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Abstract ─ This paper develops a method to derive 

intuitive understanding of the root causes of reflective 

interference created by the many impedance 

discontinuities between the packages, PCBs and 

connectors. Scattering parameters are cascaded to 

describe the system response and linearized to analyze 

the multiple reflections. An upper error bound of the 

linearization is derived and is validated with Monte 

Carlo studies.  

 

Index Terms ─ Inter-symbol interference (ISI), 

networks and circuits, scattering parameters, signal 

integrity, signal processing, transmission line matrix. 
 

I. INTRODUCTION 
Computer interconnect design has become a critical 

aspect of integrated circuit (IC) signal integrity, which 

has become more complex due to the exponential 

increase in on-chip computing bandwidth [1]. The 

simplest model of a computer interconnect includes only 

the wires that connect two ICs. More realistically, an 

interconnect includes packages that hold each IC, printed 

circuit board (PCB) transmission lines and vias (which 

transition between PCB layers) and connectors, as seen 

in Fig. 1. When the signal stream of 0’s and 1’s traverses 

the interconnect at very low data rate frequencies (kHz 

to low MHz), the interconnect features are much smaller 

than the wavelength, and the wires are typically modeled 

as simple delays. As the data rate increases, the 

interconnect model requires more fidelity that includes 

impedance mismatch, dielectric loss, skin effect and 

copper surface roughness. At today’s data rates which 

can exceed 28 Giga-bits-per-second, it is typical to 

model transmission lines with 2D solvers [2]. Also, fine 

geometric features that were neglected at lower speeds, 

such as the PCB vias, must be accurately modeled, 

typically with 3D full wave FEM or FDTD solvers [3].  

The transfer function for detailed high frequency 

interconnect models is found by cascading (combining 

in series) the individual transmission line and 3D model 

segments. This cascading process [5, 6] is excellent for 

quantifying the total behavior of the system but obscures 

the source of multiple reflections, in part because the 

cascading process is non-linear, as will be shown in this 

paper. Linearization will enable the separation of the 

transfer function into physically meaningful pieces that 

allow us to determine which system features contribute 

most to the multiple reflections. This then enables 

redesign to reduce those reflections and improve signal 

integrity. 

 

 
 

Fig. 1. Diagram of the 28G VSR computer interface [4] 

and an example of how the link can be modeled with 

three S-parameter segments: package (A), PCB (B), line 

card PCB (C). This interface is used in back-end servers 

for switching of internet traffic. 

 

While others have addressed the need to identify  

and resolve reflective interference [7-9] the method 

described in this paper is, to our knowledge, the first 

rigorous process to do so. In lieu of a direct comparison 

of the proposed method with a traditional method, we 

will validate our method against Monte Carlo studies. 

Section II discusses system level analysis and 

existing procedures for identifying sources of multiple 

reflections in a wired communication link such as the 

CEI 28G-VSR (very short reach) interface [4] shown  

in Fig. 1. Section III will describe an alternative to  

the standard ABCD matrix cascading approach, using  
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the analytic Mason’s rule. Section IV derives the 

linearization of the cascading process. In Section V we 

derive an upper bound on the error introduced by the 

linearization and validate the bound with analytic and 

empirical Monte Carlo (MC) studies. Finally, we 

conclude with a discussion of the limitations of the 

proposed linearization, next steps and applications. 
 

II. SYSTEM LEVEL ANALYSIS 
Segments of an interconnect model such as those 

shown in Fig. 1 are usually represented by frequency 

domain scattering parameters (S-parameters): 

𝑺(𝑓) = [
𝑆11(𝑓) 𝑆12(𝑓)

𝑆21(𝑓) 𝑆22(𝑓)
], 

where 𝑆𝑖𝑗(𝑓) is the complex voltage transfer function 

versus frequency between port 𝑗 and port 𝑖 [5]. 𝑆11(𝑓) 

represents the reflective behavior looking into the input 

port 1, while 𝑆21(𝑓) represents the through transfer 

function between the input port 1 and the output port  

2. As it is understood that 𝑺 is a frequency domain 

response, our notation will drop the explicit frequency 

reference. Also note that for passive and lossy 

interconnects considered here that |𝑆21| = |𝑆12| ≤ 1, 

|𝑆11| ≪ 1 and |𝑆22| ≪ 1. This means that products of 𝑺 

matrix components will have magnitudes much less than 

1.  

The design of today’s high speed interconnects for 

computer communication interfaces (e.g., PCIe4, 100G 

Ethernet) requires a careful budgeting of losses for long 

channels, as these can severely disperse and attenuate  

the signal [10]. Additionally, short channels can suffer 

from reflective interference caused by impedance 

discontinuities. These require an altogether different 

approach to resolve. While channel loss budgets are 

helpful for long channels, there is no similar reflection 

budget for short channels and their complicated multipath 

behavior. This paper proposes an approach to linearize 

the 𝑺 matrix cascading process (the combining of 𝑺 

matrices together) which opens the door to innovative 

approaches for analyzing key features of reflective wired 

channels.  

Consider the CEI 28G-VSR interface [4] shown in 

Fig. 1. This short channel can display highly reflective 

behavior from the impedance discontinuities at the 

package, PCB and connector junctions. To ensure that 

the transmitter and receiver circuit equalization schemes 

can overcome these channel and noise impairments, the 

design process uses a simulation of this environment. 

(Measuring multiple designs of the system would be too 

expensive and time consuming.) Figure 1 also shows an 

example of dividing the system into three segments 

which model the package (A), PCB (B) and connector 

with line card PCB (C). Each of these 2-port differential 

𝑺 matrices describes the frequency domain behavior of 

the segment and is obtained from either measurement, 

simulation (for example FEM or FDTD methods) [11], 

or empirical equations [12]. The segmentation of the 

system requires that the signal conductors at the 

boundary support TEM propagation and that any higher 

order modes have sufficiently attenuated [13].  
 

 
 

Fig. 2. Reflective noise can cause trouble for 

communication systems as can be seen by the pulse 

response of the system shown in Fig. 1. The energy from 

a single positive bit bounces around inside the system, 

and these multiple reflections show up much later than 

the desired signal. These stray voltages can interfere with 

later signals and could potentially corrupt the recovery 

of sent information. 

 

System level analysis involves a simulator 

cascading the segments together into a total end-to-end 

𝑺 matrix for the system [6, 14], before converting to the 

time domain pulse response as shown in Fig. 2. This 

channel pulse response can then be used to combine with 

the transmitter and receiver equalization to determine the 

link’s performance [15]. This analysis assumes that the 

𝑺 matrices are of good quality in that they are passive, 

causal and accurate [3, 16]. If they are not, numerical 

noise can propagate though the cascading process and 

corrupt the total end-to-end response.  

This process of cascading segment models is 

excellent for quantifying the system performance but 

obscures the source of the multiple reflections, which 

makes redesigning to minimize them very difficult. To 

find the source of the multiple reflections in a system,  

the literature suggests a guess-and-check approach. The 

most common procedure is to consult the simulated  

time domain reflectometry (TDR) waveform to estimate 

where the largest impedance discontinuity is located [8]. 

Alternatively, the frequency domain insertion loss can be 

examined for problematic resonances whose frequencies 

are inversely proportional to the electrical length of the 

segment creating the reflective interference [17]. This 

section of the interconnect is then modified by removal 

or redesign to see if the system performance improves 

[7, 17]. When applied iteratively, this approach usually 

identifies the primary source of reflective interference. 

However, the process is not systematic or wholly 

repeatable due to the many subjective choices involved. 

Additionally, removing or modifying a segment of the 

system fundamentally changes the system. This makes  
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the true impact of a single discontinuity difficult to 

quantify. It is challenging to determine what to modify 

and how to modify it [7].  

We would like to find a way to quantify how each 𝑺 

matrix segment contributes to the reflections in the total 

system response. Others have hinted at this goal [9],  

but we will demonstrate how to actually achieve this. 

Because the process of cascading 𝑺 matrices is non-

linear, a linearization or decomposition will be required 

to separate the transfer function into physically 

meaningful pieces. In this paper, we will apply the 

analytic Mason’s rule to the 𝑺 matrix cascading process 

and linearize this result. This will allow us to resolve the 

effects of reflections from individual segments of the 

system, thus enabling redesign to remove these effects.  

 

III. MASON’S RULE 
The usual approach to cascading a series of 𝑺 

matrices involves converting each 𝑺 matrix to an ABCD 

matrix [5] or transmission matrix [6], multiplying the 

matrices together, and then converting back to 𝑺 matrix 

form. The cascading process can determine the total 

system behavior, but it obscures how each segment 

contributes to the overall response. We propose an 

alternative approach, expressing the series of 𝑺 matrices 

(for example three 𝑺 matrices named A, B and C) as a 

signal flow graph, as shown in Fig. 3 (a), and then 

combining them with Mason’s rule [18]. The signal flow 

graph is created by placing each 𝑺 matrix’s through 

responses (e.g., 𝐴21 and 𝐴12) and reflection responses 

(e.g., 𝐴11 and 𝐴22) as shown in Fig. 3 (a). Mason’s rule 

provides an analytic solution (though non-linear) of the 

total system response. It also provides intuition into how 

reflective multipath behavior occurs in the system. A 

major insight is that pairs of impedance discontinuities 

form resonant loops (Fig. 3 (b)) which trap energy before 

returning it to the system. This delayed energy can 

eventually arrive at the receiver and may create an error 

in the bit decision.  

The Mason’s rule procedure to solve for the total 𝑆21 

of the signal flow graph in Fig. 3 (a) is to first identify 

all forward paths. For our application, a forward path is 

one that starts on the left, ends on the right and does not 

circle back on itself; the only forward path in Fig. 3 (b) 

is 𝐺1 = 𝐴21𝐵21𝐶21. Second, identify the loops (paths 

that start and end at the same location) as shown in  

Fig. 3 (b) which are 𝐿1 = 𝐴22𝐵11, 𝐿2 = 𝐵22𝐶11, and 

𝐿3 = 𝐴22𝐵21𝐶11𝐵12.  

The next step is to identify the determinant (Δ) of 

the graph and the co-factor (Δ𝑖) of each path. The 

determinant, Eqn. 1, is found by collecting products of 

loop terms which do not touch. These products are taken 

one-at-a-time, two-at-a-time, three-at-a-time, etc. until 

all possible non-touching loop combinations are 

included. This calculation accounts for the interactions 

that occur between loops which do touch, and as will be 

seen below, a modification of this calculation opens the 

opportunity for linearization: 

Δ = 1 − ∑ 𝐿𝑖 + ∑ 𝐿𝑖𝐿𝑗

𝑛𝑜𝑛−𝑡𝑜𝑢𝑐ℎ𝑖𝑛𝑔

− ∑ 𝐿𝑖

𝑛𝑜𝑛−𝑡𝑜𝑢𝑐ℎ𝑖𝑛𝑔

𝐿𝑗𝐿𝑘 + ⋯. 
(1) 

 

 
 

Fig. 3. (a) There are an infinite number of ways that 

energy can travel through a series of 𝐒 matrix segments 

A, B, C in this signal flow graph. (b) Energy can resonate 

(get trapped) in the loops, L1, L2, and L3. (c) Energy 

Transfer Diagram. A 1st order linearization of S21  

is found by summing the possible paths through the 

signal flow graph. This includes the forward path  
G1 = A21B21C21 and all the paths going once through 

each of the loops in the system (or two bounces). 

 

For our three-segment example, there are three one-

at-a-time loops terms (𝐿1, 𝐿2, 𝐿3), one non-touching two-

at-a-time loop term (𝐿1𝐿2) and no non-touching three-at-

a-time loop terms. This results in the determinant of: 

Δ = 1 − 𝐿1 − 𝐿2 − 𝐿3 + 𝐿1𝐿2. (2) 

The cofactor of a forward path is defined as the 

determinant calculation over the set of loops which do 

not touch the forward path. Since the forward path 𝐺1 

touches all the loops, Δ1 = 1. 

Once the paths, loops, determinant and cofactors are 

identified, Mason’s rule provides a way to directly write 

down the transfer function equation: 

𝐺 =  
∑ 𝐺𝑘Δ𝑘𝑘

Δ
. (3) 

The Mason’s rule process is summarized in Table 1. 

Finally, the total 𝑆21of the signal flow graph in Fig. 3 (a) 

is: 

ALLRED, FURSE: LINEARIZATION OF S-PARAMETER CASCADING 1422



𝑆21 =
𝐴21𝐵21𝐶21

1 − 𝐿1 − 𝐿2 − 𝐿3 + 𝐿1𝐿2

 . (4) 

Observe that the denominator collects the resonant 

behavior of the network and can significantly change 

with the inclusion of additional 𝑺 matrix segments. This 

shows that the cascading of 𝑺 matrices is a non-linear 

process, and the addition of more segments can 

significantly change the response. 

While 𝑆21 could also be obtained through the ABCD 

or transmission matrix approach, the intuitive Mason’s 

rule result provides insight into the physical behavior  

of the system. The linearization of this equation will 

decompose the response into a sum of physically 

meaningful terms which can then be analyzed 

individually to provide more insight into the causes of 

the reflective behavior of the system. This insight can  

be very useful in redesigning the system. The downside 

to the signal flow graph approach is that graphs which 

have many paths and many interacting loops can be very 

challenging to apply Mason’s rule to by hand, and either 

simplifications to the structure or application of a matrix 

approach are required.   

 

Table 1: Mason’s rule analysis process summary 

Step Action 

0 From a signal flow graph, 

1 
Identify desired input port and output port of 

network. 

2 
Identify all possible forward paths 𝐺𝑖 

between the input and output ports. 

3 Identify all loops 𝐿𝑖 in network. 

4 

Calculate the graph determinant: From the set 

of all loops, identify the combinations of loops 

which do not touch for groupings of two-at-a-

time terms, three-at-a-time terms, etc. until all 

possible combinations are considered. 

5 

For each forward path 𝐺𝑖, calculate the 

cofactor Δ𝑖  by identifying those loops which 

do not touch path 𝐺𝑖 and then performing the 

determinant calculation over this set of loops. 

6 

Combine the forward paths 𝐺𝑖, cofactors Δ𝑖 , 

and determinant Δ according to Eqn. 3 to 

obtain the transfer function between the input 

and output ports. 

 

IV. LINEARIZATION DERIVATION 
Our goal is to separate the expression for the total 

through response (𝑆21) of the system into a series of 

terms (visualized in Figs. 3 and 4) that can be analyzed 

individually so that we can identify which features are 

the most significant cause of multiple reflections. This 

decomposition or linearization is accomplished by  

simplifying Mason’s rule to assume that all the loops are 

independent and do not touch each other. This leads to a 

denominator (i.e., the determinant, Δ, from Eqn. 1) that 

can be factored as shown in Eqn. 5 below:  

𝑆21 ≈
𝐴21𝐵21𝐶21

1 − 𝐿1 − 𝐿2 − 𝐿3 + 𝐿1𝐿2 + 𝐿1𝐿3 + 𝐿2𝐿3 − 𝐿1𝐿2𝐿3
 

𝑆21 ≈
𝐴21𝐵21𝐶21

(1 − 𝐿1)(1 − 𝐿2)(1 − 𝐿3)
 . 

 

 

(5) 

Next, by applying the geometric series, 
1

1−𝑥
=

∑ 𝑥𝑛∞
𝑛=0  if |𝑥| < 1, we can move the loop terms from the 

denominator to the numerator: 

𝑆21 ≈ 𝐴21𝐵21𝐶21 (∑ 𝐿1
𝑛

∞

𝑛=0

) (∑ 𝐿2
𝑛

∞

𝑛=0

) (∑ 𝐿3
𝑛

∞

𝑛=0

). (6) 

This expression can be further simplified by 

truncating the infinite series at 𝑛 = 1 and discarding 

cross-terms which come from expanding the parentheses: 

𝑆21 ≈ 𝐴21𝐵21𝐶21(1 + 𝐿1)(1 + 𝐿2)(1 + 𝐿3 ) 
   𝑆21

∗ = 𝐴21𝐵21𝐶21(1 + 𝐿1 + 𝐿2 + 𝐿3). 
(7) 

We call 𝑆21
∗  the 1st order linearization of the through 

response 𝑆21, and it shows how each resonant loop 

contributes to the total response. In the three-segment 

scenario, expanding the parentheses gives one forward 

path term and three loop terms which can be analyzed to 

determine which one is dominant. It is also the same 

expression that could be found by analyzing an energy 

transfer diagram and collecting all terms that have one 

loop (or two bounces), as shown in Fig. 3 (c). The utility 

of such a decomposition is that for signal integrity 

systems which suffer from high reflective interference, 

the impact of each loop response on the total system 

performance can be quantified [19]. 

The first order linearization for systems with more 

than three 𝑺 matrix segments is generalized as: 

𝑆21
∗ ≈ (𝐴21𝐵21𝐶21 … ) (1 + ∑ 𝐿𝑖). (8) 

If the system has many large impedance 

discontinuities, significant energy can travel through 

more than one loop, and the 1st order linearization of 𝑆21 

can be poor. To account for these additional multiple 

reflections, we return to the exact result of Eqn. 4 and 

bring the whole denominator to the numerator using the 

geometric power series relation: 

𝑆21 =
𝐴21𝐵21𝐶21

1 − 𝐿1 − 𝐿2 − 𝐿3 + 𝐿1𝐿2

 

= 𝐴21𝐵21𝐶21 (∑(𝐿1 + 𝐿2 + 𝐿3 − 𝐿1𝐿2)𝑛

∞

𝑛=0

). 

(9) 

Expanding the infinite series to 𝑛 = 2 yields Eqn. 10 and 

discarding the terms with more than two loops (e.g., 𝐿1𝐿2
2  

and 𝐿1𝐿2𝐿3) yields 𝑆21
‡

, the 2nd order linearization shown 

in Eqn. 11. This is generalized for systems with more 

than three 𝑺 matrix segments in Eqn. 12.  
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Fig. 4. Energy transfer diagram. The 1st order linearization 

of S21 can be improved (which we call the 2nd order 

linearization) by including all paths which travel through 

two loops (four bounces). Shown above are all such two 

loop paths which include the loop L1. Additional two 

loop paths not shown are G1L2
2 , G1L3

2 , G1L2L3 and 

G1L3L2. 
 

The energy transfer diagram in Fig. 4 provides an 

intuitive understanding of Eqn. 12 and shows that the 2nd 

order linearization can be found by augmenting the 1st 

order linearization with the energy transfer terms that 

contain two loops (or four bounces). It is interesting to 

note that the energy transfer terms 𝐺1𝐿3𝐿1 and 𝐺1𝐿1𝐿3 

represent two separate ways to traverse the signal flow 

graph and therefore both must be included, thus the ‘2’ 

coefficient in Eqn. 12 for touching loop terms.  

For signal integrity systems of cascaded 2-port 𝑺 

matrices, the truncation of the infinite series at 𝑛 = 2 is 

quite accurate as will be shown in the next section. For 

highly resonant systems, more terms may be needed. The 

linearization can be applied to differential, common, 

mode-conversion and single ended 2-port 𝑺 matrices, 

depending on the desired application. The linearization 

is straightforward to calculate, as it only requires the 

determination of the primary loops and loops taken two-

at-a-time. The Mason’s rule response of these systems  

may be difficult to directly apply due to the many 𝑛-at-

a-time loop combinations that must be considered. The 

numerical solution procedure of the linearization is 

summarized in Table 2 below. 

 

Table 2: Linearization process summary 

Step Action 

0 
Diagram the signal flow graph for the network 

of 2-port S-parameters. 

1 Calculate the forward path 𝑮𝟏 = 𝑨𝟐𝟏𝑩𝟐𝟏𝑪𝟐𝟏 … 

2 

Identify and determine the expression for 

each loop in the system, 𝐿1 = 𝐴22𝐵11, 𝐿2 =
𝐵22𝐶11, 𝐿3 = 𝐴22𝐵21𝐶11𝐵12, etc. For N 

segments, there will be 
𝑁(𝑁−1)

2
 loops. 

3 

For 1st order linearization, calculate the loop 

responses by multiplying the forward path 𝐺1 

with each of the loops. 

4a 
For 2nd order linearization, determine the list 

of all two-at-a-time combinations of loops. 

4b 
For each combination determine if the two 

loops are touching in the signal flow graph. 

5 

Calculate the loop responses by multiplying 

the forward path response 𝐺1 by each loop 

term. 

 Single loop terms: 𝐺1 ∑ 𝐿𝑖. 

 Single loop squared terms: 𝐺1 ∑ 𝐿𝑖
2. 

 Non-touching terms: 𝐺1 ∑ 𝐿𝑖𝐿𝑗.𝑛𝑜𝑛−𝑡𝑜𝑢𝑐ℎ𝑖𝑛𝑔  

 Touching loop terms  2 ∙ 𝐺1 ∑ 𝐿𝑖𝐿𝑗𝑡𝑜𝑢𝑐ℎ𝑖𝑛𝑔 . 

6 Calculate the linearization error. 

6a 
Find the true 𝑆21 by numerically cascading the 

S parameter segments [6]. 

6b 
Calculate 𝑆21

∗  or 𝑆21
‡

 by summing the forward 

path with the loop responses. 

6c 
Calculate the error as the difference between 

𝑆21 and 𝑆21
∗  or 𝑆21

‡
. 

 

The linearization is useful as an insight into the 

reflective behavior of the system, but it can be 

computationally intense depending on the size of the 

system. For a system with 𝑁 segments, the number of 

multiplication operations per frequency to cascade 𝑺 

matrices with the ABCD matrix approach is 𝑂(26𝑁), 

while to calculate the loop responses for the 1st order 

linearization is 𝑂(𝑁3/3) and for the 2nd order 

linearization is 𝑂(𝑁4/4) due to the exponential number 

of loops and combinations of loops to consider. 
 

   𝑆21 = 𝐴21𝐵21𝐶21 (

1 +
𝐿1 + 𝐿2 + 𝐿3 − 𝐿1𝐿2 +

𝐿1
2 + 2𝐿1𝐿2 + 𝐿2

2 + 2𝐿1𝐿3 + 2𝐿2𝐿3 + 𝐿3
2 − 𝐿1

2𝐿2 − 𝐿1𝐿2
2 − 𝐿1𝐿2𝐿3 + 𝐿1

2𝐿2
2

+ ⋯

), (10) 

 𝑆21 ≈ 𝑆21
‡ = 𝐴21𝐵21𝐶21(1 + 𝐿1 + 𝐿2 + 𝐿3  +  𝐿1

2 + 𝐿2
2 + 𝐿3

2  +  𝐿1𝐿2 + 2𝐿1𝐿3 + 2𝐿2𝐿3), (11) 
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    𝑆21
‡ = (𝐴21𝐵21𝐶21 … ) (1 + ∑(𝐿𝑖 + 𝐿𝑖

2) + ∑ 𝐿𝑖𝐿𝑗

𝑛𝑜𝑛−𝑡𝑜𝑢𝑐ℎ𝑖𝑛𝑔

 +  2 ∙ ∑ 𝐿𝑖𝐿𝑗

𝑡𝑜𝑢𝑐ℎ𝑖𝑛𝑔

). (12) 

 

V. ERROR ANALYSIS 
As will be shown, the linearization error is 

proportional to the magnitude of the largest impedance 

discontinuity and the number of 𝑺 matrix segments in the 

system. The relative error ratio, found by normalizing the 

error by the actual value, is evaluated, as it allows for 

extensive simplification. When applied to a three-segment 

system with 1st order linearization, the relative error ratio 

is: 

|
(𝑆21 − 𝑆21

‡ )
𝑆21

⁄ | 

= |

𝐴21𝐵21𝐶21

1 − 𝐿1 − 𝐿2 − 𝐿3 + 𝐿1𝐿2
− 𝐴21𝐵21𝐶21(1 + 𝐿1 + 𝐿2 + 𝐿3)

𝐴21𝐵21𝐶21

1 − 𝐿1 − 𝐿2 − 𝐿3 + 𝐿1𝐿2

| 

 

= |1 − (1 − 𝐿1 − 𝐿2 − 𝐿3 + 𝐿1𝐿2)(1 + 𝐿1 + 𝐿2 + 𝐿3)| 
= |𝐿1

2 + 𝐿2
2 + 𝐿3

2 + 2𝐿1𝐿2 + 2𝐿1𝐿3 + 𝐿2𝐿3 − 𝐿1𝐿2𝐿3

− 𝐿1
2 𝐿2 − 𝐿1𝐿22|. 

(13) 

Observe that all the single loop terms (i.e., 

𝐿1, 𝐿2, 𝐿3) of the simplified relative error ratio for the 1st 

order linearization cancel out, leaving only terms with 

products of two or more loops. Similarly, the simplified 

relative error ratio for the 2nd order linearization (not 

shown due to space considerations) includes only error 

terms composed of the products of three or more loops. 

To derive an upper bound on the error, we define 𝜈 =
max (|𝐿𝑖|) and substitute 𝜈 for each loop in the relative 

error ratio. For N=3 segment and N=6 segment systems 

the 1st and 2nd order maximum error bounds are given in 

Table 3.  

 

Table 3: Maximum error bound for linearization of order 

O for systems with N segments 

N O Maximum Error Bound 

3 1 8𝜈2 − 3𝜈3 

3 2 𝟐𝟏𝝂𝟑 − 𝟖𝝂𝟒 

6 1 190𝜈2 − 497𝜈3 + 411𝜈4 − 134𝜈5 + 15𝜈6 

6 2
2353𝜈3 − 6239𝜈4 + 5186𝜈5 − 1695𝜈6

+ 190𝜈7 

 

Figure 5 shows the 1st and 2nd order upper error 

bounds for a three-segment system as well as the 2nd 

order error bounds for the four-, five- and six-segment 

systems. This illustrates that the larger the loop terms 

(i.e., 𝜈), the larger the error. Further, the more segments 

in the system, the more variability and thus the higher the  

upper error bound. 

We will use an analytic MC study to validate this 

upper error bound. The exact 𝑆21 (Eqn. 4) and the 2nd 

order linearization (Eqn. 11), are calculated with 𝐴21 =
𝐵21 = 𝐶21 = 1 (representing a lossless system) and with 

random values of 𝐴22, 𝐵11, 𝐵22 and 𝐶11 which are 

calculated as follows. By noting that the diagonal 𝑆𝑖𝑖  

terms of 𝑺 are reflection coefficients, and by utilizing the 

reflection coefficient equation Γ =
𝑍𝐿−𝑍1

𝑍𝐿+𝑍1
 between a load 

impedance of 𝑍𝐿 and a line impedance 𝑍1, we relate the 

line impedance to the load impedance with the ratio  

𝑟, 𝑍1 = 𝑟𝑍𝐿. This leads to Γ =
1−𝑟

1+𝑟
, which gives the 

reflection coefficient in terms of the ratio of impedance 

discontinuity, 𝑟. For the application of high speed 

interconnects, the manufactured characteristic impedance 

variation of mid-priced PCB transmission lines is 

typically +/- 15%. A conservative range for 𝑟 is 0.5 to 

1.5 which relates to an impedance variation of 50% to 

150%. Therefore, each of the 𝑆𝑖𝑖  terms are calculated 

with the random variable 𝑟, drawn from the normal 

distribution 𝒩(1,0.152) which has approximately the 

range of 0.5 to 1.5. The results of the MC study are 

shown in Fig. 6. The upper error bound (given in Table 

3) is not exceeded by 108 MC evaluations of the relative 

error ratio. Although not an absolute proof, this lends 

credibility to the upper bound calculation. The analytic 

MC study procedure is summarized in Table 4. 

 

Table 4: Analytic MC validation of Error Bound for N=3 

segments 

Step Action 

0 Let 𝑨𝟐𝟏 = 𝑩𝟐𝟏 = 𝑪𝟐𝟏 = 𝟏. 

1 Calculate 𝐴22, 𝐵11, 𝐵22 and 𝐶11. 

1a 
Select the ratio of impedance discontinuity, 𝑟, 

from 𝒩(1,0.152). 

1b 
Transform 𝑟 to a reflection coefficient with 

Γ =
1−𝑟

1+𝑟
 and assign to return loss term. 

2 Calculate the exact 𝑆21 from Eqn. 4. 

3 
Calculate the 2nd order linearization 𝑆21

‡
 from 

Eqn. 11. 

4 Calculate the relative error ratio. 

5 Determine the max loop value, 𝜈 = max (|𝐿𝑖|). 

6 Plot 𝜈 vs relative error ratio. 
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Fig. 5. The larger the impedance discontinuities in the 

system the larger the linearization error. The upper error 

bound is reduced by using the 2nd order linearization. 

The upper error bound is also dependent on the number 

of 𝐒 matrix segments in the system, since each additional 

segment increases the number of loops or pairs of 

impedance discontinuities in the system. 

 

 
 

Fig. 6. 100 million MC runs validate the upper error 

bound for three 𝐒 matrix segments with the 2nd order 

linearization of S21. The solid line is the bound from 

Table 3 and the dots are Monte Carlo (MC) experiments. 

 

An empirical MC study of the linearization error 

bound is accomplished by cascading transmission line  

𝑺 matrix models. These models were created using the 

IEEE 802.3bj 2-port differential transmission line model 

(TLM) equations [20] with parameter values from Table 

5. These models are attractive to use, because they are 

readily available and are guaranteed to be causal by 

construction. The DC loss term is 𝛾0, 𝑎1 is the attenuation 

and phase constant proportional to the square root of 

frequency, 𝑎2 is the attenuation and phase constant 

proportional to frequency, and 𝜏 is the primary delay 

constant. 𝑍𝑐 is the differential characteristic impedance, 

and 𝑑 is the transmission line length. The values of the 

behavioral attenuation and phase constants were obtained 

by the standards task force by fitting the equations to 

measured transmission line PCB data [21]. 

 

Table 5: IEEE 802.3bj 2-port differential Transmission 

Line Model (TLM) parameters 

Parameter Value Units 

𝛾0 0 1/mm 

𝑎1 1.734 x 10-3 ns1/2/mm 

𝑎2 1.455 x 10-4 ns/mm 

𝜏 6.141 x 10-3 ns/mm 

𝑍𝑐 𝑈(60, 140) Ω 

𝑑 𝑈(6, 177) mm 

 

The MC study entailed cascading N=3 and N=6 𝑺 

matrix segments to evaluate the linearization error. In 

each case, each 𝑺 matrix segment was obtained by using 

the parameter values in Table 5 and randomly selecting 

the characteristic impedance 𝑍𝑐 from a uniform 

distribution between 60 and 140 Ω and randomly 

selecting the length 𝑑 from a uniform distribution between 

6 and 177 mm. Care must be taken when selecting the 

frequency vector over which the TLM is created. Too 

coarse frequency sampling may lead to an incorrect 

phase delay of the TLM, while too fine frequency 

sampling will add unnecessary computation time with 

minimal improvement in accuracy. 

For each experiment, the maximum error (over 

frequency) was determined, and 𝜈 was found as the 

maximum loop response, max(|𝐿1|, |𝐿2|, … ), at the 

frequency of the maximum error. The empirical MC 

study is summarized in Table 6.  

 

Table 6: Empirical MC validation of error bound with 

transmission line for N=3 and N=6 segments 

Step Action 

0 For each MC experiment, 

1 
Create transmission line 𝑺 matrices from 1 to 

N. 

1a 

Randomly select 𝑍𝑐 ∈ 𝑈(60, 140) and 𝑑 ∈
𝑈(6,177) and use parameter values from 

Table 5. 

1b 
Calculate 𝑺 matrix through and reflection 

terms. 

2 Calculate total 𝑆21 by cascading [6]. 

3 
Calculate 2nd order linearization 𝑆21

‡
 by 

following the procedure in Table 2. 

4 

Calculate the relative error ratio. Find the max 

error and the frequency it occurs at. Find 𝜈 =
max (|𝐿𝑖|) at the max error frequency. 

5 Plot max error vs. 𝜈. 

 

The results for the N=3 and N=6 𝑺 matrix segments 

MC study are shown in Fig. 7. We observe that for 1000 

experiments the error bound is not exceeded. These 

studies further validate the upper error bound and show  
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some of the limitations of the linearization. Systems 

which have many large impedance discontinuities 

(greater than +/- 20% impedance mismatch) have large 

linearization error. Yet even in these situations, the 

linearization may still provide insight into the system and 

could still be the basis of useful analysis techniques. 
 

 
 

Fig. 7. The upper error bound holds for a realistic MC 

experiment from systems with three and six transmission 

line 𝐒 matrix segments. 

 

VI. CONCLUSION 
To better analyze reflective multi-path behavior, this 

paper advocates the use of Mason’s rule, as compared  

to the ABCD matrix approach, for the cascading of 𝑺 

matrix segments. This analytic formulation shows how 

resonant loops in the system give rise to reflective noise. 

A linearization or decomposition of this analytic formula 

allows for the independent analysis of physically 

meaningful terms to quantify how each resonant loop 

contributes to the overall multi-path behavior. An error 

bound is derived and shown to be dependent on the 

number of segments and the magnitude of the largest 

impedance discontinuities in the system. The error bound 

is validated with analytic and empirical MC studies. 

Overall, this linearization can yield more insight into the 

reflective behavior of complex systems and provide 

avenues to unique analysis techniques that will improve 

the design process of signal integrity interfaces or 

provide the capability to enable a reflective interference  

budgeting methodology. 

The 𝑺 matrix linearization method has been applied 

to optimizing a CEI 28G-VSR signal integrity interface 

[19, 22]. Here the first order linearization could 

successfully quantify the impact on receiver performance 

of each pair of impedance discontinuities. 

Future work will explore applications of reflective 

interference budgeting for high-speed communication 

computer interfaces, sensitivity analysis of systems to 

catastrophic resonant behavior and interconnect 

optimization. 
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