physical problem, the proposed discreti-
zation framework is based on highly-accurate spa-
tial/temporal interpolation schemes and dual adap-
tive grids, as those of Fig. 1. More specifically, the 
construction of these meshes is based on the selec-
tion of the appropriate coordinate system that leads 
to cells of optimal quality [24-27]. To this aim, we 
start with an adaptive primary lattice, whose re-
finement is conducted according to the geometric 
details of the structures, under study, and the 
achievement of the minimum reflection error at 
neighboring cell interfaces. This local refinement 
process on the primary grid yields a finite number 
of uniquely defined local patterns [28, 29], which, if 

properly assembled at their adjacent vertices, enable 
the formation of an equally consistent secondary 
grid (see Fig. 1). Next and via a dual mesh notion, 
magnetic field H components are placed at second-
ary edge centers, to remain in absolute staggering 
with electric field E components located at primary 
edge centers [30-32]. Note that all quantities re-
quired for the update of the proposed algorithm are 
evaluated through a field flux concept across cell 
faces [7] which preserves the hyperbolic nature of 
Maxwell’s equations and saves a lot of numerical 
effort.  

 
B. Accuracy-controllable operators  

Let us assume a general coordinate system 
(u,v,w) defined by the corresponding g(u,v,w) me-
trical coefficients, which describe all of its imple-
mentation issues. In our formulation, spatial and 
temporal derivatives are evaluated by a new Lth-
order accurate operator, whose expressions are, re-
spectively, given by 
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where η(u,v,w), Δη(Δu,Δv,Δw) is the spatial in-
crement and Δt the time-step. Parameter q controls 
the impact of extra nodes due to higher-order deriv-
atives [7, 10]. After some algebra, one obtains 
                1( 2)( ) ( 1)( )L Lq a a       , (3) 

for a[0,1] being a weighting coefficient relative to 
the frequency spectrum of our approximation.  

Proceeding to the analysis of (1), special atten-
tion must be drawn to the contribution of the novel 
multi-frequency operator Qη[.]. Its extra degree of 
freedom D denotes the suitable stencil size and in-
troduces auxiliary nodes that allow the satisfactory 
modeling of abrupt waves or fine geometric details. 
In particular,  
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Coefficients Yl (with a total sum of 1/2) im-
prove grid consistency, primarily in signal integrity 
estimations, whereas correction functions Φ(Δt) and 
Ψ(kηΔη) of (2) and (4), enhance the accuracy of 
derivative approximation. In wideband EMI simula-
tions, which are rather demanding for most time-
domain schemes, these functions are proven very 
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effective. Essentially, they consider the excitation 
frequency content and subdue all oscillatory modes 
that can corrupt propagating waves. Note that for 
low-frequency applications, where strong coupling 
phenomena occur, this behavior is retained, as well. 
Such an issue is deemed critical for EMC optimiza-
tion due to the important influence of the excitation 
on the final design. In this context, function 
Ψ(kηΔη), with kη the ku, kv, or kw component of wa-
vevector k, gives the best nodal pattern for the con-
struction of the mesh. To acquire their arguments, 
the Sη [e

jkη]/∂ζ e
jkη → 1 constraint should be satisfied, 

which in higher-order realizations becomes Sη 

[ejkη]/∂η e
jkη ≈ 2[cos(kηΔη) – 1]; a strict requirement 

for minimizing dispersion errors, not easily 
achieved by traditional techniques [31]. So, suitable 
kηΔη are derived by the Fourier transform of al-
ready computed components at fixed positions near 
geometric details and the mean value of the esti-
mated frequency spectrum. Herein, the two func-
tions are selected to be the combination of expo-
nential and hyperbolic terms  
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with p = kηΔη/2. To complete the theoretical de-
scription, operators Vl,d[.], in (4), must be defined. 
Basically, they are responsible for the combination 
of the nodal patterns introduced by (4). In contrast 
to Yee’s method that involves only two lattice 
points for derivative computation, the specific 
scheme employs a complete set of nodes which 
yield coarse but very robust grids [34]. A typical w-
directed (for D = 5) Vl,d[.] operator receives the 
compact expression of 
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The purpose of r is the consistent treatment of re-
gions near perfectly electric conducting outer walls 
or composite media interfaces, i.e. cases where 
stencils extend at least two nodes on each side of a 
mesh point.  

Observing the multi-frequency algorithm, pre-
sented above, it is stated that (1), (2), (4), and (7) 
launch a class of 3-D higher-order spatial and tem-
poral forms with advanced dispersion-reduction 

assets. In fact, it is the structural consistency of (4) 
and (7) that increases the overall performance. Con-
sequently, the latter operators subdue the typical 
discretization defects created during the modeling 
of most microwave structures and especially of 
electrically large ones. Moreover, their auxiliary 
nodes guarantee the correct representation of labo-
rious geometries, so evading severe inaccuracies 
[30-34]. Given that lengthy propagation paths in 
several EMC setups are related to multiple interac-
tions from compound interfaces, the extraction of 
wideband update formulas is expected to be a con-
siderable contribution. However, one must be aware 
of the regularly encountered discontinuities with 
non-zero tangential quantities that demand notable 
overheads. This is, also, drastically alleviated by 
(1)-(7), which, except for their superior precision, 
can be applied to frequency-dependent problems. 
Thus, in the next sections, we extract novel uncondi-
tionally-stable expressions, able to offer an optimal 
phase velocity, mainly independent of lattice reflec-
tion errors.      

 
III. GENERALIZED ADI-FDTD  

ALGORITHM 
For the development of the frequency-

dependent methodology, one must start from mag-
netic, B = [Bu, Bv, Bw]T, and electric, D = [Du, Dv, 
Dw]T, flux densities 

 0( )    B H H M , (8)      

 0( )    D E E P , (9) 

where H = [Hu, Hv, Hw]T, E = [Eu, Ev, Ew]T represent 
magnetic and electric field intensities and M = [Mu, 
Mv, Mw]T, P = [Pu, Pv, Pw]T the auxiliary magnetic 
and electric polarizations that consider the disper-
sive nature (Debye, Lorentz or Drude) of every ma-
terial with constitutive parameters ε(ω), μ(ω). Ap-
plication of (1)-(7) to Faraday’s and Ampere’s laws, 
gives 

    E  E BS T , (10) 

    H    H D E JS T , (11) 

where σ denotes the electric losses, J = [Ju, Jv, Jw]T 
is the electric current density source used for exter-
nal excitation, and ΞE,H are 3×3 dual metric tensors 
whose elements, expressed as functions of g(u,v,w), 
characterize the (u,v,w) coordinate system selected 
for our analysis. On the other hand, S = [Su Sv Sw]T is 
the non-orthogonal curl operator, described by 
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The proposed ADI-FDTD algorithm retains the 
simplicity of the common approach [13-18] and 
circumvents the defects of regular finite-difference 
configurations. Thus, it divides the original iteration 
of a component into two sub-iterations, namely, for 
time forwarding from the nth to the (n + 1)th time-
step, we get: the first sub-iteration from n to n + 1/2 
and the second one from n + 1/2 to n + 1. It is em-
phasized that for the sake of symmetry during the 
ADI splitting process, the electric current density 
terms in (11) are replaced with judiciously adjusted 
temporal averages. For instance, at time-step n + 
1/2,  
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 1/2 1/4 3/4( ) / 2n n n   J J J , (14) 

from which the σ(Εn+1/2 + En)/4, Jn+1/4/2 terms be-
long to the first and the σ(Εn+1 + En+1/2)/4, Jn+3/4/2 
terms to the second sub-iteration of the method. Let 
us, now, take into account the dual structure of Fig. 
1 and focus on the unconditionally-stable update of 
the Eu component. In the first sub-iteration, the u-
directed part of the dispersion-optimized Ampere’s 
law, (11), yields 
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with the subscript A = (i + 1/2, j, k). Using (2) for 
the expansion of the temporal operator, one de-
rives 
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(16) 
for ΛD a weighting function that contains all higher-
order (HO) temporal differentiations of Du con-
ducted at n or earlier time-steps [19-23]. Combined 
with the Φ(Δt) of (5) and the enhanced spatial oper-
ators, this extra degree of freedom leads to a large 
suppression of the dispersion mechanism, even when 
the Courant stability criterion has been appreciably 
exceeded.  

As observed from (16), partial derivative Sv[Hw] 
at n + 1/2 must be implicitly calculated, as it in-

volves only unknown Hw values at A = (i ± 1/2, j + 
1/2, k) nodes, while its Sw[Hv] counterpart can be 
explicitly given by the already computed Hv quanti-
ties at the nth time-step. To eliminate Hw, the same 
ADI notion is implemented in the w-directed part of 
Faraday’s law, (10), thus concluding to 
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with B = (i ± 1/2, j ± 1/2, k). Again, expanding T [.]  
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in which ΛH is the corresponding function for the 
HO temporal derivatives of Hw based on known 
data [34]. Nevertheless, prior to the use of (18), we 
will deal with the final unknown of (16), i.e. the Du 
at n + 1/2, attributed to the presence of the frequen-
cy-dependent materials in the computational do-
main. To treat this term, an unconditionally-stable 
Crank-Nicolson technique, applied to (9) is em-
ployed. Hence,  
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where ΛP is again the suitable weighting function. 
Now, plugging (18), (19) into (16) gives the update 
expression (20) for Eu at n + 1/2 (bottom of page). 
Parameters χm (for m = 1,2,…,9) are defined in 
terms of spatial increments, function Φ(Δt), materi-
al constitutive properties and metrical coefficients 
g(u,v,w). Since, χm have constant values, their eval-
uation – hardly affecting the total burden – is con-
ducted only once and utilized during the update of 
the particular field quantity. Repetition, of (20) for 
every j along the v mesh direction, where the spatial 
alternation occurs, yields a sparse 3-band tridiagon-
al system of equations that is recursively solved 
through well-known techniques [13-15]. Upon ac-
quiring Eu, the prior formulation is identically ap-
plied to Ev and Ew, while magnetic and electric po-
larizations are explicitly obtained via their higher-
order FDTD expressions. 

The second sub-iteration for the time advancing 
of Eu in the interval from n + 1/2 to n + 1 reverses 
the roles of Sv[Hw] and Sw[Hv], modifying (14) as  
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The unknown variables, now, are Hv and Du (after 
expanding T [.]) at n + 1. Eliminating these terms in 
a way similar to (17)-(19), one gets (22), shown 
 below, with ψm the counterparts of χm. Once all 
electric quantities are computed, by solving the re-

sulting systems, the remaining fields are explicitly 
evaluated and the algorithm continues with the next 
time-step. 

A completely analogous strategy holds for me-
dia, whose frequency-dependent constitutive para-
meter is permeability μ. Notice, also, that the exten-
sion of the multi-frequency methodology to struc-
tures, comprising both types of dispersive media, is 
straightforward without any additional constraints. 
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Indeed, every material is rigorously modeled by the 
appropriate scheme regarding the variation of ε or μ 
[17]. Finally, it is important to stress that, aside 
from some limited storage needs, the novel proce-
dure does not considerably increase the total CPU 
and memory requirements. On the contrary, its abil-
ity to accomplish dispersion-optimized simulations 
by letting temporal increments to be greatly aug-
mented, leads to serious savings. 

 
IV. STABILITY AND DISPERSION 

ANALYSIS 
Pertaining to the stability of the proposed algo-

rithm, the von Neumann method is applied [12]. 
Thus, the two sub-iterations are expressed in matrix 
form as 

 1/ 2n n  : 1/2
1 1

n n Z E EQ , (23) 

 1/ 2 1n n   : 1 1/2
2 2

n n Z E EQ , (24) 

where sparse matrices Zl, Θl (for l = 1,2) are created 
by the proper χm and ψm parameters during the rear-
rangement of the system of equations. If (23) and 
(24) are combined into a single equation, one ob-
tains 

 1 1 1
2 2 1 1

n n n   E Z Z E KEQ Q . (25) 

The eigenvalues of matrix K are found to be 

1,2 1  ,    2 2
1 2 2 1 27 / 5 2 / 5G G j G G G     

 
, (26) 

for τ = 3,…,6 and coefficients G1, G2 depending on 
(Δt/Δη)sin(kηΔη/2). After the required mathematics, 
it is proven that the magnitudes of (26) are always 
less or equal to unity, thus certifying the initial con-
vention for the algorithm. In this manner, Δt can be 
safely selected far beyond the Courant limit, with-
out the prohibitive influence of the detrimental lat-
tice errors, now, decisively suppressed up to 10 or-
ders. Such a performance implies that the specific 
ADI-FDTD technique is fully conservative and of 
high convergence, since it subdues anisotropy er-
rors, as well.  

On the other hand, it would be very instructive 
to examine the improvement of the dispersion rela-
tion and verify the large suppression of the relevant 
error, mainly when the time-step is larger than that 
dictated by the conventional stability criterion. Fol-
lowing a general framework, the dispersion error is 
defined as  

 ( ) ( )

( , , , ) ( , , , )

( ) ex num

disp ex num

j

e F u v w t F u v w t

e d    

 

  k k r , (27) 

in which Fex is the exact and Fnum the numerical 
solution of the problem with their respective wave-
number vectors kex and knum. Functions α(ω) are the 
amplitudes of the Fourier transform in (27), while r  
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Fig. 2. Maximum L2 error norm versus (a) spatial increment and (b) time. Normalized phase velocity versus (c) 
angle of propagation and (d) gridding density. 
 
is a position vector in the (u,v,w) coordinate system. 
Note that Fnum is the superposition of both propagat-
ing and evanescent waves. This idea is deemed 
more realistic, as it takes into account the strenuous 
evanescent waves that are customarily responsible 
for critical inaccuracies near discontinuities. In this 
context, the extraction of the dispersion error is 
based on the estimate of 

 ( ) ( )

, , , ,

( ) ( )ex numj k k
ex num

u v w u v w

e k k  

 

  

 

   , (28) 

with kex(ω)=ω the free-space dispersion relation and  

   
3

2 32( )
( ) 1 ( )

725

L D
L D

num

t
k O t 


        

 
, (29) 

the corresponding formula of the multi-frequency 
ADI-FDTD method. It is evident that (29) exhibits 
a significant enhancement, easily adjusted by the 
order of accuracy L and the complementary degree 
of freedom D. In the light of these considerations, 
edisp becomes 

 
4 3( )

986

L D

disp

t
e 

 
 . (30) 

To indicate the superiority of (29), for D = 3, over 
the typical ADI-FDTD dispersion relation, Fig. 2 
presents the maximum L2 error norm and the nor-
malized phase velocity as a function of different  

 
parameters at a spectrum of 15 GHz. For notation 
compactness, we define the gauge CFLN = 
ΔtMT/ΔtFDTD (MT = proposed or plain ADI-FDTD 
method) as the Courant-Friedrichs-Levy number, 
shown in parenthesis at the legend of every figure. 
Also, Table 1 summarizes the maximum dispersion 
error and the convergence rate of various imple-
mentations. Apparently, the higher-order methodol- 
 
Table 1: Maximum dispersion and convergence 
rate 

 

Method 
Grid 

density 
Maximum 
dispersion 

Convergence 
rate 

ADI-FDTD (1.5) 1/40 3.84579 1.62412 

ADI-FDTD (1.2) 1/25 2.46510-1 1.75679 

FDTD (1.0) 1/15 1.53210-2 1.90304 

Proposed  L = 3 (18) 1/10 3.07210-7 3.18712 

Proposed  L = 5 (22) 1/9 5.06810-10 4.97021 

Proposed  L = 7 (25) 1/8 8.03410-12 7.01584 
 
ogy accomplishes a serious and wideband reduction 
of discretization errors, unlike the usual technique, 
whose performance deteriorates progressively as Δt 
depart from the stability condition. These benefits 
are more prominent for large CFLN, optimally han-
dled by the pertinent L and D values.  

 ADI-FDTD (1.3) 
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(20)
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V. CURVED INTERFACE TREATMENT 
The presence of curved media interfaces or 

geometric discontinuities with arbitrary cross sec-
tions in real-world EMC applications constitutes a 
principal modeling difficulty for the majority of 
numerical methods. Unfortunately, these geometric 
irregularities are proven detrimental for the simula-
tion of EMI phenomena, since they arouse non-
separable and highly oscillatory wavefronts that 
require extremely fine grid resolutions and exces-
sive computational resources.      

 
A. Dissimilar material boundaries 

To retain consistency amid regions with media 
of different constitutive parameters, a set of conti-
nuity conditions with optimal sensitivity is devel-
oped. The process launches an adaptive concept, 
which employs extra nodes at both interface sides, 
in the area of node P, and follows the variation of 
the curvature as  

   1, 2, 1, 2,
1 2

1 1
j j j j

real extra extra real

s s s s
 
        
   
    , (31) 

where 1,2 are the dissimilar media, s differencing 
weights at real or extra nodes, and j the stencil for 
the summation around P [28-30]. Therefore, all 
sub-wavelength details are accurately tracked, 
while their contribution is directly integrated in 
Maxwell’s equations in an exploitable form. This 
manipulation offers high levels of reliability and 
smooth regional transition without unexpected 
instabilities. 
 
B. Irregular cross-sections and discontinuities 

Presume the complex cross-section of Fig. 3, 
stretching over an angle θD with inner and outer 
mean 

 
Fig. 3. An arbitrary geometric discontinuity.   

 
radii r1 and r2. For its treatment, we separate every 
propagating mode at κ prefixed transverse planes, 
which satisfy all physical continuity conditions.  

 
Fig. 4. (a) Maximum dispersion and (b) maximum 
L2 norm variation for the parallel-plate waveguide.   
 
Hence, each component f, defined at a local (ρ, θ, φ) 
system, can be expressed as 

 ( , , ) ( , , )f r F r 
     , (32) 

with               1

M M

2
cos

r r

r r 
  

   
  

, 

rM = r2 – r1, ζκ the corresponding eigenfunctions 
and Fκ known amplitude coefficients [3, 7]. The 
new scheme is purely conformal and provides con-
sistent meshes via the choice of r1, r2. Two effec-
tively smooth functions that fulfill this goal, with 
αθ,φ = (θ – φ)/θD, d = d2 – d1, and d2 = 1.5d1, are 

           1 , 1 21.65 0.45r d d d     , (33)      

           2 , 1 21.75 0.2 0.35r d d d      . (34) 

After the prior mode decoupling, the next step 
is the projection of Maxwell’s laws on the prefixed 
κ planes to obtain our differential equation model. 
Each solution is considered as a transverse interme-
diate excitation surface in the discontinuity. This 
approach maintains lattice quality near the geome-
tric details, contrary to other renditions that cannot 
supply equivalent outcomes. In this way and using a 
matrix notation, Ampere’s and Faraday’s laws lo-
cally become 

        A B C D( )t     E U U U H U P , (35) 

       C D E( )t      H U E U H U M , (36) 

in which all spatial and temporal derivatives are 
evaluated by means of (1) and (2). Also, the ele-
ments of Ui (i = A,…,E) structural matrices include 
the main mesh details in the vicinity of the cross-
section, while their values are given by 

 A 2 2 2 2( 1) /U  
      ,       B 2 2 1U    , 

C
1 / 2U r d   ,         D

M / 4U r d    ,  
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 E 2 2 2
2( 1) /U r 

     . 

In fact, a careful choice of κ, improves the multi-
frequency behavior of the entire method. 
 

VI. NUMERICAL VERIFICATION 
To substantiate the advantages of our method, 

we, start from a set of simple examples for which 
analytical solutions exist. Thus, proving its accura-
cy and numerical dispersion reduction capabilities, 
we will, then, proceed to more realistic EMC appli-
cations.   

 
 

Fig. 5. Temporal variation of the L2 norm for the 
parallel-plate waveguide discretized by a skewed 
mesh.   

 
 

Fig. 6. (a) Computation error and (b) variation of 
the Ez component for the 3-D rectangular cavity.   
 
The first test problem explores the propagation of 
the TM1 mode in a parallel-plate 0.5×5.5 m wave-
guide. For the entire simulation, excitation and 
boundary field values – obtained from the analytical 
solution [35] – are assigned to both ports, while the 
device is truncated by a 12-cell perfectly matched 
layer [12]. The waveguide is highly elongated and, 
hence, considerable dispersion errors are expected 
to appear when employing traditional approaches or 
exceeding the Courant limit. Using various non-
uniform grid sizes, ranging from 10×150 to 
30×1200 cells, simulations are conducted until 
steady-state is attained. Figure 4a gives the maxi-
mum dispersion (%) versus CFLN; while, Fig. 4b 

gives the maximum L2 error norm with respect to 
the spatial step. The large dispersion errors of the 
usual ADI-FDTD method as CFLN increase along 
with the superiority of the proposed technique are 
promptly discernible for all lattice resolutions.    
 
Table 2: Resonant frequencies of the cylindrical 
dielectric cavity with εr = 3.8 

 

Exact [35]
(GHz) 

Method 
Comp. 
(GHz) 

Error 
(%) 

Maximum 
Dispersion 

TE111 
9.896 

ADI-FDTD 9.454 4.467 2.532×10-1 

Proposed 9.894 0.011 5.471×10-11 

TM010 
11.235 

ADI-FDTD 10.557 6.031 9.031×10-1 

Proposed 11.231 0.035 8.964×10-11 

TM011 
12.211 

ADI-FDTD 11.328 7.228 1.548 

Proposed 12.204 0.052 2.109×10-10 

TE112 

13.028 
ADI-FDTD 11.776 9.605 3.042 

Proposed 13.019 0.068 7.286×10-10 

TM012 

14.899 
ADI-FDTD 13.201 11.397 6.751 

Proposed 14.886 0.083 9.047×10-10 

TE211 

15.085 
ADI-FDTD 12.843 14.862 8.984 

Proposed      15.068 0.107 4.103×10-9 

 
Additionally, the previous waveguide is revi-

sited by means of a skewed mesh (Fig. 5) to ex-
amine the behavior of the new schemes in the case 
of discretization discontinuities responsible for sev-
eral types of inaccuracies. From the outcomes of 
Fig. 5, illustrating the temporal variation of the lo-
cal error and different orders of accuracy L, one 
can, easily, derive that our schemes remain very 
precise, even for large CFLN, unlike the existing 
second-order implementation. 

Next, we move to some broadband problems 
and particularly to the computation of the first 20 
resonant modes of a 3-D air-filled cavity with per-
fectly conducting walls. The modes are derived 
through a fast Fourier transform of the computed 
signals at prefixed locations. Figure 6a shows the 
error (%) of our calculations and Fig. 6b presents a 
comparison between the simulated and analytical 
waveform [36]. As observed, the conventional 

 
Table 3: Maximum L2 error for the TE11 mode  

 

Lattice ADI-FDTD 
CPU 
time 

Proposed 
CPU 
time 

10×5×90 68.43129 5.2 m 0.20421 17.35 s 
32×16×288 24.58074 26.3 m 0.04372 1.46 m 

56×28×504 16.04823 2.43 h 0.00347 7.72 m 
78×39×702 3.94618 6.57 h 0.00025 21.89 m
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Fig. 7. (a) Maximum L2 error norm and (b) norma-
lized Ez component for the lossy-slab waveguide.   

 
ADI-FDTD method lacks to provide reliable re-
sults, while our technique is, again, proven very 
efficient. In a similar manner, analysis moves to a 
parallel-plate cylindrical dielectric (εr = 3.8) resona-
tor with a height of 15.75 mm and a radius of 5.35 
mm. Table 2 gives the first six resonant frequencies 
of the structure obtained via the usual staircase 
ADI-FDTD method (CFLN = 1.16; grid: 
180×180×360) and the proposed algorithm (CFLN 
= 18, L = 3; grid: 40×40×80). Herein, the conformal 
profile of the latter scheme leads to a 10-order dis-
persion error reduction.   

Remaining in waveguides, let us, now, examine 
a 3-D air-filled 0.5×0.25×0.8 cm rectangular struc-
ture. The analytical solution [36] is inserted at the z 
= 0.8 cm port at all time steps together with the ini-
tial conditions. Using diverse lattices, Table 3 sums 
up the dispersion errors for the computation of the 
TE11 mode, from which the acceleration and the 
high accuracy of the enhanced method are deduced. 
Analogous conclusions are drawn from Fig. 7 for 
the same waveguide which, now, has a lossy (μr = 2 
– j2) slab with a length of 0.27 cm along the z axis. 
Note the inability of the regular ADI-FDTD scheme 
to model the material discontinuity in contrast to the 
new technique.   

Having certified the performance of our metho-
dology, we then investigate various realistic EMC 
setups in terms of EMI behavior and signal integrity 
prediction. Their selection has been mainly based 
on complexity, fine details, and electrical size. In fact 
such issues cannot be adequately manipulated by 
the usual staircase ADI-FDTD method either due to 
its insufficient discretization models or the need for 
prohibitively elongated steady-state simulations. All 
infinite domains are truncated by a modified 8-cell 
perfectly matched layer [12], while the results, 
whenever possible, are compared with reference/ 

 
Fig. 8. (a) An RF MEMS-based coaxial waveguide  
and (b) a triangular H-slot microstrip antenna.   
 
Table 4: Resonances of the coaxial waveguide 

 

Ref. [8] 
(GHz) 

Method 
Comp. 
(GHz) 

Error 
(%) 

CPU 
Time 

Maximum
Dispersion

3 Actuators 
11.781 

ADI-FDTD 10.777 8.52 12.5 h 1.792×10-1 

Proposed 11.779 0.01 51 m 3.082×10-11

4 Actuators 
14.205 

ADI-FDTD 12.903 9.16 11.9 h 3.981 

Proposed 14.201 0.03 45 m 5.483×10-10

5 Actuators 
16.423 

ADI-FDTD 14.647 10.81 10.9 h 6.432 

Proposed 16.235 0.05 36 m 3.561×10-10

 

 
 

Fig. 9. Magnitude of the S21-parameter versus the 
MEMS number and an electric field snapshot. 
 
measurement data. 

The first application is the coaxial waveguide 
of Fig. 8a, which involves a set of microelectrome-
chanical (MEMS) actuators for selective mode 
propagation. Its inner slab is based on a double 
negative (DNG) metamaterial, described by a 
Drude model and the basic dimensions are: l = 11 
mm, a = 1.7 mm, and b = 6.2 mm. The choice of 
such a problem is primarily attributed to the in-
creasing use of complicated MEMS and DNG se-
tups in several high-end arrangements. Table 4 
gives the resonance frequencies for three cases 
(with L = 3) and several realizations. Moreover, the
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Fig. 10. (a) Input impedance and (b) maximum dispersion error for the H-slot microstrip antenna. 
 

 
 

Fig. 11. (a) An inclined-slot three-port junction and (b) magnitude of S-parameters versus frequency. 
 

variation of the S21-parameter versus MEMS num-
ber is presented in Fig. 9 along with an indicative 
electric field snapshot directly above the actuators. 
It appears that, the proposed ADI-FDTD schemes 
are quite accurate and economical, attaining greatly 
diminished dispersion errors for large CFLN selec-
tions. 
 Subsequently, let us focus on the equilateral 
triangular H-slot microstrip (εr = 4.3) antenna of 
Fig. 8b, encountered in many up-to-date communi-
cation systems. Its dimensions are: h = 40 mm, h1 = 
12.2 mm, h2 = 10.1 mm, h3 = 12.8 mm, h4 = 5.5 
mm, tA = 6.2 mm, tB = 1.58 mm, and w = 1.2 mm. 
Figure 10a gives the input impedance, while Fig. 
10b presents the maximum dispersion error versus 
CFLN for diverse resolutions. Note that the plain 
ADI-FDTD method (grid: 260×282×74; 62000 
time-steps), cannot cope with this problem. Con-
versely, the optimized schemes are proven worka-
ble (81% coarser mesh and a maximum lattice ref-
lection error of 2.398×10-10), without the excessive 
CPU requirements of the usual algorithm. 

Proceeding to the signal integrity of waveguide 
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Fig. 12. Shielding effectiveness of the aperture. 
 
junctions – a popular item in EMC applications – 
the next problem examines the elliptical cavity of 
Fig. 11a, which has a sidewall inclined slot, coupled 
to a rectangular waveguide. Typical dimensions are: 
a1 = 6.52 mm, a2 = 11.22 mm, a3 = 21.35 mm, b1 = 
23.64 mm, b2 = 11.52 mm, and l = 68.74 mm. For 
L= D = 3, in (1) and (3), the domain is discretized 
into 2438 116 cells. Figure 11b gives the magni-
tude of two S-parameters, while Fig. 12 illustrates
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Fig. 13. (a) A wideband patch array and (b) memory storage versus the number of circular patches. 
 

 
 

Fig. 14. (a) Return loss and (b) radiation pattern for the wideband 2×1 patch array. 
 
the shielding effectiveness for diverse inclinations 
of the coupling slot and lengths of the b3 side. As 
can be deduced, the enhanced ADI-FDTD tech-
nique – unlike its staircase counterpart – is able to 
manipulate this demanding simulation, even though 
the curved parts comprise a relatively large portion 
of the computational domain. 

We, now, investigate the 21 patch array of 
Fig. 13a, with its cross-polarized profile attained by 
two perturbed segments (0.74% of the patch). Due 
to its frequent use in many systems, the optimal 
design of such an antenna will require a reliable 
simulation tool. Its dimensions are: lx = 110 mm, ly 
= 316 mm, r = 22 mm, l = 32 mm, h = 0.17 mm, w 
= 3.6 mm, d = 2.6 mm, and s = 5.7 mm. The mesh 
employs 6811026 cells (L = 3, D = 2), unlike the 
regular 91% larger grid. To verify the cost-effective 
profile of the new algorithm, Fig. 13b provides its 
memory needs versus the number of circular 
patches. As observed, its overhead remains relative-
ly stable and in very low levels considering the 
complexity of the problem. Conversely, the usual 
ADI-FDTD method is proven far more expensive, 
especially above the typical value of 5 patches. Al-

so, Fig. 14 shows the return loss and radiation pat-
tern at 3.4 GHz. Again, our technique agrees very 
well with the reference data [3, 12] (actual accura-
cy: 0.0028% to 0.0032%), despite the large CFLN. 
In fact, this attains a dispersion error practically 9 
orders of magnitude lower than the usual ADI-
FDTD one (actual accuracy: 6.5312% to 8.9124%). 

To this end, analysis moves to the coaxial four-
port microwave splitter with a 2.40.80.6 mm 
DNG region (Fig. 15a). The outer conductor’s 
cross-section is 6.35.7 mm and the inner’s 1.30.9 
mm. Figure 15b displays the return loss between 
ports 1 and 4, while Fig. 15c gives the variation of 
two S-parameters with regard to the number of used 
switches. Obviously, the wideband algorithm has a 
better performance for significantly lower CPU 
time, as indicated in Fig. 15d.  

With regard to the modeling of electrically-
large facilities, the next application is the inclined- 
wall dual reflector compact range anechoic cham-
ber of Fig. 16. Being extremely expensive to con-
struct, any effort toward the accurate estimation of 

its design parameters becomes really essential. Its
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Fig. 15. (a) Geometry, (b) return loss, (c) magnitude of S-parameters, and (d) CPU time for a four-port mi-
crowave splitter with a DNG-based core. 
 

 
 
Fig. 16. A dual-reflector compact range anechoic 
chamber with an inclined rear wall. 
 
width is 6.8 m, whereas LA = 5.9 m, LB = 4.1 m, LC 
= 5.2 m, LD = 1.5 m, LE = 7.4 m, and LF = 10.5 m. 
The diameters of the sub- and main reflector are 2.5 
m and 3.9 m. Moreover, θ = 6ο, lA = 3.4 m, lB = 2.6 
m, lC = 2.3 m, lD = 2.1 m, lE = 1.4 m, lF = 2.8 m, and 
lG = 1.3 m. The chamber is lined with different 
types of pyramids and wedges (Fig. 17b). Figure 

17a presents the normalized site- attenuation of the 
facility’s semi-anechoic version. Results indicate 
that notwithstanding its fine lattice, the simple ADI-
FDTD method lacks to estimate the chamber’s 
measurement suitability in contrast to our method 
which achieves an 85% overhead decrease. Similar 
outcomes are derived from Fig. 18, where the sui-
tability of the facility’s fully anechoic version is 
estimated. Notice, also, the impact of wedges on 
the performance of the semi-anechoic chamber in 
Fig. 19. 

Finally, the signal integrity and EMI immunity 
of two nested reverberation chambers (Fig. 20) is 
analyzed. Their walls are covered by quadratic resi-
due diffusers, i.e. a set of periodical phase gratings 
that diffract waves in extra directions. The move-
ment of both stirrers is modeled with an interval of 
20o, while for each of their positions 60 time in-
stants are sampled. The larger chamber has a length 
of 4.8 m, lA = 3.72, lB = 4.0 m and the smaller one a 
length of 2.44 m, lC = 1.34 m, lD= 1.78 m, with an 
aperture size of 0.32 m  0.32 m. Figure 21 displays 
the shielding effectiveness of an 1.5 mm fiber-glass-
fiber plate and a dielectric (εr = 3.4) cover. Once 
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more, our technique leads to very sufficient and 
wideband results, without critical dispersion errors 
due to high CFLN values. 

 
 

 
 

Fig. 17. (a) Normalized site-attenuation and (b) part 
of the absorptive wedges of the compact range 
chamber. 
 
 

 
 

Fig. 18. Field uniformity of compact range facility . 
 

 
 

Fig. 19. Electric field variation in the compact range 
chamber for different structural parameters. 
 

 
 

Fig. 20. A nested reverberation test facility along 
with a snapshot of the electric field near its wall 
diffusers. 
 
 

 
 

Fig. 21. Shielding effectiveness of (a) a 1.5 mm 
fiber-glass-fiber plate and (b) a dielectric (εr = 3.4) 
cover. 
 

VII. CONCLUSION 
A rigorous EMI analysis and signal integrity es-

timation of general EMC structures has been per-
formed in this paper. To this aim, a new 3-D fre-
quency-dependent higher-order ADI-FDTD me-
thod, incorporating a multi-frequency field projec-
tion scheme with an enhanced curvilinear nodal 
density, has been introduced and applied to a varie-
ty of problems, extending from waveguides, resona-
tors, and antennas to large-scale test facilities. Their 
numerical simulations lead to very accurate and 
cost-effective realizations, even for coarse meshes 
and temporal increments that amply supersede the 
Courant stability condition. 
 

REFERENCES 
[1] C. Buccella, M. Feliziani, F. Maradei, and G. Man-

zi, “Magnetic field computation in a physically 
large domain with thin metallic shields,” IEEE 
Trans. Magn., vol. 41, no. 2, pp. 1708-1711, May 
2005. 

[2] C. Holloway, P. McKenna, R. Dalke, R. Perala, and 
C. Devor, “Time-domain modeling, characteriza-

Normalized site-attenuation (dB) 
35 

 
30 
 

25 
 

20 

 
15 

 
10 

 
  5 

 
  0 

80 110 140 170 200 230 
Frequency (MHz) 

+4 dB 

-4 dB (a) 

 ADI-FDTD (1.2; 212202164) 
 ADI-FDTD (1.1; 200188164)  
 Proposed L = 3 (18; 888072) 
 Proposed L = 4 (21; 827868) 
 Measured data [2] 
 Standard reference OATS 

(b) 

dD 

dC 
d 

dA 

dB 

bi-isotropic

air-layerθ1 

θ2

dE

Shielding effectiveness (dB)

3
0

30

45

4 5 6 7 8

15

Frequency (GHz)

Proposed L = 3 (16; 62x78x70)

Measured data [4], [7]
Proposed L = 4 (20; 74x90x82)

ADI-FDTD (1.3; 176x228x194)

(a) (b)

Shielding effectiveness (dB)

4
0

40

60

5 6 7 8 9

20

Frequency (GHz)

Proposed L = 3 (18; 58x72x64)
Proposed L = 4 (22; 72x88x78)
Measured data [4], [7]

ADI-FDTD (1.2; 152x206x180)

A 

B

 test window 

stirrer

receive 
antenna 

transmit 
antenna

lA

lB 

lC

lD

Electric field (V/m) 

E
le

ct
ri

c 
fi

el
d 

(V
/m

) 

 7 
 

 6 

 

 5 
  

 4 
  

 3 
 

 2 
 

 1 

  

 0 
  

 -1 
  

 -2 
 

 -3 

  

 -4 
  

 -5 
 

 -6 
 

 -7 
 0 100 200 300 400 500

Time (ns) 

 LF/LB = 2.8, dB/dC = 0.62, lF = 2.2 m 
 LF/LB = 3.6, dB/dC = 0.74, lF = 1.4 m  
 LF/LB = 4.0, dB/dC = 0.86, lF = 1.2 m 
 LF/LB = 4.4, dB/dC = 0.92, lF = 1 m 

F
ie

ld
 u

ni
fo

rm
ity

 (
dB

) 

 14 

 
 12 
  
 10 

 
 8 

  
 6 

  
 4 

  
 2 

  
 0 

 100 1000

Frequency (MHz) 

 ADI-FDTD (1.2; 220206172) 
 ADI-FDTD (1.1; 208196158) 
 Proposed L = 3 (19; 867864) 
 Measured data [2] 

1058KANTARTZIS: MULTI-FREQUENCY HIGHER-ORDER ADI-FDTD SOLVERS FOR MODELING IN GENERAL EMC APPLICATIONS



tion, and measurements of anechoic and semi-
anechoic electromagnetic test chambers,” IEEE 
Trans. Electromagn. Compat., vol. 44, no. 1, pp. 
102-118, Feb. 2002. 

[3] S. Lee, M. Vouvakis, and J.-F. Lee, “A non-
overlapping domain decomposition method with 
non matching grids for modeling large finite arrays,” 
J. Comp. Phys., vol. 203, no. 1, pp. 1-21, Feb. 2005. 

[4] C. Bruns and R. Vahldieck, “A closer look at rever-
beration chambers – simulation and experimental 
verification,” IEEE Trans. Electromagn. Compat., 
vol. 47, pp. 612-26, 2005. 

[5] M. Sarto and A. Tamburrano, “Innovative test me-
thod for the shielding effectiveness measurement of 
thin films in wide frequency range,” IEEE Trans. 
Electromagn. Compat., vol. 48, no. 2, pp. 331-341, 
May 2006. 

[6] Y. Song, N. Nikolova, and M. Bakr, “Efficient time-
domain sensitivity analysis using coarse grids,” 
ACES J., vol. 23, no. 1, pp. 5-15, Mar. 2008. 

[7] N. Kantartzis and T. Tsiboukis, Modern EMC 
Analysis Techniques: Models and Applications, 
Morgan & Claypool Publishers, San Rafael, CA, 
2008. 

[8] J. Muldavin, C. Bozler, S. Rabe, P. Wyatt, and C. 
Keast, “Wafer-scale packaged RF MEMS switches,” 
IEEE Trans. Microw. Theory Tech., vol. 56, pp. 
522-529, Feb. 2008. 

[9] S. Barmada, A. Gaggelli, P. Masini, A. Musolino, R. 
Rizzo, and M. Tucci, “Modeling of UIC cables in 
railway systems for their use as power line commu-
nication channels,” ACES J., vol. 24, no. 6, pp. 609-
617, 2009. 

[10] T. Ohtani, K. Taguchi, T. Kashiwa, Y. Kanai, and 
J. Cole, “Scattering analysis of large-scale coated 
cavity using the complex nonstandard FDTD me-
thod with surface impedance boundary condition,” 
IEEE Trans. Magn., vol. 45, no. 3, pp. 1296-1299, 
Mar. 2009. 

[11] K. El Mahgoub, T. Elsherbeni, F. Yang, A. Elsher-
beni, L. Sydänheimo, and L. Ukkonen, “Logo-
antenna based RFID tags for advertising applica-
tion,” ACES J., vol. 25, no. 3, pp. 174-181, Mar. 
2010. 

[12] A. Taflove and S. Hagness, Computational Electro-
dynamics: The Finite-Difference Time-Domain Me-
thod., Artech House, Norwood, MA, 2005. 

[13] T. Namiki, “A new FDTD algorithm based on ADI 
method,” IEEE Trans. Microwave Theory Tech., 
vol. 47, no. 10, pp. 2003-2007, Oct. 1999. 

[14] F. Zheng, Z. Chen, and J. Zhang, “An FDTD me-
thod without the Courant stability conditions,” IEEE 
Microw. Guided Wave Lett., vol. 9, no. 11, pp. 441-
443, Nov. 1999. 

[15] J. Mao, L. Jiang, and S. Luo, “Numerical formula-
tions and applications of the ADI-FDTD method,” 

ACES Newsletter, vol. 16, no. 3, pp. 12-18, Nov. 
2001. 

[16] M. Darms, R. Schuhmann, H. Spachmann, and T. 
Weiland, “Dispersion and asymmetry effects of 
ADI-FDTD,” IEEE Microw. Wireless Compon. 
Lett., vol. 12, pp. 491-493, 2002. 

[17] S. Staker, C. Holloway, A. Bhobe, and M. Piket-
May, “ADI formulation of the FDTD method: Algo-
rithm and material dispersion implementation,” 
IEEE Trans. Electromagn. Compat., vol. 45, no. 2, 
pp. 156-166, May 2003. 

[18] G. Sun and C. Truemann, “Efficient implementa-
tions of the Crank-Nicolson scheme for the FDTD 
method,” IEEE Trans. Microw. Theory Tech., vol. 
54, no. 5, pp. 2275-84, May 2006. 

[19] Erping Li, I. Ahmed, and R. Vahldieck, “Numerical 
dispersion analysis with an improved LOD–FDTD 
method,” IEEE Microw. Wireless Compon. Lett., 
vol. 17, pp. 319-321, 2007. 

[20] E. Tan and D. Heh, “ADI-FDTD method with fourth 
order accuracy in time,” IEEE Microw. Wireless 
Compon. Lett., vol. 18, no. 5, pp. 296-298, May 
2008. 

[21] W. Fu and E. Tan, “Effective permittivity scheme 
for ADI-FDTD method at the interface of disper-
sive media,” ACES J., vol. 22, no. 2, pp. 120-
125, June 2008. 

[22] K. Jung, F. Teixeira, S. Garcia, and R. Lee, “On 
numerical artifacts of the complex envelope ADI-
FDTD method,” IEEE Trans. Antennas Propag., 
vol. 57, pp. 491-498, Feb. 2009. 

[23] Y. Zhang, S. Lu, and J. Zhang, “Reduction of nu-
merical dispersion of 3-D higher order ADI-FDTD 
method with artificial anisotropy,” IEEE Trans. Mi-
crow. Theory Tech., vol. 57, no. 10, pp. 2416-28, 
Oct. 2009.  

[24] H. Zheng and K. Leung, “A nonorthogonal ADI-
FDTD algorithm for solving 2-D scattering prob-
lems,” IEEE Trans. Antennas Propag., vol. 57, no. 
12, pp. 3981-3902, Dec. 2009. 

[25] H. Zheng, L. Feng, and Q. Wu, “3-D nonorthogonal 
ADI-FDTD algorithm for the full-wave analysis of 
microwave circuit devices,” IEEE Trans. Microw. 
Theory Tech., vol. 58, no. 1, pp. 128-135, Jan. 2010. 

[26] J.-F. Lee, R. Palendech, and R. Mittra, “Modeling 
three-dimensional discontinuities in waveguides us-
ing the nonorthogonal FDTD algorithm,” IEEE 
Trans. Microw. Theory Tech., vol. 40, no. 2, pp. 
346-352, Feb. 1992. 

[27] W. Yu, R. Mittra, and S. Dey, “Application of the 
nonuniform FDTD technique to analysis of coaxial 
discontinuity structures,” IEEE Trans. Microw. 
Theory Tech., vol. 49, pp. 207-209, Jan. 2001. 

[28] S. Noelle, W. Rosenbaum, and M. Rumpf, “3D 
adaptive central schemes: Part I. Algorithms for as-
sembling the dual mesh,” Appl. Numer. Math., vol. 

1059 ACES JOURNAL, VOL. 25, NO. 12, DECEMBER 2010



56, no. 2, pp. 778-799, June 2006. 
[29] P. Wang, “Modeling material responses by arbitrary 

Lagrangian Eulerian formulation and adaptive mesh 
refinement method,” J. Comput. Phys., vol. 229, pp. 
1573-1599, Mar. 2010. 

[30] R. Nilavalan, I. Craddock, and C. Railton, “Quanti-
fying numerical dispersion in non-orthogonal FDTD 
meshes,” IEE Proc. Microw. Antennas Propag., vol. 
149, pp. 23-27, 2002. 

[31] N. Kantartzis and T. Tsiboukis, “A higher-order 
non-standard FDTD-PML method for the advanced 
modeling of complex EMC problems in genera-
lized 3-D curvilinear coordinates,” IEEE Trans. 
Electromagn. Compat., vol. 46, no. 1, pp. 2-11, 
Feb. 2004. 

[32] D. Firsov, J. LoVetri, O. Jeffrey, V. Okhmatovski, 
C. Gilmore, and W. Chamma, “High-order FVTD 
on unstructured grids using an object-oriented com-
putational engine,” ACES J., vol. 22, no. 1, pp. 71-
82, Mar. 2007. 

[33] M. Hadi, “Wide-angle absorbing boundary condi-
tions for low and high-order FDTD algorithms,” 
ACES J., vol. 24, no. 1, pp. 9-15, Feb. 2009. 

[34] N. Kantartzis, T. Tsiboukis, and E. Kriezis, “An 
explicit weighted essentially non-oscillatory time-
domain algorithm for the 3-D EMC applications 
with arbitrary media,” IEEE Trans. Magn., vol. 42, 
pp. 803-806, 2006. 

[35] J. van Bladel, Electromagnetic Fields, IEEE Press, 
New York, NJ, 2007. 

[36] D. Pozar, Microwave Engineering, John Wiley & 
Sons, New York, NJ, 2005. 
 

 

Nikolaos V. Kantartzis received 
the Diploma and Ph.D. degrees 
from the Department of Electrical 
and Computer Engineering, Aris-
totle University of Thessaloniki, 
Greece, in 1994 and 1999, respec-
tively. In 2001, he joined the 

same department, as a Postdoctoral Research Fel-
low, where, currently, he serves as an Assistant Pro-
fessor. He has authored/co-authored 3 books, more 
than 50 referenced journals and over 60 conference 
papers. His main research interests include compu-
tational electromagnetics, EMC modeling, higher-
order methods, metamaterials, and advanced mi-
crowave structures.   

1060KANTARTZIS: MULTI-FREQUENCY HIGHER-ORDER ADI-FDTD SOLVERS FOR MODELING IN GENERAL EMC APPLICATIONS




