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Abstract ─ Method of moments (MoM) codes
have become increasingly capable and accurate for
predicting the radiation and scattering from
structures with dimensions up to several tens of
wavelengths.  In an earlier work, we presented a
network model (NM) algorithm that uses a Gauss-
Newton iterative nonlinear estimation method in
conjunction with a CARLOS-3D™ MoM model
to estimate the “as-built” materials parameters of a
target from a set of backscatter measurements.  In
this paper, we demonstrate how the NM algorithm,
combined with the basis pursuits (BP) ℓ1
minimization technique, can be used to locate
unknown defects (dents, cracks, etc.) on a target
from a limited set of RCS pattern measurements.
The advantage of ℓ1 minimization techniques such
as BP is that they are capable of finding sparse
solutions to underdetermined problems.  As such,
they reduce the requirement for a priori
information regarding the location of the defects
and do not require Nyquist sampling of the input
pattern measurements.  We will also show how the
BP solutions can be used to interpolate RCS
pattern data that is undersampled or has gaps.

Index Terms - ℓ1 minimization, method of
moments, RCS measurement.

I. INTRODUCTION
Recently, there has been an interest in the use

of computational electromagnetics (CEM)
prediction codes to improve the quality, efficiency,
and utility of RCS measurements.  This is
especially true at lower frequencies (electrically
small targets) where multiple interactions and

narrow bandwidths limit the effectiveness of ISAR
imaging for mitigation of measurement errors such
as multipath and/or target support contamination
or the detection of defects or changes on a target.
Furthermore, these CEM-aided measurement
techniques have applications beyond those of
conventional imaging, including estimating the as-
built values of surface impedances, near field-to-
far field transformation, and interpolating RCS
pattern data that is undersampled or has gaps.

Over the last several years, IAI staff have
developed a specific implementation of a CEM-
aided measurement technique known as the
network model (NM) algorithm [1].  The NM
algorithm is a model-based estimation technique
that uses a full-wave method of moments (MoM)
CEM code to predict the induced currents on the
structure and associated radiated/scattered field
patterns as part of the estimation process (although
it can be extended in principle to other types of
rigorous CEM codes).  As such, the algorithm
includes both single and multiple interactions and
is applicable to both convex and concave shaped
targets. The NM algorithm has been used in the
past to mitigate illumination and multipath errors
[2], [3] and to estimate the “as-built” equivalent
surface impedance of non-PEC features and/or
treatments of a target from a set of backscatter
(RCS) measurements [4].

In this paper, which is an expansion of our
2012 AMTA Proceedings paper [5], we apply the
NM algorithm to the problem of RF target
diagnostics.  Specifically, we  demonstrate how
the NM algorithm, combined with the basis
pursuits (BP) ℓ1 minimization technique, can be
used to locate unknown defects (dents, cracks,
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etc.) on a target from a limited set of RCS pattern
measurements.  The advantage of ℓ1 minimization
techniques such as BP is that they are capable of
finding sparse solutions to underdetermined
problems.  As such, they reduce the requirement
for a priori information regarding the location
and/or characteristics of the defects and do not
require Nyquist sampling of the input pattern
measurements.  The fact that NM algorithm does
not require specific knowledge or models of the
defects makes it more generally applicable than
methods where a “library” of one or more defect
models is required (see, for example, the method
described earlier in this journal [6]).  We will also
show how the BP solutions can be used to
interpolate RCS pattern data that is undersampled
or has gaps.

In Section II of this paper, we derive the
iterative network model (NM) algorithm and
briefly discuss its convergence properties.
Section III provides numerical simulations of its
performance for a simple canonical RCS shape
using the CARLOS-3D™ MoM code [7].  The
paper  concludes  with  a  summary  and  list  of
references in Sections 0 and V, respectively.

II. NETWORK MODEL ALGORITHM
FORMULATION

The network model (NM) algorithm is a
model-based technique for bringing a method-of-
moments (MoM) scattering prediction into
agreement with a corresponding set of
measurements [1]-[5].  The formulation of the NM
algorithm begins with the familiar matrix equation
that arises in all MoM prediction codes [8],
namely

( ) vjηZ = , (1)

Here, Z is the target impedance matrix, written
explicitly as a function of a vector of target model
parameters η, j is the vector of coefficients for the
basis functions used to represent the induced
(electric and magnetic) currents on the target, and
v is the vector of excitation coefficients used to
represent the incident field on the target. We will
assume throughout that the incident field is a plane
wave with a given polarization and direction of
incidence (i.e., far-field illumination), but the
derivation presented herein can be
straightforwardly extended to arbitrary scattering
and/or radiation measurements in the near or far

field. Note that all of the quantities in Eq. (1) are
implicit functions of frequency f.

Given the incident field and a model for the
target geometry and its associated materials
parameters, the MoM code computes Z and v and
then solves Eq. (1) to find j, viz.

( ) ( )vηYvηZj == -1 , (2)

where Y is the MoM admittance matrix for the
target.

Now consider a vector of measurements s and
MoM predictions sp of the target's far-field (FF)
scattering pattern at set of M observation angles
and polarizations.  The units of s and sp are defined
such that the magnitude squared of any element is
equal to the FF target RCS.  From Eq. (2), the
MoM prediction at the mth observation angle and
polarization can be written as

( ) ( ) ( ) m
T
mm

T
m

T
mpms vηZrvηYrjrη 1-=== , (3)

where rm is a (known) radiation vector relating the
induced current to the far-field scattering pattern,
and T denotes the matrix transpose.  In general,
this  is  not  the  same  as  the mth measurement sm,
even under error-free measurement conditions.
This is because the MoM model for the target is
never perfect.  To that end, the vector η
corresponds to a set of N parameters that are
chosen to represent the sources of the differences
between the target measurements and its MoM
model predictions. For obvious reasons, we will
refer to these as Z-parameters.

In its most general form, the network model
seeks to estimate a set of N Z-parameters η that
brings the MoM scattering predictions sp into
satisfactory agreement with the scattering
measurements s:

( ) ( ) Mmss m
T
mpmm ,...,1,1 ==» - vηZrη , (4)

subject to constraints on the allowable solutions η.
This is a (constrained) nonlinear system of M
equations and N unknowns.

Inasmuch as it is reasonable to assume the
initial MoM predictions are not grossly in error, a
solution to Eq. (1) can be found using one of many
standard gradient-based iterative techniques.  In
particular, we use a modified Gauss-Newton
method, wherein at the kth iteration, Eq. (1) is
expanded in a first-order Taylor series about the
current values η(k) of the Z-parameters;
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)()()( kkkp ηGss D+» , (5)

where ( ))()( kpkp ηss = are the current values of the
MoM scattering predictions, and G(k) is the
Jacobian matrix whose elements are given by

( ) ( ) ( ) mkknk
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with

( ) ( )
n

n h¶
¶

=
ηZηQ . (7)

A solution Δη(k) is then found that satisfies the
linear system of equations (5) to within some
acceptable value in a least squares sense, viz.

)(2)()()( kkkk e<D-D ηGs , (8)

subject to the constraints on the allowable
solutions, where Δs(k) = s − sp(k).   This  is  used  to
update the MoM model Z-parameters according to

( ))()()1( kkCk ηηη D+=+ bP , (9)

where 0 < β ≤ 1 to control the step size of the
update and PC is a projection onto any constraints.
The process is then repeated until acceptable
agreement between the measurements s and
predictions sp is achieved.

In general, the performance of the NM
algorithm will depend on the number of unknown
Z-parameters N relative to the number of
independent measurements M.  This is evident in
the fact that linear system in Eq. (5) consists of M
equations and N unknowns. Historically, model-
based estimation algorithms require M > N for
good performance, because in that case the
resulting system of equations is well-posed and
stable and can be solved using standard (e.g., least
squares) techniques. Unfortunately, in many
applications, the number of measurements M is
either limited or we seek to reduce it.  Similarly, in
order to ensure that the NM algorithm is robust
with respect to the how the "as-built" measured
target and its numerical model differ, we want to
work in situations where the number of Z-
parameters N is  large.   This  is  because  we  don't
want to assume that we know a priori where the
discrepancies between the model and the target lie.
It  is  therefore  very  likely  that  we  will  be  faced
with an underdetermined problem (M < N) whose
solution is not just ill-posed, but in fact non-

unique.  In this case, it is necessary to impose
constraints and/or conditions upon the allowable
solution in order to stabilize ("regularize") the
linear system solver.

Two common regularization methods involve
minimizing, or at least bounding, the ℓ2 or  ℓ1
norms of the solution.  Each results in a solution
with very different characteristics.  For the
underdetermined problem, ℓ2 minimization solvers
produce solutions that tend to be "spread out"
across all of the unknowns. Conversely, ℓ1
minimization solvers (such as BP) produce
"sparse" updates where a smaller fraction of the
unknowns are significant.

It follows that for the purposes of locating
defects (cracks, gaps, dents, bumps) on a target, an
ℓ1 minimization solver may be the better choice
because while the locations of the defects aren't
known, it is likely that there will be a relatively
small  number  of  them.   (Of  course,  it  is  always
good to incorporate a priori information about
possible defect locations if available in order to
keep the number of Z-parameters required to
model  them  at  a  minimum.)   ℓ1 minimization is
also more likely to provide a more compact (better
resolved) estimate of the defects’ location, thereby
helping to overcome the limited resolution typical
of low frequency measurements.

We  chose  the  MATLAB  code  SPGL1  [9]  as
the  ℓ1 minimization linear system solver for the
NM algorithm. This code achieves ℓ1
minimization by solving the basis pursuits (BP)
denoising problem, which is characterized as

e<D-DD
D 21

..min ηGsη
η

ts , (10)

where ε is the desired accuracy of the linear
solution at each Gauss-Newton iteration (see Eq.
(1)). In order to accomplish this, the SPGL1 code
uses a recasting of Eq. (10) known as the LASSO
problem, which is defined as

t<DD-D
D 12

..min ηηGs
η

ts . (11)

SPGL1 begins with a small τ (typically zero), and
with repeated iterations determines a Δη which
satisfies Eq. (11).  If this solution does not satisfy
Eq. (10), τ is increased and the iterations are
repeated.

Note that these BP iterations form an inner
loop inside the NM Gauss-Newton iterations.  In
the current NM implementation of the SPGLI
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code, the BP loop is stopped at the current value of
τ when Eq. (11) is satisfied without having to
refine the value of Δη.

III.NETWORK MODEL SIMULATIONS
Numerical simulations of the NM algorithm

defect detection performance were conducted
using the EMCC version of the CARLOS-3D™
MoM code [7].  The code was modified to provide
the matrices and vectors required to implement the
NM algorithm Gauss-Newton iterations.

The structure used in the simulations was a
20” version of the PEC NASA almond target [10].
Two versions of the almond were created: a
pristine “showroom” version with no defects
which was used as the initial  model for the MoM
predictions, and an “slightly used” version with
four defects that was used as the source of the
“measured” data.  Two of the defects (bump and
edge dent) were relatively small and the other two
(gouge and large dent) were relatively large.  Fig.
1 and Fig. 2 show the meshes used in the MoM
simulations of the two versions of the almond.

Far-field backscatter data for both versions of
the almond were generated using the CARLOS-
3D™ code for all three polarizations (qq, ff, and
qf = fq) along five 360° azimuth cuts in 1°
increments about the almond at frequencies of 3,
3.5, 3.7, and 4 GHz.  The cuts were at elevations
ranging from q = −20° to +20° in 10° increments,
where 0° elevation is defined as the plane of
symmetry intersecting the side of the almond.

Data from three of the “slightly used” almond
target azimuth cuts (q = −20°, 0°,  +20°) were
provided to the NM as the “measured” data s.  The
corresponding cuts for the  “showroom” target
were provided to the NM as the predicted data sp.

In order to model the defects without having
to perturb the shape of the “showroom” almond
target, each of its facets was allowed to have
unknown impenetrable complex-valued surface
impedance.  These impedance values comprised a
total of N = 8000 unknown Z-parameters η which
the NM estimated in order to bring the MoM
predictions into agreement with the measurements.
While only an approximation to the true defects,
this choice of Z-parameters allowed the
derivatives Q in Eq. (7) to be computed efficiently
and in closed form.  The initial values of the Z-

parameter facet impedances for the “showroom”
target were taken to be zero Ohms/square (PEC).

The NM impedance estimates were used then
to locate the defects and predict the backscatter
data at the other two elevations (q = −10°, +10°).

Fig. 1. MoM mesh for the “showroom” version of
the 20” almond target (no defects).

Gouge

Bump

Large Dent

Edge Dent

Top View

Side View

Bottom View

Fig. 2. MoM mesh for the “slightly used” version
of the 20” almond target showing the four defects.

A. Single Frequency Defect Detection
Fig. 3 shows the absolute value of the

estimated surface impedances found by the NM
algorithm using the SPGL1 ℓ1 minimization linear
system  solver  using  “measured”  data  at  only  a
single frequency (4 GHz).  The total number of
independent measurements (based on Nyquist) for
this case was M =  255.  The estimates that differ
substantially from zero (PEC) show a good
correlation with the defect locations for the two
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small defects (bump and edge dent).  For the large
dent defect, the NM estimates tend to correlate
with its boundary rather than the entire extent of
the defect.  Finally, for the gouge defect, the non-
zero NM impedance estimates correlate well with
the defect location, but there are also a pair of

additional “false alarm” artifacts adjacent to the
gouge defect.  These are likely due to the fact that
we are using a surface impedance to approximate
the defect, combined with using only single
frequency data for the estimates.

|η| (Ohms)

Gouge

Bump

Large DentEdge Dent

Top View

Side View

Bottom View

Fig. 3. Defects on the “slightly used” version of the almond target (left) compared to the BP  single-
frequency NM estimates of the facet surface impedances on the “showroom” version of the target (right).

Fig. 4 compares the NM estimates of the facet
surface impedances obtained using the BP ℓ1
minimization linear system solver to those
obtained using a more traditional ℓ2 minimization
linear system solver, namely singular value
decomposition (SVD).  The estimates from each
solver  have been normalized to their respective
peak values in order to better compare the two
results.   The  figure  clearly  shows  how  ℓ1
minimization results in a more sparse and
localized estimate of the defect locations.  It is
worth noting the in both cases, the estimated
impedances were almost purely reactive.  This is
not surprising because the defects do not contain
any ohmic losses.

B. Multiple Frequency Defect Detection
In an attempt to reduce the “false alarm”

artifacts in the NM impedance estimates, the
results in Section III.A were repeated using the
“measured” data at the other three frequencies
(3.0, 3.5, and 3.7 GHz).  The impedance estimates
for all four frequencies were then averaged.  The
idea is that the false alarm artifacts will be

uncorrelated with one another with sufficiently
large changes in frequency.

Fig. 5 shows the absolute value of the
averaged impedance estimates obtained from both
the BP and SVD solvers.  The results for each are
shown on a scale that is normalized to the peak
value of their respective averaged impedances.
When compared to the 4 GHz single frequency
estimates in Fig. 4, the results in Fig. 5 show that
averaging the impedance estimates from multiple
frequencies has reduced some of the artifacts,
particularly for the SVD solver.  That said, there
remains a single, relatively large “false alarm”
artifact associated with the gouge defect.  In
addition, frequency averaging does not appear to
have substantially improved the detection of the
large dent defect.  It may be possible to improve
the false alarm rejection by combining the
multiple frequency results through some other
method than averaging, such as M-out-of-N
detection.  Even better performance is potentially
achievable by using all the frequencies jointly in
the impedance estimation process.
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Top View

Side View

Bottom View

ℓ1 Minimization (BP) ℓ2 Minimization (SVD)

|η|/|η|max
1.0

0.5

0

Fig. 4. Comparison of the BP (left) and SVD (right) single-frequency NM estimates of the facet surface
impedances on the “showroom” version of the almond target.  (Note that the  images of the SVD results
have been corrected from the original versions our AMTA paper [5].)

Top View

Side View

Bottom View

ℓ1 Minimization (BP) ℓ2 Minimization (SVD)

|η|/|η|max
1.0

0.5

0

Fig. 5. Comparison of the BP (left) and SVD (right) frequency-averaged NM estimates of the facet
surface impedances on the “showroom” version of the almond target.
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C. Missing Data Interpolation
The single-frequency (4 GHz) NM impedance

estimates were used to predict the RCS cuts of the
“slightly used” target at the three “measured” and
at two "unmeasured" elevation cuts.  Plots of the
mean RCS of the initial and final NM prediction
error versus elevation angle for each of the five
azimuth cuts are shown in Fig. 6, with the results
from BP on the left and from SVD on the right.
The prediction error is defined as the coherent
difference between the “measured”  data  for the
“slightly used” target and the MoM predictions for
the “showroom” target.

Fig. 6. Mean RCS versus elevation angle of the
initial (dashed) and final (solid) NM prediction
error obtained using the single-frequency (4 GHz)
BP (top) and SVD (bottom) impedance estimates.

The plots show that the NM with BP solver
has reduced the prediction error by 5-7 dB for qq
polarization and 15-20 dB for ff polarization over
the three azimuth cuts (q = −20°, 0°, +20°) used to
estimate the surface impedances.  The
corresponding reductions using the SVD solver are

greater (10-15 dB for qq polarization and 20-25
dB for ff polarization).  When one considers the
two azimuth cuts (q = −10°, +10°) that the were
not part of the original “measured” data, the
reductions are roughly the same as the measured
cuts in qq polarization over for both solvers.  On
the other hand, the reductions are less in ff
polarization, with BP performing 1-3 dB better
than SVD.

IV. CONCLUSION
We have demonstrated the application of the

iterative network model algorithm, combined with
the basis pursuits (BP) ℓ1 minimization technique,
to the problem of locating unknown defects (dents,
cracks, etc.) on a target from a limited set of RCS
pattern measurements.  The defects were modeled
using an effective surface impedance.  Numerical
simulations of the NM algorithm performance
were presented for the NASA almond target using
the CARLOS-3D™ MoM code.  The results
showed that the use of a BP ℓ1 minimization solver
did a significantly better job of locating defects on
the target relative to the more conventional ℓ2
minimization (SVD) solver using data at a single
frequency, although some artifacts were still
present in the latter.  Averaging the results from
multiple frequencies further reduced the artifacts
for both solvers.  The results also showed that the
estimated surface impedances could be used to
accurately predict the target RCS at angles that
were not part of the measured data.

As mentioned earlier, the approach described
herein can be easily extended to include both near
field and far field target measurements, so long as
the near target illumination is known and can be
modeled in the MoM code.  An efficient technique
for incorporating the illumination from an
arbitrary antenna in MoM predictions is described
in [11].

In future work, we plan on developing a
parametric model for the frequency dependence of
the defects that would allow us to use multiple
frequencies jointly in the NM Gauss-Newton
estimation algorithm.  We expect this approach to
work better for reducing false alarm artifacts
relative to averaging the estimates obtain from
applying the NM to each frequency individually.
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