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Abstract ─ In this paper, we introduce the 
architecture of Intel Xeon Phi coprocessor, 
programming and acceleration techniques in the 
computational electromagnetic methods. This 
paper describes how to develop the acceleration 
codes based on the Intel Xeon® Phi coprocessors 
in the parallel format for general computational 
electromagnetics methods. We also present 
management of the cores and threads in the Intel 
Xeon Phi coprocessors to accelerate 
computational electromagnetics simulations. The 
Intel Phi coprocessor can be used as a regular 
CPU and shares the same source codes for Intel 
Xeon E3 and E5 CPUs with a different 
compilation option. The examples shown here are 
for acceleration of the parallel FDTD methods. 
The Intel Xeon Phi coprocessor is not a GPU and 
is a general hardware acceleration simulation 
platform. 

I. INTRODUCTION 
Intel Xeon Phi coprocessor is a general 

numerical acceleration platform, which can be 
used to accelerate the computational 
electromagnetics methods such as FDTD [1-4], 
FEM [5], MoM [6], and so on. The Intel Xeon Phi 
coprocessor (price from $1,600 to $4,500) 
includes 60 compute cores, four hardware threads 
per core, two pipelines, 512-bit SIMD 
instructions, 32 512-bit wide vector registers 
which hold 16 singles or 8 doubles, up to 16 GB 
16-channel GDDR5 RAM, and 320 GB/s 
memory bandwidth. One motherboard can hold 
maximum four Intel Xeon Phi coprocessors, as 
shown in Fig. 1. 

A Phi coprocessor card can be handled as a 

Linux node, and each one has an on-board flash 
device that loads the coprocessor OS (Operating 
System) on boot and can be monitored by an 
optional cluster monitoring software Ganglia 
(http://ganglia.info/) [7,8], as shown in Fig. 2. 
The Phi coprocessor programming uses the Intel 
MIC (Many Integrated Core) instructions. One 
code can be executed on the host CPU, on both 
the host CPU and Phi coprocessor at the same 
time, or on the Phi coprocessor only that is totally 
different from GPU, as shown in Fig. 3. 

Fig. 1. Intel Xeon Phi coprocessor and cluster 
artwork (www.intel.com) Copyright©Intel. 

1054-4887 © 2014 ACES

Submitted On: March 10, 2014
Accepted On: August 8, 2014

1013 ACES JOURNAL, Vol. 29, No. 12, DECEMBER 2014



Fig. 2. Intel Xeon Phi coprocessor architecture 
(www.intel.com) Copyright©Intel. 

Fig. 3. Code processing with the host CPU and 
Phi coprocessor (www.intel.com) Copyright©Intel. 

II. CODE DEVELOPMENT 
TECHNIQUES 

The code processing on the Phi coprocessor 
has four levels; namely, card level, core level, 
thread level and vector unit level. The code 
excitation can be assigned to different cards, 
cores, threads and vector units, as shown in Fig. 
4. We use the parallel FDTD method to 
demonstrate how to develop the parallel code on 
the Phi coprocessor. If the storage of a 3-D array 
in the memory is continuous along the z-direction, 
we divide the data into 60 blocks in the x-y plane, 
which is equal to the number of cores in the Phi 
coprocessor. Select one column in an individual 
block and assign it to two threads, all cores will 
be coalesced and each thread will work on one-
half column of the selected data. The vector unit 
will work on 16 adjacent data at the same time 

and generate 16 results in each cycle. The job 
assignment procedure is shown in Fig. 5. 

Fig. 4. A sample core processing on the Intel 
Xeon Phi coprocessor. 

(a) Job assignment for threads on Phi coprocessor 

(b) Job assignment strategy on Phi coprocessor 

Fig. 5. Job assignment method for the parallel 
FDTD method. 

#pragma omp target device(0)

#pragma omp teams num_teams (60) num_threads (4)

{

# pragma omp distribute 

for (int i = 0; i < 2048; i++) 

{

#pragma omp parallel for  

for (int j = 0; j < 512; j++) 

{

# pragma omp simd

for (int k=0; k<32; k++) 

{

foo(i,j,k);

}

}

}

}
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In both the Finite Element Method (FEM) 
and the Method of Moments (MoM), solving 
matrix equations is most time consuming. Now, 
we investigate how to use the Phi coprocessor to 
calculate the multiplication of two matrixes. We 
begin with the following equation: 

mlnmnl BAC � , (1) 
where Cnl, Anm and Bml are matrixes and the 
subscripts indicate the number of rows and 
columns of the corresponding matrixes. If we 
define a 1-D array and map the 1-D array to a 2-
D array that is used to allocate memory for the 
matrixes in (1), one matrix with 5×3 elements can 
be mapped from a 1-D array with 15 elements, as 
shown in Fig. 6. It is obvious from Fig. 6, that the 
data of the matrix C is continuous along its row 
index m. 

If we follow the idea described above to 
allocate the matrixes A and B, the column of 
matrix B will not be continuous, in turn, the 
multiplication operation of the matrixes A and B
is very low efficient. It is a well-known fact that 
we need to make a transpose of B to speed up the 
matrix multiplication. If we calculate the matrix 
multiplication on the Phi coprocessor, it is 
observed that the calculation for the smaller A and 
B is much faster than the larger A and B. This 
happens because the elements of smaller A and B
can be held in the cache to increase the cache hit 
rate. The cache hit rate becomes lower when the 
matrixes A and B become larger. 

Fig. 6. Mapping relationship from a 1-D array to 
a 2-D array. 

Now we use the following pseudo-code to 
explain the programming techniques on the Phi 
coprocessor. A 5110P Phi coprocessor includes 
60 cores and 240 hardware threads. We need to 

use OpenMp to split the task to smaller pieces 
based on the number of threads (nThreads=240 
for 5110P Phi model). We split the matrix A to be 
the nn×mm blocks and the matrix B to be the 
mm×ll blocks so that the matrix C to be the nn×ll
blocks. The block size of the matrix C is 16×16; 
the block size of the matrix A is 16×64 and the 
block size of the matrix B is 64×16. It ensures that 
the data is continuous in memory. The index k
(the column of matrix A and row of matrix B) is 
normalized by 16 based on the 512-bit SIMD 
instruction and the constant nBlockSizeBySIMD 
is 4 in this case for the better code performance. 

Code segment; use the standalone format and run 
the code on Phi: 
#pragma omp parallel for 
//Use OpenMP on Phi coprocessor 
for (iThread=0; iThread<nThreads; 
iThread ++) { 
//240 hardware threads 
for (t=iThread; t<nn * ll; t+=nThreads) 
{ 
//t is block index 
for (k=0; k<mm * nBlockSizeBySIMD; 
k+=nBlockSizeBySIMD) { 
//k is the column index of matrix A and the row index of 
//matrix B counted by SIMD width 
for (i=i0; i<i1; i ++) { 
//i0(t) and i1(t) are index in matrix for the tth block 
for (j=j0; j<j1; j ++) { 
//j0(t) and j1(t) are index in matrix for the tth block 
v=_mm512_set1_ps(0.0); 
//initialize the variable v 
v=_mm512_fmadd_ps(vA[i][k],vB[j][k],v); 
//calculate A(i,k)*B(j,k) + v 
v=_mm512_fmadd_ps(vA[i][k+1], 
vB[j][k+1], v); 
//calculate A(i,k+1)*B(j,k+1) + v 
v=_mm512_fmadd_ps(vA[i][k+2], 
vB[j][k+2], v); 
//calculate A(i,k+2)*B(j,k+2) + v 
v=_mm512_fmadd_ps(vA[i][k+3], 
vB[j][k+3], v); 
//calculate A(i,k+3)*B(j,k+3) + v 
C[i][j] +=_mm512_reduce_add_ps(v); 
// Summate elements of the vector v and add to C[i][j] 
    } 
   } 
  } 
 } 
} 

For two matrixes A and B with 2048×2048 
elements, the perfromance of the solving matrix 
without the domain decomposition technique on 
an Intel Xeon E5 2640 v2 Ivy-Bridge CPU is 0.63 
seconds, but the perfromance with the domain 
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decomposition technique on the same CPU is 0.4 
seconds. The perfromance of the solving matrix 
with the domain decomposition technique on the 
Intel Xeon Phi Coprocessor 5100P is 0.15 
seconds. 

III. NUMERICAL RESULTS 
In this section, we use the parallel FDTD 

code based on the Phi coprocessor to demonstrate 
the performance of the Phi coprocessor. The host 
computer incudes two Intel Xeon E5-2640 v2 
CPUs with 32 GB DDR3 RAM and one 5110P 
Phi coprocessor is mounted on the host through a
PCI-16 slot. The Phi coprocessor is installed with 
8 GB GDDR5 RAM. We use a typical example,
an empty box truncated by the PEC boundary, to 
demonstrate the performance of the Phi 
coprocessor. The problem size we first test is 1.29 
GB and the performance is 1,200 million cells per 
second. The performance on a single Phi card can 
be easily achieved to 1,200 million cells per 
second and the performance increases to 1,350 
million cells per second when the problem size 
increases to 7.2 GB, as shown in Fig. 7. 

Fig. 7. Performance of the 5110P Phi coprocessor 
for the parallel FDTD code with the regular size 
of problems. 

In the MIC instruction set, a single 
instruction allows us to perform a multiplication 
and one addition; for example, we have three 
variables A, B and C, the result of multiplication 
A and B and then addition with C can be reached 
by on operation in the MIC instruction: 

(2) 
The feature in (2) is called FMA (Fused 

Multiply-Add) in the MIC instruction. We

demonstrate the performance of Phi coprocessor 
for the small problems such as 0.2 million cells 
and check the performance of the FMA feature on 
the FDTD code. The result is plotted in Fig. 8, 
and we cannot observe the performance down 
significantly for the small problems and the 
performance improvement from the FMA feature 
neither from Fig. 8. 

Fig. 8. Performance of the 5110P Phi coprocessor 
for the parallel FDTD code with the small size of 
problems. 

IV. CONCLUSIONS 
Intel Xeon Phi coprocessor is used to 

accelerate the electromagnetic simulations using 
its many core architecture and 512-bit vector 
units. Unlike the GPU acceleration, the Intel 
Xeon Phi coprocessor acceleration is more 
general and supports OpenMp. If a source code is 
compiled on an Intel Xeon E3 or E5 CPU, it can 
be run directly on a Phi coprocessor with a 
compilation option “-mmic”.
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