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Abstract ─ Teaching-learning-based optimization (TLBO) 
is a rising star technique among metaheuristic techniques 
with highly competitive performance. This technique, 
which has been recently introduced, is based on the 
effect of influence of a teacher on learners and learners 
on their colleagues. This paper intends to apply an 
improved version of TLBO in the field of electromagnetics. 
To demonstrate its effectiveness in this area, the 
proposed technique is applied to two benchmarks related 
to brushless direct current wheel motor problem and 
testing electromagnetic analysis methods problem 
number 22. The quality of the results presented shows 
that the proposed technique is very competitive with 
other well-known optimization techniques; hence, it is a 
promising alternative technique for optimization in the 
field of electromagnetics. 
 
Index Terms ─ electromagnetics, metaheuristics, 
optimization, teaching-learning-based-optimization. 
 

I. INTRODUCTION 
Optimization is a commonly encountered mathematical 

problem in all engineering disciplines where the efficient 
and effective design of products and systems is crucial 
[1]. It is even so in the field of electromagnetics, where 
the designers are faced with the challenge of optimizing 
ever more complex components, devices and systems 
[2], [3], [4]. Many electromagnetic problems require 
optimization; some examples are electrical machines 
design, antenna design, target image reconstruction, anti-
reflective coating design for low radar cross section and 
microstrip filters design. 

Recently, a new metaheuristic that is the teaching–
learning-based optimization (TLBO) technique has been 
introduced. This technique has not yet received much 
attention by the electromagnetic optimization community. 
This technique is mainly based on the effect of influence 
of a teacher on learners and the interaction between  

learners themselves. 
The main contribution of this paper is developing 

and applying an improved version of the TLBO 
technique to solve electromagnetics optimization problems 
(this will be referred to as ITLBO). Furthermore, in order 
to assess the performance of the developed technique, it 
is compared with that of other techniques provided in the 
literature. 

The remainder of this paper is organized as follows. 
Section 2 introduces the concept and main features of the 
TLBO technique and the improvements that have been 
made. In Section 3, the brushless DC wheel motor 
(BLDC) and testing electromagnetic analysis methods 
(TEAM) number 22 benchmarks are presented. In 
Section 4, ITLBO is tested on the considered benchmarks 
and the results detailed. Finally, the paper conclusions 
are drawn in Section 5. 
 

II. TEACHING-LEARNING-BASED-

OPTIMIZATION 
Design optimization process comprises three 

elements: objective functions, feasible solutions and 
optimization methods [5]. The optimization method 
searches for the optimal design among all available 
feasible designs. Generally, nature-inspired heuristic 
optimization methods seem to work better than 
traditional (deterministic) methods, and hence, are widely 
used [5]. Among all nature-inspired techniques, genetic 
algorithm (GA) is the most widely used which provides 
a near optimal solution for a `complex design problem 
with large number of variables and constraints [5]. 
However, the algorithm performance is affected by its 
specific control parameters [6]. This triggers the need for 
parameter-free optimization techniques where no algorithm 
parameters are required. 

TLBO is a parameter-less metaheuristic technique 
introduced recently by Rao and colleagues [5]. In contrast 
with the other techniques, TLBO only requires such 

1054-4887 © 2015 ACES

Submitted On: February 9, 2015
Accepted On: October 19, 2015

1341 ACES JOURNAL, Vol. 30, No. 12, December 2015



controlling parameters as population size and maximum 
number of iterations for its operation [6]. Moreover, 
TLBO outperforms some other widespread metaheuristics 
with regard to constrained benchmark functions, 
constrained mechanical design, and continuous non-
linear numerical optimization problems [7]. 

TLBO is a population-based optimization technique 
that uses a population of solutions to advance to the 
global solution [5], [8]. The technique is based on the 
principle of sharing knowledge by a teacher with his 
students in a classroom environment (i.e., Teacher 
Phase) and then sharing knowledge by learners with their 
classmates (i.e., Learner Phase) [7]. Therefore, TLBO 
works on the influence of a teacher on learners and 
influence of learners on their colleagues. The influence 
is usually manifested by the learners’ results or outcomes. 
Better results of a class are typically represented by the 
students’ mean grade. In general, the teacher attempts to 
distribute knowledge among learners to increase their 
knowledge level and help them enhance their grades. 
Consequently, the teacher will increase the mean grade 
of the class according to his capability. On the other 
hand, students will not only gain knowledge based on 
teaching quality, but also on the quality of students 
sitting in the class. Quality of the students is assessed 
through the mean value of the population. Moreover, the 
teacher puts effort to increase the mean of students to a 
higher level, at which students will require another 
teacher of better quality to teach them [5]. The TLBO 
algorithm is given in Algorithm 1. 
 
Algorithm 1: TLBO pseudocode. 
1 n: dimension of the problem 
2 m: population size 
3 MAXITER: maximum number of iterations 
4 Initialization() 
5 while ITER<MAXITER 
6  Elite SelectBest(P,Elite) 
7  for i=1:m 
8   TF=round(1+rand) 
9   Xmean  mean(Xi) 
10   Xteacher  best(Xi) 
11   Xnew,i = Xi + rand ∙ (Xteacher-(TF ∙ Xmean)) 
12   if f(Xnew,i)<f(Xi) 
13    Xi Xnew,i 
14   end if 
15   j randi(m) 
16   if ji 
17    if f(Xi)<f(Xj) 
18     Xnew,i = Xi + rand ∙ (Xi – Xj) 
19    else 
20     Xnew,i = Xi + rand ∙ (Xj – Xi) 
21    end if 
22   end if 
23   if f(Xnew,i)<f(Xi) 

24    XiXnew,i 
25   end if 
26  end for 
27  P  ReplaceWorstWithElite(P,Elite) 
28  P  RemoveDuplicateIndividuals(P) 
29  ITER = ITER +1 
30 end while 
 

As aforesaid, the process of TLBO is divided into 
two phases namely: the ‘Teacher Phase’ and the ‘Learner 
Phase’. 

In the teacher phase, consider Mi as the mean and Ti 
as the teacher at any iteration i. Ti will try to move mean 
Mi towards its own (new) level denoted by Mnew. The 
solution is modified according to the difference between 
the existing and the new mean given by: 

Difference_Meani = ri(Mnew − TFMi), (1) 
where TF is a teaching factor that decides the value of 
mean to be changed, and ri is a random number in the 
range [0,1]. TF has the value of either 1 or 2, which is a 
heuristic step and decided randomly with equal 
probability as TF = round[1 + rand(0, 1){2 − 1}]. This 
difference updates the existing solution using the 
following expression: 

Xnew,i = Xold,i + Difference_Meani. (2) 
In the learner phase, a learner interacts randomly 

with other learners through group discussions, 
presentations, formal communications, etc. A learner 
increases his knowledge if the other learner is more 
knowledgeable than him. To express the learner 
modification, if Xi and Xj are two different learners  
(i ≠ j), and Xi is more knowledgeable than Xj, then: 

Xnew,i = Xold,i + ri(Xi −Xj). (3) 
On the contrary, if Xj is more knowledgeable than 

Xi, then: 
Xnew,i = Xold,i + ri(Xj –Xi). (4) 

In order to implement the TLBO for optimization 
problem, the following five steps are required: 1) Define 
the optimization problem and initialize the optimization 
parameters; 2) Initialize the population; 3) Apply the 
teacher phase; 4) Apply the learner phase; and 5) Apply 
the termination criterion. 

In the first step, the population size (m), the maximum 
number of iterations (MAXITER), the number of design 
variables (n) need to be initialized, and design variables 
limits defined (UL, LL). Moreover, the optimization problem 
should be defined as: minimize f (X), where f (X) is the 
objective function, X is a vector for design variables such 
that LL,i ≤ x,i ≤ UL,i, and Xi Є xi = 1, 2, . . . , n. 

In the second step, a random population is generated 
according to the population size and number of design 
variables. 

In the third step, mean of the population is calculated 
to give the mean for the particular subject as: 

Mn = [m1, m2, …, mn]. (5) 
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For each iteration, the best solution acts as a teacher; 
that is: 

Xteacher = Xf (X) = min. (6) 
The teacher will try to move the mean value towards 

X,teacher, which will act as a new mean for the iteration: 
see (1). 

The value of TF is selected as 1 or 2. The obtained 
difference is added to the current solution to update its 
values using the relation in (2). 

Xnew is then accepted if it gives better function value, 
and so on. 

In the fourth step, learners increase their knowledge 
through their interaction with their colleagues: see (3) 
and (4). 

In the fifth step, if the stopping criterion is achieved, 
for example the maximum number of iterations, the 
whole process is stopped; otherwise, it will be repeated 
from the third step, and so on. 
 

III. THE IMPROVED TEACHING-

LEARNING-BASED-OPTIMIZATION 
In the improved version of the TLBO (i.e., ITLBO), 

the lines between 16 – 25 in Algorithm 1 are replaced by 
the lines between 16 – 31 in Algorithm 2. The objective 
of introducing this improvement is to test the new vector 
Xnew after every update in the k dimension of this vector 
(k = 1: n). This improvement is inspired, somehow, from 
the differential evolution algorithm where only one 
dimension (not all the vectors) is updated at a time. 
 
Algorithm 2: ITLBO pseudocode. 
1 n: dimension of the problem 
2 m: population size 
3 MAXITER: maximum number of iterations 
4 Initialization() 
5 while ITER<MAXITER 
6  Elite SelectBest(P,Elite) 
7  for i=1:m 
8   TF=round(1+rand) 
9   Xmean  mean(Xi) 
10   Xteacher  best(Xi) 
11   Xnew,i = Xi + rand ∙ (Xteacher-(TF ∙ Xmean)) 
12   if f(Xnew,i)<f(Xi) 
13    Xi Xnew,i 
14   end if 
15   j randi(m) 
16   if ji 
17    if f(Xi)<f(Xj) 
18     for k=1:n 
19      Xnew,i (k) = Xi(k) + rand ∙ (Xi(k) – Xj(k)) 
20      if f(Xnew,i)<f(Xi) 
21       Xi(k)Xnew,i(k) 
22      end if 

 
 

23     end for 
24     for k=1:n 
25      Xnew,i (k)= Xi (k)+ rand ∙ (Xj(k) – Xi(k)) 
26      if f(Xnew,i)<f(Xi) 
27       Xi(k)Xnew,i(k) 
28      end if 
29     end for 
30    end if 
31   end if 
32  end for 
33  P  ReplaceWorstWithElite(P,Elite) 
34  P  RemoveDuplicateIndividuals(P) 
35  ITER = ITER +1 
36 end while 

 
IV. APPLICATIONS 

A. BLDC benchmark 

The application of TLBO in electromagnetics 
optimization is first illustrated on the BLDC benchmark 
designed for a race solar vehicle. This benchmark is 
presented in [9]. The authors proposed a benchmark with 
five design variables and one objective function to be 
maximized, that is the efficiency (which is equivalent to 
minimizing the motor losses) [10]. Figure 1 shows the 
prototype of the motor and Table 1 summarizes the five 
design variables with mapping ranges used in this study. 
In addition to the constraints imposed on the design 
variables, the problem is subject to six inequality 
constraints. These last constraints are related to 
technological and operational considerations regarding 
the specific wheel motor [10]. Thus, the optimization 
problem can be formulated as follows: 

OF = −η. (7) 
Subject to: 

Mtot  ≤ 15 [kg], (8) 
Dext  ≤ 340 [mm], (9) 
Dint  ≥ 76 [mm], (10) 
Imax  ≥ 125 [A], (11) 

discr(Ds, δ, Bd, Be) ≥ 0, (12) 
where, OF is the objective function (the minus sign is for 
transforming the minimization problem to a maximization 
one), η is the efficiency, Mtot is the total mass of the active 
parts, Dext is the outer diameter, Dint is the inner diameter, 
Imax the current in the phases and discr(Ds, δ, Bd, Be) is 
the determinant used for the calculation of the slot 
height. One of the main advantages of the BLDC 
benchmark is the availability of the source code to 
compute the objective function and constraints. Thus, the 
comparison of optimization results for different 
techniques is independent of differences in the calculation. 
These features make this benchmark ideal for comparing 
the performance of different techniques. 
 

1343 ACES JOURNAL, Vol. 30, No. 12, December 2015



 
 
Fig. 1. Prototype of the wheel motor. The inner stator is 
visible with the coils rolled up around the teeth [9]. 
 
Table 1: Design variables and their ranges for the BLDC 
benchmark 

Parameter Description Min Max 
Ds [mm] Bore (stator) diameter 150 330 
Be [T] Air gap induction 0.50 0.76 

 [A/mm2] Conductor current density 2.0 5.0 
Bd [T] Teeth magnetic induction 0.9 1.8 
Bcs [T] Stator back iron induction 0.6 1.6 

 
B. TEAM22 benchmark 

The TEAM Workshop Problem 22 or TEAM22 
concerns the optimal design of a superconducting 
magnetic energy storage (SMES) device (Fig. 2). The 
goal of the optimization is to find the SMES configurations 
that offer an energy stored as close as possible to a 
defined reference value and a value for the stray field, as 
small as possible compared to a reference value [14], 
[15], [16]. 

There are two formulations of TEAM22 benchmark, 
based on the number of design variables of the optimization 
problem. The problem studied in this paper consists in 
the continuous, constrained, eight-parameter problem, 
shown in Fig. 2. The design variables are given in Table 
2. Moreover, the system has two constraints: the first one 
is a design constraint where the solenoids should not 
overlap each other, and the second one is that the 
superconducting material should not violate the quench 
condition that links together the value of the current 
density and the maximum value of magnetic flux density. 
Thus, the optimization problem can be formulated as 
follows [14], [15]: 

2

2

B
OF= .

B
refstray

refnorm

E E
w

E


  (13) 

Subject to: 
1 2

1 2 ,
2 2
d d

R R    (14) 

  2
max6.4 B 54  m ,/ mA  J  (15) 

where, Eref is the reference value of the energy and it is 
equal to 180MJ, Bnorm is the reference value of the stray 
field and it is equal to 200T, Bmax represent the maximum 
values of the magnetic induction, w is a penalty factor 
with value equal to 100 (this factor has been introduced 
in [15] in order to make the two terms of the objective 
function, i.e., the stray field and energy terms error, of 
roughly the same magnitude) and the stray field Bstray 
(evaluated along 22 equidistant points along line a and 
line b in Fig. 2) is defined as: 

222
,2 1B .
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stray ii

stray

B


  (16) 
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Fig. 2. TEAM22 configuration: (a) 3D representation of 
the SMES device, and (b) representation of the right‐half 
transverse cut over the SMES device. 
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Table 2: Design variables and their ranges for TEAM22 
benchmark 

Parameter Min Max 
R1 [m] 1 4 
R2 [m] 1.8 5 
h12 [m] 0.2 3.6 
h22 [m] 0.2 3.6 
d1 [m] 0.1 0.8 
d2 [m] 0.1 0.8 

J1 [MA/m2] 10 30 
J2 [MA/m2] -30 -10 

 
V. OPTIMIZATION RESULTS 

A. BLDC benchmark 

In order to show the robustness and effectiveness of 
both the TLBO and ITLBO techniques, they have been 
applied to the BLDC benchmark, where 100 independent 
trials have been performed for four cases corresponding 
to four different population sizes. The results of this 
investigation are shown in Table 3. We can notice that 
the best, the mean, the median and the worst values of  

the objective function for the four cases after 100 trials 
are very close. This is also shown by the low values of 
standard deviations calculated. 

A small comparison or results obtained using the 
TLBO and the ITLBO techniques, shows the effect of 
the improvements that has been introduced. We can see 
clearly that the ITLBO technique outperforms the standard 
TLBO technique. Furthermore, this investigation reveals 
the effectiveness of the ITLBO technique and its ability 
to reach either the optimum value or very near to it in 
every trial and with different sizes of population. The 
results obtained here using the TLBO and ITLBO 
techniques are compared to some other well-known 
techniques reported in the literature, i.e., sequential 
quadratic programming (SQP) genetic algorithm (GA), 
ant colony optimization (ACO), partcile swarm optimization 
(PSO) and modified imperialist competitive algorithm 
(MICA). 

The results of this comparison are reported in Table 
4. It appears from this table that the results obtained 
using the proposed ITLBO technique correspond to the 
optimal motor configuration as reported in the literature. 
 

Table 3: Simulation results of the BLDC benchmark in 100 trials 
Population Size Method Worst Mean Median Best SD 

10 TLBO 94.92 95.29 95.31 95.32 0.0549318 
ITLBO 95.11 95.30 95.31 95.32 0.0453629 

20 TLBO 95.30 95.32 95.32 95.32 0.00270286 
ITLBO 95.31 95.32 95.32 95.32 0.00066817 

30 TLBO 95.31 95.32 95.32 95.32 0.00083383 
ITLBO 95.32 95.32 95.32 95.32 0.0003585 

40 TLBO 95.31 95.32 95.32 95.32 0.00062436 
ITLBO 95.32 95.32 95.32 95.32 0.00023746 

50 TLBO 95.32 95.32 95.32 95.32 0.00036394 
ITLBO 95.32 95.32 95.32 95.32 0.00017832 

 
Table 4: Comparison of results using different optimization techniques 

Method Ds 

[mm] 
Be 

[T] 
δ 

[A/mm²] 
Bd 

[T] 
Bcs 

[T] 
η 

[%] 
Mtot 

[kg] 
Imax 

[A] 
Dint 

[mm] 
Dext 

[mm] 
Ta 

[°C] 
ITLBO 201.37 0.6481 2.051 1.8 0.89 95.32 15 125 76.5 239.1 95.26 
TLBO 201.24 0.6482 2.044 1.8 0.8963 95.32 15 125 76.0 238.9 95.35 

SQP [11] 201.20 0.6481 2.044 1.8 0.8959 95.32 15 125 76 238.9 95.35 
GA [12] 201.50 0.648 2.060 1.8 0.8817 95.31 15 125 76.9 239.2 95.21 

GA & SQP [12] 201.20 0.6481 2.062 1.8 0.87 95.31 15 125 76 238.9 95.31 
ACO [13] 201.20 0.6481 2.044 1.8 0.8959 95.32 15 125 76 238.9 95.35 
PSO [13] 202.10 0.6476 2.042 1.8 0.9298 95.32 15 125 79.2 239.8 94.98 

MICA [10] 201.20 0.6481 2.044 1.8 0.8959 95.32 15 125 76 238.9 95.35 

B. TEAM22 benchmark 

The second example studied in this paper is the 
TEAM 22 benchmark. The numerical experiments were  

conducted for 30 independent trials. The parameters of 
the optimal configurations found using the TLBO and 
the ITLBO techniques are tabulated in Table 5. Further,  
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the magnetic flux equipotentials and the magnetic flux 
density of the optimal configuration found using the 
ITLBO are represented in Fig. 3 and Fig. 4, respectively. 

In Table 6, the ITLBO technique is compared with 
the TLBO technique and with some other optimizations 
techniques that are GA, PSO, differential evolution 
(DE), league championship algorithm (LCA) and 
electromagnetism-like mechanism (EM). From this 
comparison, it is worth to mention the superiority of the 
proposed ITLBO technique over some well-known 
optimization techniques. In addition, it is to be noted that, 
the ITLBO performances are better than the standard 
TLBO. In other words, the ITLBO is more efficient and 
more robust than the TLBO. 
 
Table 5: Optimal configuration of TEAM22 benchmark 
obtained using ITLBO 

 Value 
Parameter TLBO ITLBO 

R1 [m] 1.27 1.20 
R2 [m] 1.96 1.95 
h12 [m] 2.09 2.80 
h22 [m] 2.97 3.60 
d1 [m] 0.61 0.80 
d2 [m] 0.10 0.11 

J1 [MA/m2] 14.85 10.29 
J2 [MA/m2] -27.65 -23.35 

OF 0.40 0.18 
E [MJ] 179.55 179.96 

Bstray [mT] 0.08 0.08 
 

 
 
Fig. 3. Magnetic flux equipotentials of the optimal 
configuration obtained using ITLBO. 
 

 
 
Fig. 4. Magnetic flux density distribution of the optimal 
configuration obtained using ITLBO. 
 

Table 6: Comparison of results using different optimization techniques after 30 trials 
Method Worst Mean Median Best Standard Deviation 
ITLBO 2.08 0.66 0.54 0.18 0.46 
TLBO 11.59 3.06 1.51 0.40 2.71 

GA 32.71 15.95 14.16 5.93 7.33 
PSO 101.88 26.79 10.82 0.03 32.29 
DE 57.11 6.33 3.52 0.01 10.38 

LCA 88.44 41.76 43.48 1.65 20.97 
EM 22.33 13.12 12.14 7.80 3.99 

VI. CONCLUSION 
This paper starts by describing the TLBO technique 

which is a powerful yet easy technique for optimization 
of various design problems including electromagnetic 
ones. The TLBO has the advantage of being a parameter-
less optimization technique, i.e., its algorithm has no 
specific control parameters to tune. 

In this study, an improved version of the TLBO 
technique was developed and applied to the BLDC and 
TEAM22 benchmarks. Considering the quality of the 
obtained results, it is possible to conclude that the 
ITLBO constitutes an efficient and robust technique for 

optimization in electromagnetics area. Further benchmarks 
for other common electromagnetic problems are currently 
under investigation. Also, implementing multi-objective 
ITLBO is a possible extension of the current work in the 
area concerned with in this study. 
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