
Phi Coprocessor Acceleration Techniques for Computational
Electromagnetics Methods

Xiaoling Yang and Wenhua Yu

2COMU, Inc.
4031 University Dr., Suite 100, Fairfax, VA 22030, USA

ybob@2comu.com, wenyu@2comu.com

Abstract ─ In this paper, we introduce the
architecture of Intel Xeon Phi coprocessor,
programming and acceleration techniques in the
computational electromagnetic methods. This
paper describes how to develop the acceleration
codes based on the Intel Xeon® Phi coprocessors
in the parallel format for general computational
electromagnetics methods. We also present
management of the cores and threads in the Intel
Xeon Phi coprocessors to accelerate
computational electromagnetics simulations. The
Intel Phi coprocessor can be used as a regular
CPU and shares the same source codes for Intel
Xeon E3 and E5 CPUs with a different
compilation option. The examples shown here are
for acceleration of the parallel FDTD methods.
The Intel Xeon Phi coprocessor is not a GPU and
is a general hardware acceleration simulation
platform.

I. INTRODUCTION
Intel Xeon Phi coprocessor is a general

numerical acceleration platform, which can be
used to accelerate the computational
electromagnetics methods such as FDTD [1-4],
FEM [5], MoM [6], and so on. The Intel Xeon Phi
coprocessor (price from $1,600 to $4,500)
includes 60 compute cores, four hardware threads
per core, two pipelines, 512-bit SIMD
instructions, 32 512-bit wide vector registers
which hold 16 singles or 8 doubles, up to 16 GB
16-channel GDDR5 RAM, and 320 GB/s
memory bandwidth. One motherboard can hold
maximum four Intel Xeon Phi coprocessors, as
shown in Fig. 1.

A Phi coprocessor card can be handled as a

Linux node, and each one has an on-board flash
device that loads the coprocessor OS (Operating
System) on boot and can be monitored by an
optional cluster monitoring software Ganglia
(http://ganglia.info/) [7,8], as shown in Fig. 2.
The Phi coprocessor programming uses the Intel
MIC (Many Integrated Core) instructions. One
code can be executed on the host CPU, on both
the host CPU and Phi coprocessor at the same
time, or on the Phi coprocessor only that is totally
different from GPU, as shown in Fig. 3.

Fig. 1. Intel Xeon Phi coprocessor and cluster
artwork (www.intel.com) Copyright©Intel.

1054-4887 © 2014 ACES

Submitted On: March 10, 2014
Accepted On: August 8, 2014

1013 ACES JOURNAL, Vol. 29, No. 12, DECEMBER 2014

Fig. 2. Intel Xeon Phi coprocessor architecture
(www.intel.com) Copyright©Intel.

Fig. 3. Code processing with the host CPU and
Phi coprocessor (www.intel.com) Copyright©Intel.

II. CODE DEVELOPMENT
TECHNIQUES

The code processing on the Phi coprocessor
has four levels; namely, card level, core level,
thread level and vector unit level. The code
excitation can be assigned to different cards,
cores, threads and vector units, as shown in Fig.
4. We use the parallel FDTD method to
demonstrate how to develop the parallel code on
the Phi coprocessor. If the storage of a 3-D array
in the memory is continuous along the z-direction,
we divide the data into 60 blocks in the x-y plane,
which is equal to the number of cores in the Phi
coprocessor. Select one column in an individual
block and assign it to two threads, all cores will
be coalesced and each thread will work on one-
half column of the selected data. The vector unit
will work on 16 adjacent data at the same time

and generate 16 results in each cycle. The job
assignment procedure is shown in Fig. 5.

Fig. 4. A sample core processing on the Intel
Xeon Phi coprocessor.

(a) Job assignment for threads on Phi coprocessor

(b) Job assignment strategy on Phi coprocessor

Fig. 5. Job assignment method for the parallel
FDTD method.

#pragma omp target device(0)

#pragma omp teams num_teams (60) num_threads (4)

{

pragma omp distribute

for (int i = 0; i < 2048; i++)

{

#pragma omp parallel for

for (int j = 0; j < 512; j++)

{

pragma omp simd

for (int k=0; k<32; k++)

{

foo(i,j,k);

}

}

}

}

Cores

Cards

Threads

Vector units

Core ThreadThread

120 threads

E/H(i, j, Nk)

E/H(i, j, 0)

Z

Core 1
Core 2

Core 60

Core 59

Core n

Vector 1

V
e
c

to
r u

n
its

1
6
 fie

ld
s

1
6
 fie

ld
s

1
6
 fie

ld
s

1
6
 fie

ld
s

1
6
 fie

ld
s

Vector 2

Vector n
Thread 1
Thread 2

Thread 120

Thread 119

Thread n

Thread n-1

YANG, YU: PHI COPROCESSOR ACCELERATION TECHNIQUES FOR COMPUTATIONAL ELECTROMAGNETICS 1014

In both the Finite Element Method (FEM)
and the Method of Moments (MoM), solving
matrix equations is most time consuming. Now,
we investigate how to use the Phi coprocessor to
calculate the multiplication of two matrixes. We
begin with the following equation:

mlnmnl BAC � , (1)
where Cnl, Anm and Bml are matrixes and the
subscripts indicate the number of rows and
columns of the corresponding matrixes. If we
define a 1-D array and map the 1-D array to a 2-
D array that is used to allocate memory for the
matrixes in (1), one matrix with 5×3 elements can
be mapped from a 1-D array with 15 elements, as
shown in Fig. 6. It is obvious from Fig. 6, that the
data of the matrix C is continuous along its row
index m.

If we follow the idea described above to
allocate the matrixes A and B, the column of
matrix B will not be continuous, in turn, the
multiplication operation of the matrixes A and B
is very low efficient. It is a well-known fact that
we need to make a transpose of B to speed up the
matrix multiplication. If we calculate the matrix
multiplication on the Phi coprocessor, it is
observed that the calculation for the smaller A and
B is much faster than the larger A and B. This
happens because the elements of smaller A and B
can be held in the cache to increase the cache hit
rate. The cache hit rate becomes lower when the
matrixes A and B become larger.

Fig. 6. Mapping relationship from a 1-D array to
a 2-D array.

Now we use the following pseudo-code to
explain the programming techniques on the Phi
coprocessor. A 5110P Phi coprocessor includes
60 cores and 240 hardware threads. We need to

use OpenMp to split the task to smaller pieces
based on the number of threads (nThreads=240
for 5110P Phi model). We split the matrix A to be
the nn×mm blocks and the matrix B to be the
mm×ll blocks so that the matrix C to be the nn×ll
blocks. The block size of the matrix C is 16×16;
the block size of the matrix A is 16×64 and the
block size of the matrix B is 64×16. It ensures that
the data is continuous in memory. The index k
(the column of matrix A and row of matrix B) is
normalized by 16 based on the 512-bit SIMD
instruction and the constant nBlockSizeBySIMD
is 4 in this case for the better code performance.

Code segment; use the standalone format and run
the code on Phi:
#pragma omp parallel for
//Use OpenMP on Phi coprocessor
for (iThread=0; iThread<nThreads;
iThread ++) {
//240 hardware threads
for (t=iThread; t<nn * ll; t+=nThreads)
{
//t is block index
for (k=0; k<mm * nBlockSizeBySIMD;
k+=nBlockSizeBySIMD) {
//k is the column index of matrix A and the row index of
//matrix B counted by SIMD width
for (i=i0; i<i1; i ++) {
//i0(t) and i1(t) are index in matrix for the tth block
for (j=j0; j<j1; j ++) {
//j0(t) and j1(t) are index in matrix for the tth block
v=_mm512_set1_ps(0.0);
//initialize the variable v
v=_mm512_fmadd_ps(vA[i][k],vB[j][k],v);
//calculate A(i,k)*B(j,k) + v
v=_mm512_fmadd_ps(vA[i][k+1],
vB[j][k+1], v);
//calculate A(i,k+1)*B(j,k+1) + v
v=_mm512_fmadd_ps(vA[i][k+2],
vB[j][k+2], v);
//calculate A(i,k+2)*B(j,k+2) + v
v=_mm512_fmadd_ps(vA[i][k+3],
vB[j][k+3], v);
//calculate A(i,k+3)*B(j,k+3) + v
C[i][j] +=_mm512_reduce_add_ps(v);
// Summate elements of the vector v and add to C[i][j]
 }
 }
 }
 }
}

For two matrixes A and B with 2048×2048
elements, the perfromance of the solving matrix
without the domain decomposition technique on
an Intel Xeon E5 2640 v2 Ivy-Bridge CPU is 0.63
seconds, but the perfromance with the domain

l=3

n =5

c[0]
C00

c[5]
C01

c[10]

C02

c[1]

C10

c[6]

C11

c[11]
C12

c[2]

C20

c[7]

C21

c[12]
C22

c[3]
C30

c[8]

C31

c[13]
C32

c[4]

C40

c[9]

C41

c[14]

C42

1015 ACES JOURNAL, Vol. 29, No. 12, DECEMBER 2014

decomposition technique on the same CPU is 0.4
seconds. The perfromance of the solving matrix
with the domain decomposition technique on the
Intel Xeon Phi Coprocessor 5100P is 0.15
seconds.

III. NUMERICAL RESULTS
In this section, we use the parallel FDTD

code based on the Phi coprocessor to demonstrate
the performance of the Phi coprocessor. The host
computer incudes two Intel Xeon E5-2640 v2
CPUs with 32 GB DDR3 RAM and one 5110P
Phi coprocessor is mounted on the host through a
PCI-16 slot. The Phi coprocessor is installed with
8 GB GDDR5 RAM. We use a typical example,
an empty box truncated by the PEC boundary, to
demonstrate the performance of the Phi
coprocessor. The problem size we first test is 1.29
GB and the performance is 1,200 million cells per
second. The performance on a single Phi card can
be easily achieved to 1,200 million cells per
second and the performance increases to 1,350
million cells per second when the problem size
increases to 7.2 GB, as shown in Fig. 7.

Fig. 7. Performance of the 5110P Phi coprocessor
for the parallel FDTD code with the regular size
of problems.

In the MIC instruction set, a single
instruction allows us to perform a multiplication
and one addition; for example, we have three
variables A, B and C, the result of multiplication
A and B and then addition with C can be reached
by on operation in the MIC instruction:

(2)
The feature in (2) is called FMA (Fused

Multiply-Add) in the MIC instruction. We

demonstrate the performance of Phi coprocessor
for the small problems such as 0.2 million cells
and check the performance of the FMA feature on
the FDTD code. The result is plotted in Fig. 8,
and we cannot observe the performance down
significantly for the small problems and the
performance improvement from the FMA feature
neither from Fig. 8.

Fig. 8. Performance of the 5110P Phi coprocessor
for the parallel FDTD code with the small size of
problems.

IV. CONCLUSIONS
Intel Xeon Phi coprocessor is used to

accelerate the electromagnetic simulations using
its many core architecture and 512-bit vector
units. Unlike the GPU acceleration, the Intel
Xeon Phi coprocessor acceleration is more
general and supports OpenMp. If a source code is
compiled on an Intel Xeon E3 or E5 CPU, it can
be run directly on a Phi coprocessor with a
compilation option “-mmic”.

REFERENCES
[1] A. Taflove and S. Hagness, “Computational

electromagnetics: the finite-difference time-
domain method,” 3rd ed., Artech House, Norwood,
MA, 2005.

[2] W. Yu, X. Yang, Y. Liu, et al., “Parallel finite-
difference time-domain method,” Artech House,
Norwood, MA, 2006.

[3] W. Yu, X. Yang, and W. Li, “VALU, AVX, GPU
acceleration techniques for parallel finite
difference time domain methods,” SciTech
Publisher Inc., Raleigh, NC, 2013.

[4] A. Elsherbeni and V. Demir, “The finite
difference time domain method for
electromagnetics: with MATLAB simulations,”
SciTech Publisher Inc., Raleigh, NC, 2009.

0

200

400

600

800

1000

1200

1400

27 36 48 64 80 100 125 150

Pe
rfo

rm
an

ce
 (M

ce
lls

/s
ec

)

Problem size (Mcells)

7.2GB
1.29GB 3.07GB

P
e
rf

o
rm

a
n
ce

 (
M

ce
lls

/s
e
c)

Problem size (Mcells)

With FMA

Without FMA

YANG, YU: PHI COPROCESSOR ACCELERATION TECHNIQUES FOR COMPUTATIONAL ELECTROMAGNETICS 1016

[5] J. M. Jin, “The finite element method in
electromagnetics,” (2nd edition), New York: John
Wiley & Sons, 2002.

[6] A. Peterson and R. Mittra, “Computational
methods for electromagnetics,” Wiley-IEEE Press,
1997.

[7] “Intel® Xeon Phi™ coprocessor: system software

developers guide,” http://www.intel.com/
content/www/us/en/processors/xeon/xeon-phi-
coprocessor-system-software-developers-
guide.html.

[8] “Intel® Manycore platform software stack,”
http://registrationcenter.intel.com/irc_nas/3988/
MPSS_Users_Guide.pdf.

Xiaoling Yang graduated from
Tianjin University, China with
B.S. in Applied Mathematics and
B.E. in Electric Engineering in
2001 and M.S. in Applied
Mathematics in 2004. After that,
he joined the Electromagnetic
Communication Lab of

Pennsylvania State University for several years as
Research Associate. He has published over twenty
conference and journal papers and co-authored four
books in computational electromagnetics field. He
also served as Reviewer for multiple conferences and
journals. He was elevated as IEEE senior member in
2010. His research interests includes FDTD and FEM
methods, parallel computing, hardware acceleration
(GPU and Phi), 3-D modeling and visualization.

Wenhua Yu is Tepin Professor
of Jiangsu Normal University,
the President of 2COMU, Inc.
and a Visiting Professor of
Harbin Engineering University.
He is the Director of Big-Data
Analysis and Processing Key Lab
of Jiangsu Province. He was a

Visiting Professor/Research Associate of
Pennsylvania State University from 1996 to 2010. He
has worked on the topics related to FDTD methods,
software development techniques, high performance
computing techniques, and engineering applications
for many years, first time applied the vector units and
Phi coprocessors to solve electromagnetic problems,
and has published more than 150 technical papers on
the parallel FDTD methods and simulation techniques.
He also authored Conformal Finite Difference Time
Domain Maxwell’s Equations Solver Software and
User’s Guide (Artech House, 2003), Parallel Finite

Difference Time Domain Methods (Artech House,
2006), Electromagnetic Simulation Techniques Based
FDTD Methods (John Wiley & Sons, 2009),
Advanced FDTD Method: Acceleration,
Parallelization, and Engineering Applications (Artech
House, 2011), and VALU Acceleration Techniques
for Parallel FDTD Methods (IET/SciTech Publisher,
2013), Advanced Computational Electromagnetics
Methods and Applications (Editor, Artech House,
2014), and three books in Chinese (2005, 2010, 2012).
He also translated one book (from English to Chinese)
Understanding the Finite Difference Time Domain
Method (John B. Schneider, Washington State
University) (Tsinghua University Press, 2014). He is
the General Co-Chair of several international
conferences on the topic of computational
electromagnetics, antennas and microwave circuits.
He is a Lead Guest Editor of the Journal of
International Antennas and Propagation on special
issue “Small Antennas: Miniaturization Techniques
and Applications.” He is the member of technical

committee of several international journals and a
Guest Editor of special issue of Harbin University
Workshop of Journal of Applied Computational
Electromagnetics Society. He is a TPC Co-Chair of
2014 International Conference on Wireless
Communications and Signal Processing. He is a senior
member of IEEE and a primary developer of the
GEMS software package. He is also the founder of
Global Chinese Electromagnetic Network
(www.globalchineseEM.org).

1017 ACES JOURNAL, Vol. 29, No. 12, DECEMBER 2014

