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Abstract ─ Upgrading successful processes of 
microwave-assisted organic synthesis to the level 
of industrial technology is currently slowed by 
difficulties in experimental development of large-
scale and highly-productive reactors. This paper 
proposes to address this issue by developing 
microwave chemistry reactors as microwave 
systems, rather than as black-box-type units for 
chemical reactions. We suggest an approach based 
on the application of a neural network 
optimization technique to a microwave system in 
order to improve its coupling (and thus energy 
efficiency). The RBF network optimization with 
CORS sampling introduced in our earlier work 
and capable of exceptionally quick convergence to 
the optima due to a dramatically reduced number 
of underlying 3D FDTD analyses, is upgraded 
here to account for an additional practically 
important condition requiring optimal design of 
the reactor for different reactants. Viability of the 
approach is illustrated by three examples of 
finding the geometry of a conventional 99% 
energy efficient microwave reactor for 3/3/6 
different materials; with 1/5/1 liter reactants, 
seven-parameter optimization yields the best 
configurations taking only 16/38/115 hours of 
CPU time of a regular PC.   
  
Index Terms ─ FDTD simulation, microwave 
reactor, neural network, optimization, scaling up.  
 

 I. INTRODUCTION 
Microwave (MW)-assisted organic synthesis 

(MAOS) has recently become a frontline methodo-

logy in chemistry programs of pharmaceutical, 
agrochemical, and biotechnology industries due to 
its ability to significantly speed up chemical 
reactions [1-3]. With specialized systems for MW 
chemistry now available, particular attention is 
currently paid to the problem of development of 
controlled MAOS featuring new reaction routes 
for organic synthesis resulting in large-scale 
production of chemical substances [3]. In order for 
MAOS to become a widely accepted industrial 
technology, there is a need to develop techniques 
routinely producing new chemical entities on a 
scale of dozens/hundreds of kilograms. However, 
surveying the contemporary literature, one may 
notice that progress in this direction is fairly slow. 
While scaling up successful processes of MW 
chemistry is commonly acknowledged to be a key 
issue of the current state of the field, this problem 
is being addressed via essentially trial-and-error 
experiments aiming, with no way to measure the 
temperature inside the reactant, to catch 
correlation between the input parameters of the 
scaled up MW reactors and the output chemical 
characteristics of the products [4].  

Comprehensive modeling of interactions of the 
reactants with the electromagnetic field in closed 
systems appears to be a powerful tool applicable to 
the MW chemistry reactors. Specifically, mode-
ling can be used for determining reflections (i.e., 
for finding energy efficiency of the reactors) as 
well as spatial distributions of dissipated power in 
the reactant; application of an appropriate compu-
tational procedure to MW systems suitable for 
MAOS is exemplified, e.g., in [5]. There are also 
electromagnetic modeling techniques that compute 
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temperature fields in the processed materials by 
taking into account thermal dependence of materi-
al parameters [6]. Some multiphysics computa-
tional technologies couple electromagnetic and 
thermodynamic simulations of heated materials 
with temperature-dependent electromagnetic and 
thermal material parameters [7, 8]. Moreover, 
there are modeling-based procedures that optimize 
MW applicators for energy efficiency [9] and 
synthesize optimal processes, resulting in 
homogeneous temperature fields [10, 11]. Despite 
being known and used in other MW power 
applications, these advanced computational 
approaches seem to not be utilized in microwave 
chemistry. Examples of employing computer 
simulation in design of MAOS reactors as MW 
systems are rare [12, 13] and limited to 
insufficiently accurate analysis (rather than 
optimization or synthesis) of the reactor’s 
operational regimes.  

Computational schemes using neural network 
techniques and allowing for direct designing MW 
devices (by providing the system geometry for a 
given electromagnetic specification) have been 
described in [14-17]. In this paper, we present an 
original technique for direct computer-aided de-
sign (CAD) of MW reactors of a desirable scale 
and sufficiently high energy efficiency to process 
different reactants. The approach is based on the 
radial basis function (RBF) network optimization 
algorithm originally introduced in [14] and princi-
pally upgraded in [16], featuring  

(i) an objective function (OF) measuring the 
bandwidth of the frequency characteristic 
of the reflection coefficient over a speci-
fied frequency range and 

(ii) the constrained optimization response sur-
face (CORS) technique [18] selecting ad-
ditional sample points in the dynamic 
training of the network.  

This algorithm, backed by 3D FDTD data, is 
characterized by very quick convergence to the 
optima and a dramatic reduction in the required 
number of underlying analyses. Due to these featu-
res, it has strong potential for viable optimization 
of complex MW systems and/or structures with a 
large number of design variables.  
 Here, the technique [16] is upgraded by incor-
porating an additional practically important condi-
tion requiring optimality of the reflection coeffici- 
ent for different processed materials. Functionality 

of the resulting algorithm is illustrated by finding 
the optimal designs of a conventional reactor con-
taining vessels with 1 and 5 liter reactants. It is 
shown that for finding the best configurations of 
the system (suitable for three and six different 
reactants) from seven-parameter optimizations, 
only a few dozen/hundred simulations are 
required. 

 

 
 

Fig. 1. Architecture of a decomposed RBF ANN 
with  hidden neuron [14, 16]. 
 
II. OPTIMIZATION TECHNIQUE: RBF 

NETWORK AND OBJECTIVE 
FUNCTIONS 

In accordance with [16], the decomposed RBF 
artificial neural network (ANN) shown in Fig. 1 
and denoted as F: X→Y works with input vectors 
Xi = [x1 x2 … xN], where x1, …, xN are design 
variables for i = 1, …, P, and P is the number of 
input-output pairs of modeling data. In the 
upgraded version of the algorithm proposed in this 
paper, the network output is obtained by taking 
frequency characteristics of an S-parameter over 
specified frequency range(s) (f1, f2) given by the 
formula  

 

  ]1),([max 1
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and T is the tolerance defined for the jth frequency 
interval. The function BWr (associated with the 
system’s  bandwidth  BW)  is  calculated  over  the 
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specified frequency interval and outputs relative 
bandwidth in the range [0, 1], and L is the number  
 

 
 

Fig. 2. Parameters of objective function (1) 
with S representing S11. 

 

 
 

Fig. 3. RBF network optimization algorithm  
with CORS sampling. 
 

 
 

Fig. 4. Modules of the algorithm’s MATLAB 
implementation. 

 
of materials for which the system is to be opti- 
mized; we maximize over k to use the worst of the 
L samples with the dielectric constant ′ and 
electric conductivity . This OF represents a 
typical pract-ical need of MW optimization to 
search not just the minimum of S, but rather the 

maximum BWr in a certain frequency range (as 
illustrated in Fig. 2). Motivations for the choice of 
the shape of the optimality zone (i.e., the values of 
f1, f2, and T) for problems of MW power 
engineering are discussed in [9]. The RBF used in 
the network is a thin plate 
 spline defined as 
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where l = 1, …, Nc, Nc is the number of RBFs, cl 
are the centers of )(i

l . The training set is the set of 
centers chosen. The network is coupled with a 
linear model, and the weights are constructed by 
solving the corresponding linear system.  

A brief general description of the algorithm is 
given by the flow chart in Fig. 3. Given some 
initial data, we construct and train the RBF net-
work F(X), perform CORS sampling, simulate the 
sampled point, check stopping criteria, and repeat 
the cycle, if necessary. The critical part of the 
algorithm is the choice of additional points: CORS 
sampling balances the goal of finding the 
minimum with exploring unknown regions of the 
domain [18]. This is accomplished by selecting a 
parameter  (0 ≤  ≤ 1) and finding the minimum 
of F(X), subject to ||X – Xi|| ≥  for 1 ≤ i ≤ P, 
where maxX(min1≤i≤P||X – Xi||). The  is appro-
ximated by picking the maximum from a random 
sampling of points in the domain. This seems to be 
sufficient because the aim of  is to measure the 
spacing of points in the current database. In other 
words, the algorithm searches for minima forced 
away from previously sampled points based on the 
percentage (or fraction) given by .  

The stopping criteria chosen to be a set maxi-
mum number of database points are applied if the 
solution has 100% BWr or some lower predefined 
value.  
 

III. COMPUTER IMPLEMENTATION 
The option of RBF network optimization for a 

number of different materials that is formulated in 
the OF (1) has been realized in this work as an up-
graded MATLAB code implementing the algo-
rithm [16].  

Data for the network are generated by an 
FDTD model of a MW device; with an appropria-
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tely applied pulse excitation, the model produces 
frequency responses of S-parameters. In our im-
plementation, the data is produced with the use of 
the 3D conformal FDTD simulator QuickWave-3D  

 

(a) 

  
                        (b)                              (c) 
 

Fig. 5. General 3D view (a) and geometrical 
parameters of the considered reactor (b), (c).  
 
(QW-3D) [19]; all CPU times are given below for 
a 64-bit Windows XP Intel Xeon 3.2-GHz PC. 

The code consists of two modules as shown in 
Fig. 4. Database Generation calls QW-3D and 
constructs an initial database (DB) for the speci- 
fied optimization problem and stopping criteria. 
This module produces a problem-specific mat-file 
which is then used as input data for network 
operations. The latter module runs optimization 
iterations for the chosen/specified OF, sampling 
technique, and RBF. 
 

IV. NUMERICAL RESULTS: A MAOS 
REACTOR OPTIMIZED FOR 

DIFFERENT REACTANTS  
Here, we consider a MW system resembling 

the shape of a typical MAOS reactor (Fig. 5). The 

cavity is constructed by combining a hemisphere 
and cylinder. Inside the cavity, there is a thin-wall 
hemisphere-bottom cylindrical vessel with a liquid 
reactant whose volume V is assumed to be speci- 

 
Table 1: Material parameters of the reactants at 
2.45 GHz (adapted from [1]). 
 
Reactant 

Dielectric 
constant, 

Electric 
conductivity, 
 (S/m) 

(A) Ethyl acetate 6.2 0.1468 
(B) Methylene  
      chloride 

 
9.1 

 
0.0582 

(C) Acetone 20.6 0.1178 
(D) Ethanol 24.6 0.1808 
(E) Methanol 32.7 4.1882 
(F) Acetonitrile 36.0 3.2291 

 
fied. The reactor is excited by a rectangular wave-
guide which may be offset in the x- and y-direc-
tions by fx and fy, respectively. The vessel also may 
be offset from the z-axis by vx and vy, and is lo-
cated a distance s from the top of the cavity. The 
CAD goal is: given the height of the system H and 
a set of L reactants to be processed in the reactor, 
find the configuration of the whole system, i.e., 
diameter D, internal dimensions of the vessel (d 
and h), its position in the cavity (s, vx and vy), and 
a position of the waveguide (fx and fy), that yields 
less than T % of reflected microwave energy (i.e., 

the reflection coefficient |S11| < 0.1 T ) in 
k

rBW % (k = 1, …, L) of the frequency range     
(f1, f2) for reactants A, …, L, respectively.  

 
A. One liter load and three reactants  

In the first illustration, we solve this problem 
for a load of V = 1 liter and with the height of the 
reactor H = 300 mm. We consider L = 3 (the 
materials (A), (B), and (D) specified in Table 1), T 

= 1 % (i.e., energy efficiency 99 %), A
rBW = … = 

D
rBW  = 100 %, f1 = 2.4 GHz, and f2 = 2.5 GHz. 

While the waveguide dimensions are considered 
constant (a = 72 mm, b = 36 mm), seven design 
variables are allowed in the intervals:  
 

-35 ≤ fx, fy ≤ 35 mm, -24 ≤ vx, vy ≤ 24 mm,  
80 ≤ d ≤ 110 mm, 75 ≤ s ≤ 110 mm,  

200 ≤ D ≤ 300 mm.                    (3) 
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The procedure starts with a generation of an 
initial DB of 50 random points in the specified 
domain for each of the three reactants. Aiming to 
keep CPU time in this illustrative optimization 
reasonable, the chosen underlying FDTD model is 

 

 
 

Fig. 6. Typical non-optimized characteristics of 
the system in Fig. 5 with Reactant (D): design 
variables chosen at the left-end (Design (3l)), mid-
(3m), and right-end points (3r) of the intervals (3).  
 
Table 2: Reactor configurations optimized for 
reactants (A), (B), and (D) 

V (liters) 1 5 
fx, mm -23.4 75.8 
fy, mm 11.0 83.2 
vx, mm -5.3 50.0 
vy, mm 20.0 -36.0 
d, mm 108.0 164.0 
s, mm 94.8 145.4 
D, mm 209.0 395.2 
DB size/No of 
FDTD analysis 

99/297 65/195 

 
relatively rough: built with a non-uniform con-
formal mesh, it consists of 308,000 to 555,000 
cells with size ranging from a maximum of 2.7 
mm in the reactant to 7 mm in air. The cell size of 
the load is selected for materials with high 
dielectric constants ((D)-(F) in Table 1) and is kept 
the same for the materials with low . The 
analysis of the system involves 10,000 time-steps 
(1.7 to 3.0 min of CPU time).  

Characteristics of the reflection coefficient in 
the non-optimized reactor computed for all the 
reactants yield energy efficiency of about 75-85 % 
(see, e.g., Fig. 6). Our optimization procedure 

achieves what seems to be the “best” solution 

producing 99 % efficiency ( A
rBW = 79 %, B

rBW = 

83 %, and D
rBW = 100 %) with 99 × 3 = 297 

FDTD analyses (Fig. 7). Corresponding design 
 

 
 

Fig. 7. Optimization convergence for the reactor 
designed for T = 1% and three one-liter reactants 
(A), (B), and (D); 99th iteration is marked by (○).  

 

 
 

Fig. 8. Reflection coefficient in the reactor 
optimized for three one-liter reactants  
(A), (B), and (D). 
  
variables are given in Table 2 and frequency 
characteristics of |S11| resulting from this geometry 
are shown in Fig. 8: it is seen that, for the reactants 
(A), (B), and (D), this optimized configuration 
provides the desirable efficiency in 79 % of the 2.4 
to 2.5 GHz frequency range. 

 
B. Five liter load and three reactants  

The next example illustrates a capability of the 
proposed optimization technique in situations 
when scaling up of a successful MAOS process is 
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of key interest. Here, we solve the optimization 
problem for a reactor of the same design and con-
structed for the same reactants (L = 3), but of  a  5- 

liter volume. With H = 513 mm, T = 1 %, A
rBW  = 

… = D
rBW = 90 %, f1 = 2.4 GHz, and f2 = 2.5 

 

 
 

Fig. 9. Optimization convergence for the reactor 
designed for T = 1% and three five-liter reactants 
(A), (B), and (D); 65th iteration is marked by (○).  
 

 
 

Fig. 10. Reflection coefficient in the reactor 
optimized for three five-liter reactants (A), (B), 
and (D). 
 
GHz, the seven design variables are allowed in the 
intervals:  

 

-85 ≤ fx, fy ≤ 85 mm, -50 ≤ vx, vy ≤ 50 mm,  
159 ≤ d ≤ 172 mm, 80 ≤ s ≤ 300 mm,  

340 ≤ D ≤ 510 mm                    (4) 
 

Similarly, the procedure starts with an initial DB 
of 50 random points in the domain (4). The model 
consists of 1,380,000 to 2,394,000 cells of maxi-
mum size 3 mm in the reactant to 7 mm in air – 

due to the larger volume of the reactant, the do-
main discretized with 3 mm cells is also larger. 
Likewise, the analysis requires 10,000 time-steps 
(8.6 to 14.4 min of CPU time).  

In the case of a 5-liter reactant, as seen from 

Fig. 9, the best solution ( A
rBW = 80 %, B

rBW = 77 

%, and C
rBW = 70 %) is achieved with 119 DB 

points, but for the preceding very close result 

(with the worst C
rBW = 68 %) the procedure needs 

only 65 points (195 analyses). Corresponding de-
sign variables are also given in Table 2 and |S11| 
characteristics resulting from this geometry are 
shown in Fig. 10: this optimized configuration 
provides 99 % energy efficiency for all three reac-
tants in the 70 % of the 2.4 to 2.5 GHz frequency 
range. 

It is seen that the optimized geometry of the 5 
liter reactor is fairly different from a proportional-
ly increased one of the 1 liter system, and the 
“qualities” of both best solutions are not alike. 
This appears to be consistent with theoretically ex-
pected (and observed in many experiments [13]) 
strongly non-linear alterations in a reactor’s 
performance with variations of its geometrical 
parameters and material characteristics of the 
reactants.  

 
C. One liter load and six reactants  

In the last illustration, the proposed CAD tech-
nique is tested with double the number of reactants 
(L = 6), i.e., all the materials specified in Table 1 
and differing in a dielectric constant by about 6 
times and in the conductivity by about 70 times. 
We assume V = 1 liter, H = 300 mm, f1 = 2.4 GHz, 

f2 = 2.5 GHz, and set the goal values A
rBW = … = 

F
rBW = 100 %. The same seven design variables 

are allowed in the intervals given by (3). The un-
derlying FDTD model and its CPU times are the 
same as in the first example above (sub-section 
IV.A).  

First, we solve the problem for T = 2.5 %. The 
procedure starts with a generation of an initial DB 
of 50 points for each of the six reactants. The 
“best” optimal solution producing 97.5 % 

efficiency ( A
rBW = … = D

rBW = 100 %, E
rBW = 

93 %, and F
rBW  = 95 %) is achieved very quickly 

with only 14 additional DB points; this requires a 
total of 384 FDTD analyses. The convergence to 
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this solution is illustrated in Fig. 11 for each 
reactant. Corresponding design variables are given 
in the last column of Table 3 along with the values 
produced from the previous 4 optimization 
iterations. Frequency characteristics of |S11| 
resulting from the 64th optimal solution are shown 

 

 
 

Fig. 11. Optimization convergence for the reactor 
designed for T = 2.5% and six one-liter reactants 
(A)-(F). 

 

 
 

Fig.12. Reflection coefficient in the reactor 
optimized for six one-liter reactants (A)-(F). 

 
Table 3: Optimal solutions of the final stage of 
optimization for 97.5% energy efficiency with six 
reactants (A)-(F).  
Iter. 60 61 62 63 64 
fx, mm -1.3 -2.6 -3.1 -2.9 -2.6 
fy, mm -24.5 -22.1 -22.8 -22.3 -22.5 
vx, mm -19.8 -19.6 -18.0 -18.4 -17.9 
vy, mm -9.1 -9.0 -8.6 -8.5 -10.0 
d, mm 101.6 101.4 101.2 100.9 101.2 
s, mm 81.2 81.6 83.2 82.2 82.3 
D, mm 242.3 242.6 242.3 242.6 243.4 

in Fig. 12: for all the  reactants (A)-(F), this 
optimized configuration provides desirable 
efficiency in 93 % of the 2.4 to 2.5 GHz frequency 
range.  

 

 
 

Fig. 13. Optimization convergence for the reactor 
designed for T = 1 % and six one-liter reactants 
(A)-(F). 

 

 
 

Fig. 14. Reflection coefficient in the reactor 
optimized for three 1-liter reactants (A)-(F). 

 
Table 4: Optimal solutions of the final stage of 
optimization for 99 % energy efficiency with six 
reactants (A)-(F) . 
Iter. 572 573 574 575 576 
fx, mm 10.6 10.5 9.6 9.6 9.4 
fy, mm -22.1 -22.1 -22.2 -22.2 -22.1 
vx, mm -21.7 -22.1 -21.9 -21.8 -21.8 
vy, mm 4.5 4.4 4.2 4.2 4.1 
d, mm 92.8 93.0 92.5 92.4 92.5 
s, mm 95.2 95.0 94.9 94.9 95.1 
D, mm 250.6 250.2 249.6 249.6 249.6 

 
 

1114MURPHY, YAKOVLEV: CAD TECHNIQUE FOR MICROWAVE CHEMISTRY REACTORS 



With only a 64-point DB required to find the 
geometry of a 97.5% efficient reactor, in another 
test we attempt the more challenging task of 
finding the optimal solution for T = 1 %. By 
applying this more tough constraint (and 
simultaneously keeping the bandwidth goal values 
set to 100%), we are interested in seeing the 
capability of the optimization technique in 
searching for an optimal solution with bigger BWr. 
Here, an initial DB, also, contains 50 points for 
each of the six reactants. The “best” optimal 

solution producing 99 % efficiency is A
rBW = 

80%, B
rBW = 79 %, C

rBW = 91 %, D
rBW = 79 %, 

E
rBW = 95 %, and F

rBW = 97 %, and it is 
achieved with 527 DB points requiring 3,456 
FDTD simulations. Graphs in Fig. 13 show the 
natural effect of quicker convergence for the 
reactants with higher loss factors ((E) and (F)) 
than with a lower one (B). Corresponding design 
variables are given in the last column of Table 4 
which also shows how the “best” optimal solution 
was finally approached in the course of 
optimization. Frequency characteristics of |S11| 
resulting from the 576th solution are shown in Fig. 
14: for all the reactants (A)-(F), this configuration 
provides 99 % efficiency in the 79 % of the 2.4 to 
2.5 GHz frequency range.  

 
V. CONCLUSION 

In this paper, we have introduced an original 
modeling-based approach for CAD and scaling up 
of MAOS reactors. A computer code implement-
ting the proposed technique allows for finding the 
geometry of a large-scale reactor that guarantees 
the highest possible energy efficiency for different 
reactants. The procedure of RBF ANN optimiza-
tion backed by full-wave (3D conformal FDTD) 
simulations has been applied to a conventional 
MW reactor to find the best design for processing 
of 1- and 5-liter reactants. It has been demonstra-
ted that, with the developed technique, seven-
parameter optimization of this system that aims to 
guarantee 99 % efficiency takes only 297 and 195 
FDTD analyses (i.e., about 16 and 37.5 h of CPU 
time of a regular PC), respectively. The optimiza-
tion technique remains operational and viable 
when it is used for a larger number of materials – 
e.g., it requires 3,456 simulations when working 

with the same seven design variables for six differ-
rent reactants.  

The advanced functionality of the presented 
optimization technique is eloquently illustrated by 
the output of our earlier paper [20] showing, with 
the use of the technique [16], that a MW applicator 
optimized for only one load may behave 
unsatisfactorily for the other ones. On the other 
hand, our RBF optimization procedures are 
straightforwardly applicable to those systems with 
loads whose material parameters strongly depend 
on temperature. This has been already shown, in a 
simplified manner, in [21] where the technique 
[16] was applied to loads with different values of 
uniformly distributed complex permittivity. In a 
more accurate way, the temperature dependence 
can be handled by the optimization technique 
described in this paper if it is backed by QW-3D 
which pro-vides a regime of operating the FDTD 
solver with a cell-by-cell modification of media 
parameters as a function of dissipated power.  

The results, presented in this paper, stay in 
strong favor of CAD of high-productive large-
scale MAOS reactors and suggest that application 
of the developed modeling-based optimization 
procedure in efficient designing of systems of MW 
chemistry may be useful and practical.  
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