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Abstract ─ The paper presents a mathematical model  

of an ideal filamentary coil with a finite number of 

turns, derived by means of the method called truncated 

region eigenfunction expansion (TREE). The proposed 

solution allows quick computation of the filamentary 

coil impedance as well as of the impedance changes 

caused by the presence of a two-layered conductive 

material. The final formulas were presented in the 

closed form and implemented in Matlab. The results 

were verified using the finite element method in the 

COMSOL Multiphysics package as well as by means of 

other mathematical models. In all cases they show a 

very good agreement. The obtained values of coil 

impedance changes were compared in terms of the time 

of reaching the final results. In the case of the most 

significant calculations, which consisted of many 

iterations, the proposed solution turned out to be by far 

the fastest one. 

 

Index Terms ─ Eddy current testing, impedance 

calculation, single turn coil, truncated region 

eigenfunction expansion.  
 

I. INTRODUCTION 
Mathematical models of probes are applied in eddy 

current testing, both in the process of interpreting the 

results and in calculating the values of the measuring 

system parameters. The derivation of expressions 

describing a change in coil impedance makes it possible 

to obtain information about electrical and geometrical 

properties of the workpiece. Such an opportunity can be 

used to detect flaws in materials being examined, derive 

the thickness of coating or for electrical conductivity 

measurements. 

What is highly useful for the optimum choice of 

the probe’s geometrical dimensions or creating a scale 

of the measuring device are mathematical models of the 

ideal filamentary coil. Such a coil, shown in Fig. 1, is 

made of N infinitely thin turns concentrated in a circle 

of radius r0 and situated at a distance h0 from the 

surface of the investigated material. According to the 

method described in [1], any cylindrically symmetric 

coil used for eddy current tests can be experimentally 

associated with a filamentary coil with the same 

number of turns and with the corresponding parameters 

r0 and h0. The authors successfully apply this method  

to device calibration and in eliminating the influence  

of undesired factors on the test result. Probes of very 

different structures are compared using an ideal coil 

that has only three parameters: equivalent radius r0, 

equivalent distance h0 and the number of turns N. On 

the basis of the proposed mathematical model of such a 

coil, it is possible, for any real coil, to apply the same 

mechanism of calculating the measured values and 

eliminating the influence of factors that disturb the 

measurement. Complex and time-consuming calculations 

are replaced with much faster ones performed for the 

ideal filamentary coil. 

 

 
 

Fig. 1. Filamentary coil located above a two-layered 

conductive half-space. 

 

A single turn coil situated above a conductive half-

space was analyzed by Cheng [2] and then by Dodd and 

Deeds [3] using a computer program. In subsequent 

papers, the Legendre functions Q, elliptic integrals E 

and K [4] and the perturbation method [5] were applied. 

The problem of the ideal filamentary coil with N turns 

was presented in [6]. The final formulas describing the 

change in coil impedance due to the presence of a 

conductive half-space were derived using the Hankel 

transform. These expressions were verified many times, 
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they were thoroughly examined and used, inter alia, in 

[7]. 

In the present paper a mathematical model, created 

by the aid of the Truncated Region Eigenfunction 

Expansion (TREE) method, of the filamentary coil with 

N turns situated above a two-layered conductive 

material, was proposed. The domain of the problem was 

truncated to a cylinder of radius b. The final formulas 

for coil impedance were presented using matrix 

notation not containing integrals and were implemented 

in Matlab. The results were verified by the finite 

element method (FEM) in the COMSOL Multiphysics 

package and by means of other mathematical models. 

The obtained values showed a very good agreement in 

all cases and the time of making calculations based on 

the proposed method turned out to be the shortest. 

 

II. SOLUTION 
The problem illustrated in Fig. 2 was solved by the 

TREE method described in detail in [8] and applied  

in [9-13]. The filamentary coil composed of N turns 

concentrated in a circle of radius r0 was situated at  

a distance h0 from the surface of a two-layered 

conductive material with relative permeability μ3, μ4 

and electrical conductivity σ3, σ4. The conductive 

material has the shape of a cylinder whose radius has 

been truncated to the b parameter value. The problem 

was split into 4 regions for which the magnetic vector 

potential Aφ was written using a series: 
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Fig. 2. Rectangular cross-sectional filamentary coil 

located above a two-layered conductive half-space. 

 

Discrete eigenvalues qi and coefficients s3i, s4i were 

computed from equations (5)-(7): 

 1( ) 0,iJ q b        0,1, 2... .i Ns  (5) 

 
2

3 0 3 ,3i is q j     (6) 

 
2

4 4 0 4 .i is q j     (7) 

At the next stage, the magnetic vector potential Aφ, 

expressed in (1)-(4) by a series, was written for every 

region of the problem using matrix notation: 
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q s s  are diagonal matrices, 

Ci, Bi are column vectors of unknown coefficients. 

The continuity of the Br and Hz components on the 

interfaces between neighboring regions of the problem 

was ensured after satisfying the following conditions 

for the magnetic vector potential. 
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where 0 0( )I r r    is current density. 

By solving a system of six interface equations, the 

Ci and Bi coefficients were derived and, subsequently, 

they were used to write an expression for the magnetic 

vector potential of the filamentary coil with N turns.  
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The general formula for coil impedance can be 

shown in the following form: 
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By setting (14) in (19), an expression describing 

the impedance of the filamentary coil placed above the 

two-layered conductive material was obtained: 
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where 

 4 3,  1 3 4k s s  (21) 

 4 3,  2 3 4k s s  (22) 

 3 , 3 3k q s  (23) 

 3 . 4 3k q s  (24) 

The change in the filamentary coil impedance ΔZ 

due to the presence of the two-layered conductive 

material is represented by the second addend in (20) 

which can be written as: 
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In the case shown in Fig. 3 in which the conductive 

material consists of one layer only, we obtain: s3 = s4, 

μ3 = μ4, σ3 = σ4, l1 = 0 and equation (25) is reduced to 

the form: 
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Fig. 3. Rectangular cross-sectional filamentary coil 

located above a conductive half-space. 

 

III. COMPARISON WITH OTHER MODELS 
The verification of obtained results was conducted 

by the aid of 3 mathematical models. The first one was 

created in the COMSOL Multiphysics package in 

which the finite element method is used in calculations. 

In region 2, between the coil and the surface of the 

investigated material, a mesh that consisted of around 

20000 triangular elements and 400 edge elements was 

adaptively refined. 

Calculations were made also by extending the 

mathematical model of a single turn coil proposed by 

Cheng [2]. Taking into consideration a finite number of 

turns N and a conductive half-space consisting of two 

layers, a change in the impedance of such a coil was 

written in the following form: 
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In the third mathematical model, described in [7], 

the infinite integration range was replaced with a sum 

of integrals whose boundaries were zeros of the Bessel 

function J1(x) normalized in relation to the β parameter. 

As a consequence, the integration in (28) is performed 

many times but only for relatively small intervals. 

 

1

2 2
0 0 1

0

1 2 2 1 2 2

1 2 2 1 2 2

( )

( )( )e ( )( )
,

( )( )e ( )( )

k

k

Ns
q

k

Z j r N e J q

f f q f f f f q
dq

f f q f f f f q



 



    










 

    

    

 

 

(28) 

where 

 

0

0

2
,

h

r
   (29) 

 0 0 3 ,r    (30) 

 

2 4
1

3

,f q j



   (31) 

 
2

2 ,f q j   (32) 

 

,k
k

q



  (33) 

 1 2 0 32 .l f       (34) 

Expressions (25), (27) and (28) were implemented 

in Matlab where the Newton-Raphson method was 

applied to determine the zeros of the Bessel function 

J1(x). The obtained values of coil impedance change 

were compared with the results from the COMSOL 

package. The relative difference of resistance δR and the 

relative difference of reactance δX were used for this 

purpose: 
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IV. RESULTS 
The calculations of the coil impedance changes  

ΔZ = ΔR + j ΔX were carried out using expression (25) 

for 50 frequency values from the range 100 Hz to 100 

kHz. The parameters of the coil and of the two-layered 

conductive material are presented in Table 1. 

Calculations were also made for the second coil of 
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radius r0 = 12 mm. The results, normalized in relation 

to reactance X0 and verified in the COMSOL package, 

are shown in Fig. 4 and 5. The difference between the 

ΔZ values obtained using the TREE and the FEM 

methods did not exceed in any case 0.2 %. 
 

Table 1: Parameters of the coil and plate used in 

calculations 

Number of turns N 100 

Coil radius r0 8 mm 

Parameter h0 1 mm 

Parameter l1 1.5 mm 

Conductivity  3 57 MS/m 

Conductivity  4 15.9 MS/m 

Relative permeability  3 1 

Relative permeability  4 1 

Summation terms Ns 150 

Radius of the domain b 10 r0 

 

The calculations for the filamentary coil of radius 

r0 = 8 mm were performed also with expressions (27) 

and (28). In addition, for the TREE method, the second 

set of parameter values was applied, assuming Ns = 25 

and b = 5r0. The obtained ΔZ results for the frequency  

f = 1 kHz and f =100 kHz are shown in Table 2 and  

the times of calculations for each of the mathematical 

models are included in Table 3. The changes in the 

filamentary coil impedance were derived for 1 and 

10000 different frequency values, respectively, using  

a computer with an Intel Pentium E2220 2.4 GHz 

processor equipped with the 4 GB RAM. 

It results from the data shown in Tables 2 and 3 

that all the mathematical models that have been used 

make it possible to derive changes of the filamentary 

coil impedance with a very high degree of accuracy. In 

such a situation it is the fulfillment of the requirements 

regarding the time of obtaining the final results that  

is becoming the key aspect which determines the 

usefulness of a given mathematical model. The 

calculations led to the conclusion that the model created 

using the TREE method turned out to be by far the 

fastest one. Its advantage over the other solutions is  

most visible with a large number of iterations. It is 

possible to obtain results in such a short time thanks to 

precomputations. In the first iteration all calculations 

are performed and in the subsequent ones only those 

that depend on the variable input parameter. 

 

 
 
Fig. 4. Real part of the normalized impedance change 

as a function of frequency for filamentary coil. 

 

 
 
Fig. 5. Imaginary part of the normalized impedance 

change as a function of frequency for filamentary coil. 
 

Table 2: Values of changes in the filamentary coil impedance 

 
Z () 

f  = 1 kHz δR [%] δX [%] f  = 100 kHz δR [%] δX [%] 

FEM 0.267 – j 0.467 --- --- 5.561 – j 88.596 --- --- 

Eq. (27) 0.267 – j 0.468 -0.01 -0.18 5.561 – j 88.680 0.00 -0.10 

Eq. (28) 0.267 – j 0.468 0.01 -0.18 5.557 – j 88.676 0.07 -0.09 

TREE Eq. (25)  

Ns = 150  b = 10r0 
0.267 – j 0.467 -0.01 -0.01 5.561 – j 88.601 0.00 -0.01 

TREE Eq. (25)  

Ns = 25  b = 5r0 
0.267 – j 0.462 0.03 1.21 5.503 - j 87.936 1.05 0.75 
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Table 3: Comparison of calculation times for different 

mathematical models 

 
Computation Time (s) 

1 Iteration 10 000 Iterations 

FEM  7 58148 

Eq. (27) 0.06 233.8 

Eq. (28) 0.07 70.1 

TREE Eq. (25) 

Ns = 150  b = 10r0 
0.04 10.2 

TREE Eq. (25) 

Ns = 25  b = 5r0 
0.03 3.2 

 

In all the mathematical models being compared it  

is possible to shorten the time of making calculations  

at the expense of the result accuracy. In the COMSOL 

package the computations may be accelerated by 

reducing the number of mesh elements and in 

expressions (27) and (28) by diminishing the accuracy 

of the numerical integration procedure. In both cases 

errors in the derivation of impedance will be 

significantly greater. In case when the FEM software is 

used the computation time can be reduced as well by 

execution of preliminary calculations, e.g., by means of 

the perturbation method. In the TREE method the time 

of obtaining results depends primarily on the matrix 

size specified by the parameter Ns. The number of 

matrix elements, indeed, determines the number of 

arithmetic operations carried out in the computer 

program. Increasing the Ns value makes the calculations 

longer but at the same time it reduces the error and 

requires a larger solution domain defined by the 

parameter b. Both when the Ns value is too large and 

when it is too small with regard to the parameter b,  

the results are affected by significant error. The way 

how these parameters are selected, being usually a 

compromise between the computation time necessary to 

achieve the desired results and the acceptable error, is 

described in [8] more in details. 

 

V.CONCLUSION 
The paper presents a mathematical model of the 

ideal filamentary coil with N turns situated above a 

two-layered conductive material. An expression that 

describes the change in the impedance of such a coil 

due to the presence of the investigated material was 

derived by means of the TREE method. The ΔZ values 

calculated by applying the proposed solution were 

verified by means of the finite element method and the 

difference did not exceed in any case 0.2%. The time of 

obtaining the final results was compared with another 3 

mathematical models. The application of precomputation 

and the replacement of integration with matrix operations 

made it possible to derive impedance changes in a 

significantly shorter time than using the other solutions. 

Such a difference was particularly visible in the case  

of the most relevant calculations composed of many 

iterations. The mathematical model shown in the 

present paper can be implemented directly in an eddy 

current device. It can be used to create a scale of the 

measuring device as an equivalent for real coils of any 

structure, too. 
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