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Abstract─ A technique is proposed to measure the 
permittivity and permeability parameters of a 
sample of biaxial material placed into a 
rectangular waveguide. By constructing the 
material as a cube, only a single sample is required 
to find all six material parameters. The sample is 
inserted into the waveguide in multiple 
orientations, and the transmission and reflection 
coefficients of the sample region are measured 
using a vector network analyzer. The material 
parameters are then found by equating the 
measured S-parameters to those determined 
theoretically using a mode-matching technique. 
The theoretical details are outlined and the 
extraction process is described. A stacked 
dielectric cube is characterized experimentally to 
demonstrate the feasibility of the approach, and 
results are compared to those obtained using a 
reduced-aperture waveguide technique. 
 
Index Terms – Anisotropic, biaxial, material 
measurement, permeability, permittivity, and 
waveguide. 
 

I. INTRODUCTION 
Engineered materials, formed from composites 

of various constituents with both dielectric and 
magnetic properties, are gaining interest for use in 
antenna apertures due to their useful 
electromagnetic properties [1, 2]. These materials 
are often anisotropic, and their constitutive 

parameters are hard to predict theoretically. Thus 
it is important to develop methods to accurately 
characterize the behavior of anisotropic materials 
experimentally, so that the constitutive parameters 
may be used in the analysis and design of antenna 
systems. 

Rectangular waveguide systems are often used 
to measure the electromagnetic properties of 
materials due to high signal strength, ease of 
sample preparation, and the ability to analyze the 
sample interaction analytically [3]. The authors 
have recently developed a method for 
characterizing the properties of biaxially 
anisotropic materials using a reduced-aperture 
waveguide system [4]. By using a sample holder 
of cubical shape, a single sample of biaxial 
material may be measured in three different 
orientations, providing the required number of 
reflection and transmission measurements to 
determine the six unique constitutive parameters. 
The fields in the sample region are computed 
analytically, and the mode-matching approach is 
used to determine the theoretical S-parameters of 
the cascaded system consisting of the sample 
holder and the empty waveguide transitions. This 
technique has the drawbacks that the sample must 
fit tightly within the conducting sample holder (to 
preclude air gaps), the restricted aperture of the 
sample holder reduces the energy transmitted 
through the sample, and a special sample holder 
must be constructed. 
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This paper introduces an alternative technique 
that doesn’t require a special sample holder. In this 
technique a cubical sample is inserted directly into 
a full-aperture waveguide, leaving spaces on each 
side of the sample. The sample is centered within 
the guide cross section, and mode-matching 
techniques are again used to find the S-parameters. 
This approach eliminates the presence of gaps 
along the sidewalls (although not along the top and 
bottom walls), reduces reflections from the 
conducting restriction, and does not require a 
special sample holder. Drawbacks include 
accurately centering the sample in the guide, and 
dealing with a more complicated field structure in 
the sample region, including finding the modal 
propagation constants by solving a transcendental 
equation. 
 

II. THEORETICAL S-PARAMETERS 
FOR A CUBICAL BIAXIAL MATERIAL 

SAMPLE IN A RECTANGULAR 
WAVEGUIDE 

Dependable extraction of the biaxial properties 
of a material sample depends on having an 
accurate model for the theoretical S-parameters of 
the measurement system. The system considered 
here is designed in such a way that simple mode-
matching techniques can be used to find the S-
parameters with a computational accuracy that is 
easily quantified [5].  
 Consider the system shown in Fig. 1. A 
cubical sample of material is centered within the 
cross-section of a rectangular waveguide such that 
the cross-sectional view is shown in Fig. 2. The 
material is assumed to be biaxial along the 
orthogonal axes 𝐴𝐴, 𝐵𝐵, and 𝐶𝐶, such that the tensor 
permittivity and permeability are given by, 
 

 𝜀𝜀 = 𝜀𝜀0 �
𝜀𝜀𝐴𝐴 0 0
0 𝜀𝜀𝐵𝐵 0
0 0 𝜀𝜀𝐶𝐶

� (1) 

and 

 𝜇𝜇 = 𝜇𝜇0 �
𝜇𝜇𝐴𝐴 0 0
0 𝜇𝜇𝐵𝐵 0
0 0 𝜇𝜇𝐶𝐶

�, (2) 

 

respectively, where 𝜀𝜀𝐴𝐴, 𝜇𝜇𝐴𝐴, etc., are relative 
parameters. A TE10 rectangular waveguide mode 
is assumed to be incident upon the sample from 
the region 𝑧𝑧 < 0, as shown in Fig. 3. Due to the 
material discontinuities at the sample interfaces, 

an infinite spectrum of empty waveguide modes is 
reflected back into this region, an infinite spectrum 
of modes is created in the sample region, 0 ≤ 𝑧𝑧 ≤
𝑑𝑑, and an infinite spectrum of modes is transmitted 
into the region 𝑧𝑧 > 𝑑𝑑. The empty waveguide 
sections on the sending and receiving ends are 
assumed to be of sufficient length that only the 
dominant empty waveguide TE10 mode 
propagates to the ends of the sections. Thus, 
dominant-mode reflection and transmission 
coefficients can be measured at these ports using a 
vector network analyzer, and the S-parameters of 
the sample determined by shifting these 
measurements to the sample planes 𝑧𝑧 = 0 and 
𝑧𝑧 = 𝑑𝑑. To determine the biaxial material 
properties, the theoretical S-parameters are needed 
at these planes. 
 

 
 

Fig. 1. Cubical sample of biaxial material centered 
inside a rectangular waveguide. 
 

 
 

Fig. 2. Cross-sectional view of the sample inside 
the waveguide. 
 

 
Fig. 3. Side view of the sample inside the 
waveguide showing the presence of higher-order 
modes in each region. 
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 Since the electric field of the dominant TE10 
mode of the empty guide is even about 𝑥𝑥, the 
incident field will only couple to modes with a 
similar symmetry. The field structure of the empty 
waveguide modes is well known [6], and it is 
easily seen that only modes of the type TE𝑛𝑛0 will 
be excited in the empty guides. Thus, the 
transverse fields in the region 𝑧𝑧 < 0 may be 
expanded as, 

𝐸𝐸𝑦𝑦(𝑥𝑥, 𝑧𝑧) =
𝑎𝑎1
𝑖𝑖 𝐸𝐸�1(𝑥𝑥)e−𝑗𝑗𝛽𝛽�1𝑧𝑧 + ∑ 𝑎𝑎𝑛𝑛𝑟𝑟 𝐸𝐸�𝑛𝑛(𝑥𝑥)e+𝑗𝑗𝛽𝛽�𝑛𝑛 𝑧𝑧𝑁𝑁

𝑛𝑛=1              (3) 
 𝐻𝐻𝑥𝑥(𝑥𝑥, 𝑧𝑧) =
−𝑎𝑎1

𝑖𝑖 𝐻𝐻�1(𝑥𝑥)e−𝑗𝑗𝛽𝛽�1𝑧𝑧 + ∑ 𝑎𝑎𝑛𝑛𝑟𝑟𝐻𝐻�𝑛𝑛(𝑥𝑥)e+𝑗𝑗𝛽𝛽�𝑛𝑛 𝑧𝑧𝑁𝑁
𝑛𝑛=1 , (4) 

while the field in the region 𝑧𝑧 > 𝑑𝑑 may be written 
as, 

 𝐸𝐸𝑦𝑦(𝑥𝑥, 𝑧𝑧) = ∑ 𝑎𝑎𝑛𝑛𝑡𝑡 𝐸𝐸�𝑛𝑛(𝑥𝑥)𝑁𝑁
𝑛𝑛=1 e−𝑗𝑗𝛽𝛽�𝑛𝑛 (𝑧𝑧−𝑑𝑑) (5) 

 𝐻𝐻𝑥𝑥(𝑥𝑥, 𝑧𝑧) = −∑ 𝑎𝑎𝑛𝑛𝑡𝑡 𝐻𝐻�𝑛𝑛(𝑥𝑥)e−𝑗𝑗𝛽𝛽�𝑛𝑛 (𝑧𝑧−𝑑𝑑)𝑁𝑁
𝑛𝑛=1 . (6) 

Here 𝑎𝑎1
𝑖𝑖  is the known amplitude of the incident 

TE10 mode, while 𝑎𝑎𝑛𝑛𝑟𝑟  and 𝑎𝑎𝑛𝑛𝑡𝑡  are modal amplitudes 
to be determined by applying appropriate 
boundary conditions at the interfaces between the 
samples and the empty waveguide sections. Once 
these are found, the theoretical S-parameters are 
given by, 

 𝑆𝑆11
𝑇𝑇 = 𝑎𝑎1

𝑟𝑟

𝑎𝑎1
𝑖𝑖  (7) 

 𝑆𝑆21
𝑇𝑇 = 𝑎𝑎1

𝑡𝑡

𝑎𝑎1
𝑖𝑖 . (8) 

In equations (3) to (6), �̅�𝛽𝑛𝑛  is the real phase 
constant of the TE𝑛𝑛0 mode given by, 

 �̅�𝛽𝑛𝑛 = �𝑘𝑘0
2 − 𝑘𝑘�𝑐𝑐 ,𝑛𝑛

2  (9) 

with 𝑘𝑘0 = 𝜔𝜔�𝜇𝜇0𝜀𝜀0  is the free-space wave 
number, and 𝑘𝑘�𝑐𝑐 ,𝑛𝑛  the cutoff wavenumber, 

 𝑘𝑘�𝑐𝑐 ,𝑛𝑛 = 𝑛𝑛𝑛𝑛
𝑎𝑎

, 𝑛𝑛 = 1,2,3, …. (10) 

Also in equations (3) to (6), the field structure of 
the empty waveguide modes is given by, 

 𝐸𝐸�𝑛𝑛(𝑥𝑥) = − 𝑗𝑗𝜔𝜔 𝜇𝜇0
𝑘𝑘�𝑐𝑐 ,𝑛𝑛

sin𝑘𝑘�𝑐𝑐 ,𝑛𝑛 �𝑥𝑥 −
𝑎𝑎
2
� (11) 

 𝐻𝐻�𝑥𝑥(𝑥𝑥) = 𝐸𝐸�𝑛𝑛
𝑍𝑍�𝑛𝑛

, (12) 

where �̅�𝑍𝑛𝑛  is the TE-wave impedance 

 �̅�𝑍𝑛𝑛 = 𝜔𝜔𝜇𝜇0
𝛽𝛽�𝑛𝑛

. (13) 

The field structure of the waveguide modes in the 
sample region is somewhat more complicated. 
Assuming that the biaxial cube is aligned so that 
the axes 𝐴𝐴, 𝐵𝐵, and 𝐶𝐶 lie along some choice of the 
directions 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧, the fields within the region 
0 ≤ 𝑧𝑧 ≤ 𝑑𝑑 may be expanded as, 

 
𝐸𝐸𝑦𝑦(𝑥𝑥, 𝑧𝑧) =

∑ �𝑎𝑎𝑛𝑛+e−𝑗𝑗𝛽𝛽𝑛𝑛𝑧𝑧 + 𝑎𝑎𝑛𝑛−e+𝑗𝑗𝛽𝛽𝑛𝑛 𝑧𝑧�𝐸𝐸𝑛𝑛(𝑥𝑥)𝑁𝑁
𝑛𝑛=1

 (14) 

 
𝐻𝐻𝑥𝑥(𝑥𝑥, 𝑧𝑧) =

∑ �−𝑎𝑎𝑛𝑛+e−𝑗𝑗𝛽𝛽𝑛𝑛𝑧𝑧 + 𝑎𝑎𝑛𝑛−e+𝑗𝑗𝛽𝛽𝑛𝑛 𝑧𝑧�𝐻𝐻𝑛𝑛(𝑥𝑥)𝑁𝑁
𝑛𝑛=1

, (15) 

where 𝑎𝑎𝑛𝑛+ and 𝑎𝑎𝑛𝑛− are amplitudes to be determined 
by application of the boundary conditions at 𝑧𝑧 = 0 
and 𝑧𝑧 = 𝑑𝑑. Here the modal fields are given for 
𝑥𝑥 > 0 by, 

 𝐸𝐸𝑛𝑛(𝑥𝑥) = �
𝐸𝐸𝑛𝑛𝐼𝐼 (𝑥𝑥), 0 ≤ 𝑥𝑥 ≤ 𝑤𝑤

2

𝐸𝐸𝑛𝑛𝐼𝐼𝐼𝐼(𝑥𝑥),   𝑤𝑤
2

< 𝑥𝑥 ≤ 𝑎𝑎
2

� (16) 

 𝐻𝐻𝑛𝑛(𝑥𝑥) = �
𝐻𝐻𝑛𝑛𝐼𝐼 (𝑥𝑥), 0 ≤ 𝑥𝑥 ≤ 𝑤𝑤

2

𝐻𝐻𝑛𝑛𝐼𝐼𝐼𝐼(𝑥𝑥),   𝑤𝑤
2

< 𝑥𝑥 ≤ 𝑎𝑎
2

�, (17) 

where 

 𝐸𝐸𝑛𝑛𝐼𝐼 (𝑥𝑥) = 𝑗𝑗𝜔𝜔 𝜇𝜇𝑧𝑧
𝑘𝑘𝑐𝑐 ,𝑛𝑛
𝐼𝐼 cos�𝑘𝑘𝑐𝑐 ,𝑛𝑛

𝐼𝐼 𝑥𝑥�, (18) 

 𝐸𝐸𝑛𝑛𝐼𝐼𝐼𝐼(𝑥𝑥) = − 𝑗𝑗𝜔𝜔 𝜇𝜇0
𝑘𝑘𝑐𝑐 ,𝑛𝑛
𝐼𝐼𝐼𝐼 sin �𝑘𝑘𝑐𝑐 ,𝑛𝑛

𝐼𝐼 𝑑𝑑
2
�

sin𝑘𝑘𝑐𝑐 ,𝑛𝑛
𝐼𝐼𝐼𝐼 �𝑥𝑥−𝑎𝑎2�

cos𝑘𝑘𝑐𝑐 ,𝑛𝑛
𝐼𝐼𝐼𝐼 �𝑑𝑑−𝑎𝑎2 �

, (19) 

 𝐻𝐻𝑛𝑛𝐼𝐼 (𝑥𝑥) = 𝐸𝐸𝑛𝑛𝐼𝐼 (𝑥𝑥)
𝑍𝑍𝑛𝑛𝐼𝐼

, 𝐻𝐻𝑛𝑛𝐼𝐼𝐼𝐼(𝑥𝑥) = 𝐸𝐸𝑛𝑛𝐼𝐼𝐼𝐼(𝑥𝑥)
𝑍𝑍𝑛𝑛𝐼𝐼𝐼𝐼

, (20) 

with 

 𝑍𝑍𝑛𝑛𝐼𝐼 = 𝜔𝜔𝜇𝜇𝑥𝑥
𝛽𝛽𝑛𝑛

, 𝑍𝑍𝑛𝑛𝐼𝐼𝐼𝐼 = 𝜔𝜔𝜇𝜇0
𝛽𝛽𝑛𝑛

. (21) 

These fields are found by solving the wave 
equation for a biaxial medium [7], 

 � 𝜕𝜕
2

𝜕𝜕𝑥𝑥2 + 𝜇𝜇𝑧𝑧
𝜇𝜇𝑥𝑥
�𝜔𝜔2𝜇𝜇𝑥𝑥𝜀𝜀𝑦𝑦 − 𝛽𝛽2��𝐻𝐻𝑧𝑧(𝑥𝑥, 𝑧𝑧) = 0 (22) 

and applying the boundary conditions at the 
interfaces 𝑥𝑥 = 𝑎𝑎/2 and 𝑥𝑥 = 𝑤𝑤/2. Note that 
because of symmetry, the boundary conditions at 
𝑥𝑥 = −𝑎𝑎/2 and 𝑥𝑥 = −𝑤𝑤/2 are satisfied 
automatically. 
 The complex propagation constants 𝛽𝛽𝑛𝑛  are 
found by solving the transcendental equation, 

 
𝜇𝜇0𝑘𝑘𝑐𝑐 ,𝑛𝑛

𝐼𝐼 sin�𝑘𝑘𝑐𝑐 ,𝑛𝑛
𝐼𝐼 𝑤𝑤

2
� sin �𝑘𝑘𝑐𝑐 ,𝑛𝑛

𝐼𝐼𝐼𝐼 𝑎𝑎−𝑤𝑤
2
� =

𝜇𝜇𝑧𝑧𝑘𝑘𝑐𝑐 ,𝑛𝑛
𝐼𝐼𝐼𝐼 cos�𝑘𝑘𝑐𝑐 ,𝑛𝑛

𝐼𝐼 𝑤𝑤
2
� cos �𝑘𝑘𝑐𝑐 ,𝑛𝑛

𝐼𝐼𝐼𝐼 𝑎𝑎−𝑤𝑤
2
�

 (23) 
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where the cutoff wavenumbers are related to the 
complex propagation constants by, 

 
�𝑘𝑘𝑐𝑐 ,𝑛𝑛

𝐼𝐼 �2 = 𝜇𝜇𝑧𝑧
𝜇𝜇𝑥𝑥
�𝜔𝜔2𝜇𝜇𝑥𝑥𝜀𝜀𝑦𝑦 − 𝛽𝛽𝑛𝑛2�

�𝑘𝑘𝑐𝑐 ,𝑛𝑛
𝐼𝐼𝐼𝐼 �2 = 𝑘𝑘0

2 − 𝛽𝛽𝑛𝑛2 .
 (24) 

 It is not as straightforward to number the 
modes in the partially-filled guide as it is to 
number the modes in the empty waveguide 
extensions. One approach is to start with the 
solution for 𝛽𝛽𝑛𝑛  under the condition 𝑤𝑤 = 0, which 
is given by equations (9) and (10) since the sample 
region is empty, and then slowly increase the 
width of the sample, solving for 𝛽𝛽𝑛𝑛  at each step 
using the previous solution as an initial guess. 
Then the modes can be numbered according to the 
starting empty waveguide mode. This is the 
approach suggested in [8] for thin samples. 
However, as the sample width increases, modes 
may switch between propagating and evanescent, 
and solving equation (23) using previous results as 
initial guesses becomes problematic. Instead, 
when the material loss is not too high, the 
following approach can be used. First the 
imaginary parts of the material constants are set to 
zero (implying a lossless material). Then the real 
values of 𝛽𝛽 are found by looking for zero 
crossings of equation (23) between 𝛽𝛽 = 0 and 
𝛽𝛽 = 𝜔𝜔�𝜇𝜇𝑥𝑥𝜀𝜀𝑦𝑦 . These are the propagating modes, 
and are assigned the index 𝑛𝑛 according to the order 
of the zero crossing. Next 𝛽𝛽 is replaced by – 𝑗𝑗𝑗𝑗 in 
equation (23), and real values of 𝑗𝑗 are found by 
looking for zero crossings starting from 𝑗𝑗 = 0 and 
continuing until a prescribed number of modes 
have been found. These are the evanescent modes, 
and they are numbered continuing after the highest 
order propagating mode. Finally, the imaginary 
parts of the material parameters are restored, and 
the zero crossing values found earlier for 𝛽𝛽 and 𝑗𝑗 
are used as initial guesses in a Newton’s method 
root search (possibly with a small imaginary 
perturbation) to find the complex propagation 
constants for both the propagating and the 
evanescent modes. 
 The unknown modal amplitudes are found by 
enforcing continuity of 𝐸𝐸𝑦𝑦  and 𝐻𝐻𝑥𝑥  at the interfaces 
𝑧𝑧 = 0 and 𝑧𝑧 = 𝑑𝑑, 

 𝑎𝑎1
𝑖𝑖 𝐸𝐸�1(𝑥𝑥) + ∑ 𝑎𝑎𝑛𝑛𝑟𝑟 𝐸𝐸�𝑛𝑛(𝑥𝑥)𝑁𝑁

𝑛𝑛=1 = ∑ [𝑎𝑎𝑛𝑛+ +𝑁𝑁
𝑛𝑛=1

𝑎𝑎𝑛𝑛−]𝐸𝐸𝑛𝑛(𝑥𝑥)  (25) 

 −𝑎𝑎1
𝑖𝑖 𝐻𝐻�1(𝑥𝑥) + ∑ 𝑎𝑎𝑛𝑛𝑟𝑟𝐻𝐻�𝑛𝑛(𝑥𝑥)𝑁𝑁

𝑛𝑛=1 = 
 ∑ [−𝑎𝑎𝑛𝑛+ + 𝑎𝑎𝑛𝑛−]𝐻𝐻𝑛𝑛(𝑥𝑥)𝑁𝑁

𝑛𝑛=1 , (26) 
 
 ∑ �𝑎𝑎𝑛𝑛+e−𝑗𝑗𝛽𝛽𝑛𝑛𝑑𝑑 +𝑁𝑁

𝑛𝑛=1
𝑎𝑎𝑛𝑛−e+𝑗𝑗𝛽𝛽𝑛𝑛𝑑𝑑 ]𝐸𝐸𝑛𝑛(𝑥𝑥) =∑ 𝑎𝑎𝑛𝑛𝑡𝑡 𝐸𝐸�𝑛𝑛(𝑥𝑥)𝑁𝑁

𝑛𝑛=1 , (27) 
 
 ∑ �−𝑎𝑎𝑛𝑛+e−𝑗𝑗𝛽𝛽𝑛𝑛𝑑𝑑 + 𝑎𝑎𝑛𝑛−e+𝑗𝑗𝛽𝛽𝑛𝑛𝑑𝑑�𝐻𝐻𝑛𝑛(𝑥𝑥)𝑁𝑁

𝑛𝑛=1 = 
 −∑ 𝑎𝑎𝑛𝑛𝑡𝑡 𝐻𝐻�𝑛𝑛(𝑥𝑥)𝑁𝑁

𝑛𝑛=1 . (28) 

Note that, for convenience, the same number of 
modes, 𝑁𝑁, is used in the empty waveguide and 
sample holder regions. 
 Equations (25) to (28) are a system of 
functional equations. They may be transformed 
into a system of linear equations by applying 
appropriate testing operators as follows. First, 
equation (25) is multiplied by 𝐸𝐸�𝑚𝑚 (𝑥𝑥) and 
integrated between 0and 𝑎𝑎/2. Next, equation (26) 
is multiplied by 𝐻𝐻�𝑚𝑚 (𝑥𝑥) and integrated between 
0and 𝑎𝑎/2. Then equation (27) is multiplied by 
𝐸𝐸�𝑚𝑚 (𝑥𝑥) and integrated between 0and 𝑎𝑎/2. Finally, 
equation (28) is multiplied by 𝐻𝐻�𝑚𝑚(𝑥𝑥) and 
integrated between 0 and 𝑎𝑎/2. Note that all 
integrals can be computed in closed form. The 
result is a linear system of 4𝑁𝑁 × 4𝑁𝑁 equations of 
the form, 

�

−𝐶𝐶𝑚𝑚𝑛𝑛 𝐷𝐷𝑚𝑚𝑛𝑛
𝐸𝐸𝑚𝑚𝑛𝑛 𝐹𝐹𝑚𝑚𝑛𝑛

𝐷𝐷𝑚𝑚𝑛𝑛 0
−𝐹𝐹𝑚𝑚𝑛𝑛 0

0 𝐷𝐷𝑚𝑚𝑛𝑛′
0 −𝐹𝐹𝑚𝑚𝑛𝑛′

𝐷𝐷𝑚𝑚𝑛𝑛′′ −𝐶𝐶𝑚𝑚𝑛𝑛
𝐹𝐹𝑚𝑚𝑛𝑛′′ 𝐸𝐸𝑚𝑚𝑛𝑛

�

⎣
⎢
⎢
⎡
𝑎𝑎𝑛𝑛𝑟𝑟

𝑎𝑎𝑛𝑛+
𝑎𝑎𝑛𝑛−

𝑎𝑎𝑛𝑛𝑡𝑡 ⎦
⎥
⎥
⎤

= 𝑎𝑎1
𝑖𝑖 �

𝐶𝐶𝑚𝑚1
𝐸𝐸𝑚𝑚1

0
0

�  

 (29) 

where each of the quantities 𝐶𝐶𝑚𝑚𝑛𝑛 , 𝐷𝐷𝑚𝑚𝑛𝑛 , etc., are 
𝑁𝑁 × 𝑁𝑁 submatrices, and 𝑎𝑎𝑛𝑛𝑟𝑟 , 𝑎𝑎𝑛𝑛+, etc., are the 
unknown modal coefficients. Once the matrix of 
equation (29) has been solved, equations (7) and 
(8) can be used to compute the desired S-
parameters. 
 

III. EXTRACTION PROCEDURE 
Since there are six independent complex 

quantities to determine, (𝜀𝜀𝐴𝐴 , 𝜀𝜀𝐵𝐵 , 𝜀𝜀𝐶𝐶 ,𝜇𝜇𝐴𝐴 , 𝜇𝜇𝐵𝐵 , 𝜇𝜇𝐶𝐶), the 
extraction process requires a minimum of six 
complex measurements. These may be obtained by 
measuring 𝑆𝑆11 and 𝑆𝑆21 with the material axes 𝐴𝐴, 𝐵𝐵, 
and 𝐶𝐶 aligned along three properly chosen 
directions. Consider the orientations, 

 (𝐴𝐴,𝐵𝐵,𝐶𝐶) → (𝑥𝑥,𝑦𝑦, 𝑧𝑧) (30) 
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 (𝐴𝐴,𝐵𝐵,𝐶𝐶) → (𝑧𝑧, 𝑥𝑥,𝑦𝑦), (31) 

 (𝐴𝐴,𝐵𝐵,𝐶𝐶) → (𝑦𝑦, 𝑧𝑧, 𝑥𝑥). (32) 

Measurement under these orientations gives the S-
parameters (𝑆𝑆11,1

meas,𝑆𝑆21,1
meas), (𝑆𝑆11,2

meas,𝑆𝑆21,2
meas), 

(𝑆𝑆11,3
meas,𝑆𝑆21,3

meas), respectively. The material 
parameters can be found by solving the system of 
six nonlinear equations in six complex unknowns, 

 𝑆𝑆11,𝑛𝑛
thy (𝜀𝜀𝐴𝐴 , 𝜀𝜀𝐵𝐵 , 𝜀𝜀𝐶𝐶 ,𝜇𝜇𝐴𝐴 , 𝜇𝜇𝐵𝐵 , 𝜇𝜇𝐶𝐶) − 𝑆𝑆11,𝑛𝑛

meas = 0 
𝑛𝑛 = 1,2,3  (33) 

 𝑆𝑆21,𝑛𝑛
thy (𝜀𝜀𝐴𝐴 , 𝜀𝜀𝐵𝐵 , 𝜀𝜀𝐶𝐶 ,𝜇𝜇𝐴𝐴 , 𝜇𝜇𝐵𝐵 , 𝜇𝜇𝐶𝐶) − 𝑆𝑆21,𝑛𝑛

meas = 0 
𝑛𝑛 = 1,2,3.  (34) 

It may be difficult to solve this set of equations 
using standard methods such as Newton’s method, 
since extremely accurate initial guesses may be 
required. Alternatively, a subset of the material 
parameters may be found using fewer equations 
and then these parameters may be used as known 
quantities to solve for the remaining parameters.  
This approach is possible since only the three 
parameters 𝜀𝜀𝑦𝑦 , 𝜇𝜇𝑥𝑥 , and 𝜇𝜇𝑧𝑧appear at any given 
orientation. 
 Although many possible measurement 
combinations are possible, the results shown here 
were obtained using a three-step process. First, 
measurements are made with the orientations, 

 (𝐴𝐴,𝐵𝐵,𝐶𝐶) → (𝑥𝑥,𝑦𝑦, 𝑧𝑧) (35) 
 (𝐴𝐴,𝐵𝐵,𝐶𝐶) → (−𝑧𝑧,𝑦𝑦, 𝑥𝑥), (36) 

giving the S-parameters (𝑆𝑆11,1
meas,𝑆𝑆21,1

meas) and 
(𝑆𝑆11,2

meas,𝑆𝑆21,2
meas), respectively. The first of these 

orientations is labeled 1 in Fig. 4. The second 
orientation corresponds to a rotation of the cube by 
90°and is labeled 2 in Fig. 4. The measured S-
parameters only implicate 𝜀𝜀𝐵𝐵 , 𝜇𝜇𝐴𝐴, and 𝜇𝜇𝐶𝐶 , which 
can be found by solving the set of simultaneous 
equations, 

 𝑆𝑆11,𝑛𝑛
thy (𝜀𝜀𝐵𝐵 ,𝜇𝜇𝐴𝐴 , 𝜇𝜇𝐶𝐶) − 𝑆𝑆11,𝑛𝑛

meas = 0,𝑛𝑛 = 1 (37) 

 𝑆𝑆21,𝑛𝑛
thy (𝜀𝜀𝐵𝐵 , 𝜇𝜇𝐴𝐴 , 𝜇𝜇𝐶𝐶)− 𝑆𝑆21,𝑛𝑛

meas = 0,𝑛𝑛 = 1,2, (38) 

using Newton’s method. Next, a measurement is 
made using orientation 3 in Fig. 4, 

 (𝐴𝐴,𝐵𝐵,𝐶𝐶) → (𝑦𝑦,−𝑥𝑥, 𝑧𝑧) (39) 

giving(𝑆𝑆11,3
meas,𝑆𝑆21,3

meas). This measurement implicates 
𝜀𝜀𝐴𝐴, 𝜇𝜇𝐵𝐵 , and 𝜇𝜇𝐶𝐶 . However, 𝜇𝜇𝐶𝐶  is now known, so 𝜀𝜀𝐴𝐴 
and 𝜇𝜇𝐵𝐵  may be found by solving, 

 𝑆𝑆11,3
thy (𝜀𝜀𝐴𝐴 , 𝜇𝜇𝐵𝐵) − 𝑆𝑆11,3

meas = 0 (40) 

 𝑆𝑆21,3
thy (𝜀𝜀𝐴𝐴 , 𝜇𝜇𝐵𝐵) − 𝑆𝑆21,3

meas = 0, (41) 

using Newton’s method. Finally, a measurement is 
made under orientation 4 of Fig. 4, 

 (𝐴𝐴,𝐵𝐵,𝐶𝐶) → (𝑧𝑧, 𝑥𝑥,𝑦𝑦) (42) 

implicating 𝜀𝜀𝐶𝐶 , 𝜇𝜇𝐴𝐴, and 𝜇𝜇𝐵𝐵 . Since both 𝜇𝜇𝐴𝐴, and 𝜇𝜇𝐵𝐵  
are now known, 𝜀𝜀𝐶𝐶  can be found by solving, 

 𝑆𝑆21,4
thy (𝜀𝜀𝐶𝐶)− 𝑆𝑆21,4

meas = 0 (43) 

using Newton’s method. Note than when both 
reflection and transmission data is available, but 
only one S-parameter is required, a choice is made 
to use transmission data since experience shows 
that it is more robust. 
 

 
 

Fig. 4. Four cube orientations used in the three-
step process. 

 
IV. MEASURED RESULTS 

 
A. Experimental setup 

Demonstration of the partially-filled 
waveguide technique is undertaken by performing 
appropriate measurements at S-band and 
employing the extraction algorithm developed in 
the previous section. The waveguide system 
consists of two 5 inch (12.7 cm) long sections of 
WR-284 rectangular guide with coaxial transitions 
connected at the ends. These are attached through 
test port cables to an Agilent E5071C vector 
network analyzer (VNA); the assembled system is 
shown in Fig. 5. The VNA is calibrated at the open 
ends of the waveguide sections using a through-
reflect-line (TRL) method. A cubical material 
sample is inserted in the end of one of the 
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waveguide sections so that its surface is flush to 
the open-ended waveguide surface and centered 
between the walls, as shown in Fig. 6. The two 
sections of guide are then assembled and the 
reflection coefficient 𝑆𝑆11, and transmission 
coefficient, 𝑆𝑆21, are measured. Assembly is done 
using precision alignment pins to ensure high 
repeatability between measurements. The 
measurement process is repeated with the sample 
inserted into the appropriate orientations described 
in section III. Note that the S-parameters must be 
phase corrected to account for the fact that the rear 
surface of the cube is not located at the calibration 
plane. All measurements were made with a -5dBm 
source power, 64 averages, and a 70 kHz IF 
bandwidth. 

 
 
Fig. 5. Assembled S-band waveguide system. 

 

 
 
Fig. 6. Cubical sample inserted into waveguide 
section. 
 
B. Experimental results 

To test the characterization procedure using an 
anisotropic material, a cube was constructed by 
gluing together Rogers RO3010 circuit board 
substrate and Rogers RT/duroid 5870 substrate. 
The 3010 board has a thickness of t1

The simple geometry of the uniaxial cube 
allows 𝜀𝜀𝐴𝐴, 𝜀𝜀𝐵𝐵 , and 𝜀𝜀𝐶𝐶  to be estimated using closed-
form expressions. At the highest frequency 
considered in the measurements, the free-space 
electrical length of the stack period is 𝑘𝑘0(𝑡𝑡1 +
𝑡𝑡2) = 0.387. Since 𝑘𝑘0�𝜀𝜀𝑟𝑟1

′ (𝑡𝑡1 + 𝑡𝑡2) ≪ 2𝑛𝑛, the 
following approximate formulas may be used to 
determine the biaxial material constants [9], 

 = 1.27 mm, a 
dielectric constant of 𝜀𝜀𝑟𝑟1

′ = 10.2 and a loss 

tangent of tan𝑗𝑗1 = 0.0022. The 5870 board has a 
thickness of 𝑡𝑡2 = 3.4 mm, a dielectric constant of 
𝜀𝜀𝑟𝑟2
′ = 2.33, and a loss tangent of tan𝑗𝑗2 =

0.0012. The resulting cube, shown in Fig. 7, has 
uniaxial dielectric properties and isotropic 
magnetic properties. If the 𝐵𝐵 direction is chosen to 
be aligned perpendicular to the layer interfaces, 
then it is expected that 𝜀𝜀𝐴𝐴 and 𝜀𝜀𝐶𝐶  should be 
identical, but different from 𝜀𝜀𝐵𝐵 . The sample was 
constructed approximately 0.01 mm larger than 
the inner dimensions of the sample holder so that 
when inserted it would compress slightly and 
eliminate air gaps between the MUT and the 
sample holder walls. 

 𝜀𝜀𝐵𝐵 = � 1
𝜀𝜀𝑟𝑟2

− 𝜀𝜀𝑟𝑟1−𝜀𝜀𝑟𝑟2
𝜀𝜀𝑟𝑟1𝜀𝜀𝑟𝑟2

𝑡𝑡1
𝑡𝑡1+𝑡𝑡2

�
−1

 (44) 

𝜀𝜀𝐴𝐴 = 𝜀𝜀𝐶𝐶 = 𝜀𝜀𝑟𝑟2 + (𝜀𝜀𝑟𝑟1 − 𝜀𝜀𝑟𝑟2) 𝑡𝑡1
𝑡𝑡1+𝑡𝑡2

 (45) 

where 𝜀𝜀𝑟𝑟1 = 𝜀𝜀𝑟𝑟1
′ (1 − 𝑗𝑗 tan𝑗𝑗1) and 𝜀𝜀𝑟𝑟2 =

𝜀𝜀𝑟𝑟2
′ (1 − 𝑗𝑗 tan𝑗𝑗2). Using the board parameters 

gives 𝜀𝜀𝐵𝐵 = 2.95− 𝑗𝑗0.0038 and 𝜀𝜀𝐴𝐴 = 𝜀𝜀𝐶𝐶 = 4.47−
𝑗𝑗0.0081. Because of internal reflections, the 
results of [10] suggest deviations of up to 10% 
between these approximations and the values 
measured using the partially-filled waveguide. 
Also, the slight anisotropy of the boards 
themselves suggests that 𝜀𝜀𝐴𝐴 should differ slightly 
from 𝜀𝜀𝐶𝐶  [11]. 

 
 

Fig. 7. Layered cube constructed from alternating 
layers of Rogers substrates. 
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 The S-parameters of the uniaxial cube were 
measured 10 separate times, recalibrating between 
the measurements, and the material parameters 
were extracted using the 3-step procedure outlined 
in section III. The average values are shown in 
Figs. 8 and 9.  

 
Fig. 8. Relative permittivities (mean values) of the 
uniaxial cube extracted using 10 measurement 
sets. Inset shows 2-𝜎𝜎 confidence interval. 

 
Fig. 9. Relative permeabilities (mean values) of 
the uniaxial cube extracted using 10 measurement 
sets. Inset shows 2-𝜎𝜎 confidence interval. 

 
The results for 𝜀𝜀𝐴𝐴 and 𝜀𝜀𝐶𝐶  are slightly higher 

than predicted by the closed-form expression (36), 
while 𝜀𝜀𝐵𝐵  is very close to the predicted value. The 
extracted values of 𝜇𝜇𝑟𝑟  are all close to unity, as 
expected, since the cube is non-magnetic. Note 
that the variance between measurement sets is 
quite small, such that showing the error bars in the 
figures would be distracting. Instead, the smaller 
insets in the figures show 95% (2-𝜎𝜎) confidence 
intervals for portions of the data sets; these 
intervals are typical across the entire frequency 
range. 

The narrow confidence intervals suggest that 
noticeable variations in the extracted parameters 
are due to systematic errors, such as imperfect 
machining and alignment of the sample layers, or 
the presence of glue between sample layers, or air 
gaps between the sample and the waveguide walls, 
accentuated in certain frequency ranges by an ill-
conditioning of the extraction process. This can be 
observed as gaps in the data in the frequency range 
3 GHz - 3.15 GHz. There is amplified propagation 
of experimental uncertainties near frequencies 
where the sample is a half-wavelength long,  a 
problem inherent to all guided-wave techniques in 
which both permittivity and permeability are 
determined (including the Nicolson-Ross-Wier 
closed-form method for isotropic materials [12-
13]). Typically, the propagated error becomes so 
large that extraction is completely unreliable. This 
is a drawback of using a cubical sample holder, 
since the thickness of the material cannot be 
reduced below a half-wavelength. Experience has 
shown that a frequency range within 
approximately ±5% of the half-wavelength 
frequency should be avoided, and data within that 
range is not displayed in the figures, producing the 
observed gaps. It is possible, however, to 
interpolate the values of the parameters in the 
gaps. Figures 10 and 11 show the extracted 
parameters obtained by fitting a fifth-order 
polynomial to the data.  

 
Fig. 10. Extracted relative permittivities of the 
uniaxial cube fitted to a fifth-order polynomial. 
 
 The extracted values of permittivity and 
permeability are quite similar to those obtained 
using the reduced-aperture waveguide described in 
[4]. To provide a direct comparison, the material 
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parameters 𝜀𝜀𝐴𝐴 and 𝜀𝜀𝐵𝐵extracted using both methods 
are directly compared in Figs. 12 and 13, while a 
comparison for the parameter 𝜇𝜇𝐴𝐴 is shown in Fig. 
14. Results for the parameters 𝜀𝜀𝐶𝐶 , 𝜇𝜇𝐵𝐵 , and 𝜇𝜇𝐶𝐶  are 
quite similar. Note that the reduced-aperture 
waveguide technique also has difficulties near half 
wavelength frequencies, but because the 
propagation constants of the modes are different 
than those for the partially-filled guide, the gaps 
appear in the range 3.55 GHz - 3.75 GHz, and do 
not coincide with those of Figs. 8 and 9. This 
suggests that combining data from both techniques 
may ameliorate the half-wavelength issue. 

 
Fig. 11. Extracted relative permeabilities of the 
uniaxial cube fitted to a fifth-order polynomial. 

 
Fig. 12. Comparison of 𝜀𝜀𝐴𝐴  for the uniaxial cube 
extracted using the partially-filled waveguide 
technique and the reduced-aperture waveguide 
technique [4]. 

 
V. CONCLUSION 

 This paper introduces a method for measuring 
the electromagnetic properties of a biaxial material 

using a partially-filled rectangular waveguide. The 
proposed technique is validated using 
experimental data, and its accuracy is found to be 
commensurate with that of the reduced-aperture 
waveguide technique, without the need for a 
special sample holder, and with less worry about 
air gaps between the sample and the waveguide 
walls. The drawback to the method is the need for 
a more complicated theoretical analysis. A 
combination of both techniques may provide a 
means for overcoming the difficulties with 
accurately extracting the parameters near 
frequencies where the sample is a half wavelength 
in thickness. 

 

 
Fig. 13. Comparison of 𝜀𝜀𝐵𝐵  for the uniaxial cube 
extracted using the partially-filled waveguide 
technique and the reduced-aperture waveguide 
technique [4]. 

 
Fig. 14. Comparison of 𝜇𝜇𝐴𝐴 for the uniaxial cube 
extracted using the partially-filled waveguide 
technique and the reduced-aperture waveguide 
technique [4]. 
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