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Abstract ─ The relation between the manifold matrix  

of the array and the synthesized beampattern is 

investigated. The synthesized beampattern can be 

obtained by eigenvalue decomposition of the projection 

matrix of the array manifold matrix, while the least 

square error reaches the minimum. For an antenna array 

whose manifold matrix has been determined, the 

projection matrix can be derived easily from the array 

manifold matrix. Then, eigenvalue decomposition of 

the projection matrix is implemented to obtain the 

synthesized beampattern. The antenna element 

excitations can be obtained by an ameliorated least 

square method. The results of the simulations compared 

with the traditional least square method show that the 

matching degree between the targeted beampattern and 

the synthesized beampattern of the new method is 

higher and that the new method is more efficient.  

 

Index Terms ─ Array manifold matrix, beampattern 

synthesis, eigenvalue decomposition, least square 

method, projection matrix. 
 

I. INTRODUCTION 
Beampattern synthesis of the antenna array and 

beamforming technology have been broadly studied and 

used in the domains of multiple-input multiple-output 

(MIMO) radar and smart antenna for several decades. 

In the early phase of development, beamforming was 

accomplished in the radio frequency front end by phase 

shifters and radio amplifiers weighting the antenna 

element excitations. This structure is cumbersome, 

sizable, and inflexible. As microelectronic and digital 

technology develop, beamforming is achieved by digital 

signal processing techniques. The most researched topic 

is the receiving beamforming, in which the received 

antenna element signals are weighted to form the 

expected beampattern. Many approaches for 

beamforming have been developed by researchers. One 

method is the well-known capon beamforming [1,16]. 

Another approach views beamforming as a nonlinear 

optimization problem to obtain the antenna element 

excitations or the weighting vector. This method has 

been used in several recent studies [2-7]. However, it is 

well known that convex optimization approach is an 

iterative method for pattern synthesis in most cases.  
Currently, with the development of signal 

processing technology, many articles have been 

published. In the literature [8], an optimization method 

of an arbitrary side-lobe attenuation level was provided. 

The literature [9] discussed a beamforming approach 

for wideband use in MIMO systems. In the literature 

[10], a compressed sensing method was applied for 

beamforming. An ameliorated difference genetic 

algorithm for beamforming was proposed in the 

literature [11]. In the literature [12], the beamforming 

method under the constraint of l1-norm minimization 

was investigated. Phased array beam steering through 

serial control of the phase shifters was presented in 

another article [13].  

The least square (LS) method is a classic approach 

that has been used broadly in many areas [14]. A 

steerable least square approach was presented in a 

further article [15]. Reference [17] studied the phase 

and pattern characteristics of a sub-wavelength 

broadband reflectarray unit element based on triple 

concentric circular-rings.     

In the methods mentioned above, the expected 

beampatterns are often presumed in advance as a 

determined vector to lower the complexity of 

beamforming and to reduce the computing amount.  

However, none of these methods investigates the 

relation between the manifold matrix of array and      

the targeted beampattern. In this paper, the relation 

between the manifold matrix of array and the targeted 

beampattern is investigated. The synthesized beampattern 

can be obtained by eigenvalue decomposition of the 

projection matrix of the array manifold matrix, while 

the least square error reaches the minimum. Then, the 
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antenna element excitations can be obtained through   

an ameliorated least square method. Compared with  

the traditional least square method, the synthesized 

outcomes of the new approach are more efficient and 

have better agreement with the expected beampattern. 

In addition, the new method is a non-iterative approach 

for pattern synthesis. 

The rest of this paper is organized as follows: 

Section II presents the beampattern synthesis paradigm; 

Section III provides the eigenvalue decomposition 

method for beampattern synthesis; Section IV shows 

the solution of the array excitation by an ameliorated 

least square method; Section V discusses the new 

approach and compares the results with the traditional 

least square method; and Section VI draws a conclusion. 

 

II. BEAMPATTERN SYNTHESIS 

PARADIGM 
Consider an N-element d-spaced uniform linear 

antenna array, where all the elements are isotropic. 

Assume all the antenna elements transmit a narrow-

band beam with a central wave length λ. We investigate 

the far-field scenario. The antenna elements are arranged 

as shown in Fig. 1, numbered from 1 to N.    
 

... ...θ

1     2     3         ...      i     i+1   ...       N  
 
Fig. 1. Arrangement of the uniform linear antenna array. 

 

In Fig. 1, the angle between the signal and the axis 

of the array is denoted as θ, in the far field, the formed 

beampattern can be written as:   

 
1

2π

0

=
N

j id cos /

i

i
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



  (1) 

In equation (1), Wi is the i+1th antenna element’s current 

excitation. 

Let 2π 2π 1( )=[1, ,..., ]j d cos / j d( N )cos / Te e    
a

 
be the 

steering vector with superscript T denoting the transpose 

operation. Denote the antenna element excitation vector 

as W=[W0,W1,...,Wi,...,WN-1]T. Thus, equation (1) can be 

expressed as:   

 = ( ) .Ts a W  (2) 

Set θ in the interval of [0°,180°]. Denote its 

discrete value as θ1, θ2, ..., θk, ..., θK. If the targeted 

beampattern vector is: 

 
1 2

1 2

=[ ( ), ( ),..., ( ),..., ( )]

  [ , ,..., ,..., ] ,

T

k K

T

k K

P P P P

P P P P

   



P
 (3) 

then, the objective of the beampattern synthesis is to obtain 

the weighting vector by solving the equation:   

 1 2([ ( ), ( ),..., ( ),..., ( )] ,T

k Kabs     a a a a W P)  (4) 

where abs denotes the absolute value operation.  

Let A=
1 2[ ( ), ( ),..., ( ),..., ( )]k K   a a a a , where A is 

the array manifold matrix; therefore, equation (4) can 

be expressed as:  

 ( ) .Tabs A W P  (5) 

It is difficult to solve this equation directly because this 

equation is considered an overdetermined equation in 

most cases.  

To solve this equation, traditional practice is to 

transform equation (5) into either:   

 ,T A W P  (6) 

or 

 
2

     .Tmin A W P-  (7) 

In equation (7), ||•|| denotes the vector length operation.   

Compared with equation (5), equations (6) and (7) 

remove the absolute value operation and simplify the 

solving process. There are many traditional methods    

to solve equations (6) and (7). Obviously, removing   

the absolute operation of equation (5) largely simplifies 

the process, however, it also causes less agreement 

between the synthesized beampattern and the expected 

beampattern. Hence, in the following sections of this 

paper, a novel approach is presented to solve equation 

(5).  
 

III. BEAMPATTERN SYNTHESIS BY 

EIGENVALUE DECOMPOSITION 
To solve equation (5), an intermediate vector F is 

used to satisfy: 

 ,T A W F  (8) 

 ( )abs .F P  (9) 

First, equation (9) can be solved; its solution is: 

 
1 2

1 2

1 2

( , ,..., )
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diag e e e

Pe P e P e

  

  
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In this equation, diag denotes the diagonal matrix, and 

k (k=1,2,...,K) is an arbitrary angle variable. Therefore, 

we can obtain: 

 1 2

1 2( )= [ , ,..., ] ,Kj j j* T

Kdiag diag Pe P e P e
    

F  (11) 

where * denotes the conjugate operation. 

Then, equation (9) can be transformed into: 
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1 2

2 2 2
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K
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Hence, equation (8) can be transformed into: 

 ( *) ( *) ( )Tdiag diag diag . F A W F F P P  (13) 

Denote ( *) TdiagG F A  and ( )diagM P P . Then, 

equation (13) can be rewritten as: 

 .GW M  (14) 

Its least square solution is: 

 1

LS ( .H HW G G G M)  (15) 
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In equation (15), superscript H denotes the conjugate 

transpose operation.  

According to the projection theory, equation (15) 

means that while M is projected into the column vector 

space of the G matrix, the error between the synthesized 

beampattern obtained by WLS and M reaches the 

minimum [14]. It is easy to determine that the 

projection vector from M to matrix G’s column vector 

space is [14]:           

 1

G ( .H HP G G G G M)  (16) 

Its error vector is [14]:   

 1

G ( ( ,H H E E G G G G M) )  (17) 

where E is a unit matrix. 

Obviously, the minimum of the error is 0 vector, 

i.e., EG=0. Hence, in this situation:  

 1

G ( ( .H H  ) ) =E E G G G G M 0  (18) 

Taking a step forward, we can obtain: 

 1( 1 .H H ) = =G G G G M EM M  (19) 

Equation (19) means M is the eigenvector of the matrix 
1( H H

G G G G)  to the eigenvalue of 1. 

Therefore, the synthesized beampattern Q can be 

obtained from the eigenvalue decomposition of the matrix 
1( H H

G G G G) . Q is the eigenvector to the eigenvalue of 

1. From Q, the array element excitation vector can be 

obtained. 
 

IV. THE SOLUTION OF THE ELEMENT 

CURRENT EXCITATIONS 
After eigenvector Q is substituted into equation 

(14), the following equation can be obtained: 

 .GW Q=  (20) 

Substituting ( *) TdiagG F A  into equation (20), 

we can obtain: 

 diag ( *) .T W F A W QG  (21) 

From equation (21), we can obtain: 

 1(diag ( *)) .T A W F Q  (22) 

Let 1(( ( *)) )diag diag D F Q  and TB A ; then, 

the steerable least square solution W of equation (22) 

can be obtained as [15]: 

 
1 1 1( (diag ( *)) ,H l H  W B D B B F Q( ) )

 
(23) 

where l is an integer variable. 
 

V. THE SIMULATIONS AND RESULTS 
In this section, three examples are conducted to 

demonstrate the new approach’s performance.  

Consider an N-element d-spaced uniform linear 

antenna array, where all the elements are isotropic. 

Assume all the antenna elements transmit a narrow-

band beam with a central wave length λ . We investigate 

the far-field scenario. The antenna elements are arranged 

as shown in Fig. 1, numbered from 1 to N. Let d=λ /2 .  

Given that the beampattern is a periodic function of 

θ, we set θ in a cycle interval of [0°,180°]. Let θ’s 

discrete value θ1, θ2, ..., θk, ..., θK be 0°, 1°, …, 179°, 

180°, in sequence. These settings are consistent with  

real practice and facilitate digital processing.  

In the first example, let N=21, and the expected 

beampattern is created by uniform element excitation. 

The targeted beampattern can be obtained by:      

 0

1
2π ( )

0

= ,
N

j id cos cos /

i

s I e
  






  (24) 

where θ is the signal transmitting angle as shown in 

Fig. 1, θ0=π/2 is the scan angle, and I is the amplitude 

of the antenna element current excitation. 

Let F=P; the simulation outcomes are shown in 

Fig. 2. In the legend column of Fig. 2, the target 

denotes the expected beampattern created by equation 

(24); LS refers to the traditional least square solution of 

equation (6); eigen marks the synthesized beampattern 

that is the eigenvector to the eigenvalue of 1 obtained 

from eigenvalue decomposition of the matrix 
1( H H

G G G G) ; the beampattern of eigen is substituted 

into equation (23) to obtain the array element excitation 

and l=0, l=1, l=2, l=3, l=4 indicate the beampatterns 

created by the element excitation of equation (23), 

while l has different values.  

 

 
 

Fig. 2. The outcomes of the first simulation (N=21).  

 

In Fig. 2, the main-lobe of the targeted beampattern 

is in the range [84°,96°], with the highest level at 

θ=90°. Its first side-lobe peak level is -13.6 dB. The 

main-lobe of the least square method is in the range 

[84°,106°], with the highest level at θ=97°. Its side-lobe 

peak level is -12.5 dB at θ=126°. The beampattern of 

the eigenvalue decomposition method and the targeted 

beampattern overlap in range from the left second side-
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lobe to the right second side-lobe. In the other range, 

while θ is moving farther away from θ=90°, the gain of 

the eigenvalue decomposition beampattern gradually 

decreases more than that of the targeted beampattern. 

The beampattern created by equation (23), while l=0, 

has no apparent main-lobe or side-lobe. The beampattern, 

created by equation (23) while l=1, has an apparent 

main-lobe but no side-lobe. Its main-lobe is in the range 

of [85°,95°], with the highest level at θ=90°. Its        

first side-lobe peak level is -5.5 dB. While l=2, the 

beampattern created by equation (23) nearly overlaps 

with the beampattern of the least square method. The 

beampatterns created by equation (23), while l=3 and 

l=4, nearly overlap with the targeted beampattern.  

It can be seen from Fig. 2 that the synthesized 

beampattern from eigenvalue decomposition, and the 

outcomes, while l=3, l=4, all have better agreement 

with the targeted beampattern than the outcome 

produced by the traditional least square method.     

In the second example, let N=15, where all other 

conditions are the same as those in the first example. 

The expected beampattern is created by equation (24), 

with uniform element excitation. The simulation 

outcomes are shown in Fig. 3. In the legend column of 

Fig. 3, the target denotes the expected beampattern 

created by equation (24); LS refers to the traditional 

least square solution of equation (6); eigen marks the 

synthesized beampattern that is the eigenvector to the 

eigenvalue of 1 obtained from eigenvalue decomposition 

of the matrix 1( H H
G G G G) ; the beampattern of eigen 

is substituted into equation (23) to obtain the array 

element excitation and l=0, l=1, l=2, l=3, l=4 indicate 

the beampatterns created by the element excitation of 

equation (23), while l has different values. 

In Fig. 3, the main-lobe of the targeted beampattern 

is in the range [82°,98°], with the highest level at 

θ=90°. Its first side-lobe peak level is -13.2 dB. The 

main-lobe of the least square method is in the range 

[90°,106°], with the highest level at θ=97°. Its side-lobe 

peak level is -1.5 dB at θ=82°. The beampattern of the 

eigenvalue decomposition method and the targeted 

beampattern overlap in the main-lobe range. In the 

other range, while θ is moving farther away from 

θ=90°, the gain of the eigenvalue decomposition 

beampattern gradually decreases more than that of the 

targeted beampattern. The beampattern created by 

equation (23), while l=0, has no apparent main-lobe or 

side-lobe. The beampattern created by equation (23), 

while l=1, has an apparent main-lobe but no side-lobe. 

Its main-lobe is in the range [82°,98°], with the highest 

level at θ=90°. Its first side-lobe peak level is -5.3 dB. 

While l=2, the beampattern created by equation (23) 

nearly overlaps with the beampattern of the least square 

method. While l=3 and l=4, the beampatterns created  

by equation (23) nearly overlap with the targeted 

beampattern. 
 

 
 

Fig. 3. The outcomes of the second simulation (N=15).  

 

It can be seen from Fig. 3 that, once again, the 

synthesized beampattern of eigenvalue decomposition, 

and the outcomes, while l=3, l=4, all have better 

agreement with the targeted beampattern than the 
outcome produced by the traditional least square 

method.  

In the third example, let N=23, and in the targeted 

beampattern, there exists a null beam, where θ is in the 

scope from 116° to 123°, with a lowest attenuation of   

-81 dB at θ=116°. Except for these values, other 

conditions are the same as those in the first example. 

The expected beampattern is still created by equation 

(24), with uniform element excitation. The simulation 

outcomes are shown in Fig. 4. In the legend column of 

Fig. 4, the target denotes the expected beampattern 

created by equation (24); LS refers to the traditional 

least square solution of equation (6); eigen marks the 

synthesized beampattern that is the eigenvector to the 

eigenvalue of 1 obtained from eigenvalue decomposition 

of the matrix 1( H H
)G G G G ; the beampattern of eigen 

is substituted into equation (23) to obtain the array 

element excitation and l=0, l=1, l=2, l=3, l=4 indicate 

the beampatterns created by the element excitation of 

equation (23), while l has different values.  

In Fig. 4, the main-lobe of the targeted beampattern 

is in the range [85°,95°], with the highest level at 

θ=90°. Its first side-lobe peak level is -13.5 dB. The 

main-lobe of the least square method is in the range 

[81°,95°], with the highest level at θ=88°. Its side-lobe 

peak level is -6.1 dB at θ=113°. The beampattern of the 

eigenvalue decomposition method and the targeted 

beampattern overlap in range from the left first side-
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lobe to the right first side-lobe and null beam scope. In 

the other range, while θ is moving farther away from 

θ=90°, the gain of the eigenvalue decomposition 

beampattern gradually decreases more than that of     

the targeted beampattern. The beampattern, created by 

equation (23), while l=0, has no apparent main-lobe or 

side-lobe. The beampattern, created by equation (23), 

while l=1, has an apparent main-lobe but no side-lobe. 

Its main-lobe is in the range [85°,95°], with the highest 

level at θ=90°. Its first side-lobe peak level is -6.7 dB. 

While l=2, the beampattern created by equation (23) 

nearly overlaps with the beampattern of the least square 

method. While l=3 and l=4, the beampatterns created  

by equation (23) nearly overlap with the targeted 

beampattern in the range where the null beam is not 

located. Only the targeted beampattern, the beampattern 

of the eigenvalue decomposition approach, and the 

beampattern created by equation (23), while l=4, have 

null beams in the same range; other beampatterns all 

have no null beam. The beampattern created by equation 

(23), while l=4, has a null beam with the lowest level,   

-79 dB at θ=116°. 
 

 
 

Fig. 4. The outcomes of the third simulation (N=23).  

 

It can be seen from Fig. 4 that, once again, both the 

synthesized beampattern from eigenvalue decomposition 

and the outcome, while l=4, have better agreement with 

the targeted beampattern than the outcome produced by 

the traditional least square method. In particular, at    

the null beam zone, both the beampattern synthesized 

from eigenvalue decomposition and the outcome, while    

l=4, have much better agreement with the targeted 

beampattern, and the outcome produced by the 

traditional least square method has no apparent null 

beam.  

From these examples, we can learn that the new 

method has better performance than the traditional least 

square method, and while l increases from 1 to 4, the 

beampattern created by the element excitation of 

equation (23) gradually matches the targeted pattern 

better and better. We simulate the new approach using 

the MATLAB software platform on an HP notebook  

PC with a core i5-5200U CPU and a 4G memory. All 

simulations in this paper take approximately less than 

one second to obtain the final outcomes.  

 

VI. CONCLUSION   
The synthesized beampattern can be obtained by 

eigenvalue decomposition of the projection matrix of 

the array manifold matrix, while the least square error 

reaches the minimum. For an antenna array whose 

manifold matrix has been determined, the projection 

matrix can be derived easily from the array manifold 

matrix. Then, eigenvalue decomposition of the 

projection matrix is conducted to obtain the synthesized 

beampattern, and the antenna element excitations can 

be solved by an ameliorated least square method. The 

results of the simulations compared with the traditional 

least square method show that the matching degree 

between the targeted beampattern and the synthesized 

beampattern of the new method is higher and that the 

new method is more efficient. 
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