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Abstract ─ The paper presents a method of analysis of 

eddy currents induced in a system of two parallel round 

conductors by a transverse alternating magnetic field 

generated by a current in one of them. The magnetic field 

is represented by means of magnetic vector potential as 

expansion into Fourier series. Using the Laplace and 

Helmholtz equations as well as the classical boundary 

conditions we determine analytically the current density 

induced due to the proximity effect. Power transmission 

lines with round conductors are widely used in 

distribution networks. Therefore, although the paper  

is theoretical, the determination of electromagnetic 

parameters of the power transmission lines is of huge 

practical significance.  

 

Index Terms  ─ Current density, eddy currents, proximity 

effect, round conductor.  
 

I. INTRODUCTION 
A system of two or more round wires is very often 

used in power transmission lines. For example, in a three 

phase cable line there are often three round wires as a 

three-core cable or three single-core cables in the trefoil 

or the flat formation [1]. In each conductor, eddy 

currents are induced by magnetic field generated by 

neighboring alternating currents. The eddy currents 

induced in the conductors affect considerably the 

physical quantities related with the wires, such as 

impedances, electromagnetic field and power losses  

[2-4]. 

In order to calculate the current density induced in a 

twin line built from solid conductors of circular cross 

section a series of analytical [5-9] and numerical 

methods [10-13] are used. One of them consists in 

replacing the source wire with a current filament placed 

on the axis of the wire. Then the eddy currents induced 

in the second round wire may be determined analytically, 

e.g., they can be deduced from the solution for tubular, 

screen [14-16] after assuming that the inner radius equals 

zero. 

In this paper we propose the method of successive 

approximations for calculating eddy currents induced in 

the round conductor using the magnetic vector potential. 

The determined current densities can be used to calculate 

impedances, magnetic field and power losses resulting 

from induced eddy currents. 

The geometry of the system under consideration is 

shown in Fig. 1. The radii of the conductors are R1 and 

R2 respectively and the distance between the conductor 

axes is d. A sinusoidal current of angular frequency  

ω and complex r.m.s. value I1 flows through the first 

(source) conductor. 
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Fig. 1. Eddy currents induced in a round conductor (on 

the left) by the magnetic field of the neighboring 

conductor (on the right). 

 

There are two kinds of induced eddy currents. The 

first one consists in inducing eddy currents J21(r, θ) = 

1zJ21(r, θ) in the second conductor by time harmonic 

magnetic field Hs(rXY) (“source field”) generated by 

current I1 in the first conductor. The second one is the 

current density J1,21(ρ, φ) induced in the first tubular 

conductor by previously induced current density J21(r, 

θ). 

In [9] current I1 in the first round conductor was 

assumed to be located at the wire axis as a filament 

current. Then the magnetic field of the first conductor 

was represented by means of the magnetic vector 
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potential expanded into Fourier series. In the non-

conducting external region, the Laplace equation was 

used to determine the magnetic field strength with taking 

into account the reverse reaction of the eddy currents 

induced in the considered conductor. The Helmholtz 

equation supplemented with classical boundary conditions 

was used to determine the eddy current density. The final 

formulas obtained in this procedure are as follows: 

 The current density in the second round conductor 

induced by current I1 flowing through the first one: 
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in which In-1 and In+1 are the modified Bessel functions 

of the first kind of orders n–1and n, respectively; 

 The complex propagation constant: 
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where σ2 is the conductivity and μ2  is the permeability 

of the second round conductor; 

 By analogy, the current density in the first tubular 

conductor induced by current I2 flowing through the 

second one is: 
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in which the complex propagation constant of the first 

round conductor is defined by the formula: 

  









4
jexp j
π

σωμσωμΓ 11111 , (4) 

where σ1 is the conductivity and μ1 the permeability of 

the first round conductor. 

However, it should be realized that the induced 

current given by Eq. (1), from now on denoted as 

),(
)1(

21 θrJ  and called the first approximation of the total 

induced current density in wire 2, induces also a current 

of density ),(
)1(
21,1 φρJ  in the first conductor, which in 

turn induces the current density ),(
)2(

21 θrJ  which adds to 

),(
)1(

21 θrJ  in the second conductor. Hence, the current 

density in the second conductor can be regarded as the 

following sum: 
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where 
)(

21

m
J  is the mth term of current density induced in 

the second round conductor. In previous works, e.g., [9, 

14-16], the focus was directed on ),(
)1(

21 θrJ . In this 

paper, the aim is to determine the second approximation. 

 

II. THE FIRST APPROXIMATION 
Let us consider two round parallel conductors. 

Conductor 1 of conductivity σ1 and radius R1 leads a time 

harmonic current of r.m.s. I1 and angular frequency ω. 

The second conductor of conductivity σ2 and radius R2 is 

affected by the magnetic field generated by the first 

conductor (Fig. 2). 

 

 

R2 

rXY,vw 

y' 
y 

x' 

x 

d 

Y(ρv,φw,z) 

σ2 

J21 σ1 

θ 

r 

2 
μ0 

φw 
ρv 

R

1 

I1,vw 

X(r,θ,z) 

ξvw 
ψvw 

I1 

1 

 
 

Fig. 2. Conductor 2 (on the left) in non-uniform magnetic 

field due to current I1 in conductor 1 (on the right). 

 

In general, the current density in the first conductor 

is non-uniform. Therefore, the cross section of the first 

round conductor is divided into elementary segments of 

radial dimension: 

 
V

R
ρΔ 1 , (6) 

and angular span: 

 
W

π
φΔ

2
 , (7) 

as shown in Fig. 3. 
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Fig. 3. Division of conductor 1 into segments. 

 

For low frequency, we can assume that the total 

current I1 is represented by a set of V×W filament 

currents distributed discreetly at points Y(ρv, φw) in 

cylindrical coordinates system determined by radius: 

  
2

12
ρΔ

vρv  , (8) 

and angle: 

  
2

)12(
φΔ

wφw  , (9) 

where v = 1, 2, …, V and w = 1, 2, …, W. The area of 

such a segment equals: 

  φΔρΔρS vvw    . (10) 

Then the current in segment (v, w) is: 
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where J1
(0) is an initial approximation of current density 

in conductor 1. For example, it can be a DC density as 

follows: 
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but it is more reasonable to use formula with the skin 

effect taken into account as follows: 
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The magnetic vector potential generated by current 

I1 has only one component parallel to the conductor’s 

axis (z component) as follows: 
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It is the source potential with respect to the first 

conductor and it is given by following formula: 
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where the constant A0 can be freely assumed. 

The above magnetic vector potential can be 

expressed in local cylindrical system of co-ordinates (r, 

θ, z) related with the second conductor. From Fig. 2 it 

follows that: 
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The expression under the square root can be 

rewritten as follows: 
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1 Reference [17] provides formula (1.514): 
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into Fourier series1 it follows that: 
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for r < ξvw. Hence, 
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and the magnetic vector potential (19) at point X(r, θ) 

such that r  ξvw can be rewritten as follows: 
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In order to determine the density of the current 

induced in conductor 2 we may apply the analytical 

procedure shown in [9, 14-16]. Finally, the first 

approximation of the current density induced in the 

second round conductor by the current I1 in the first 

round conductor takes the following form: 
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 (25) 

The distributions of magnitude of this current 

density on the surface of this conductor for various 

discretization parameters are shown in Fig. 4. 
 

 
 

Fig. 4. Magnitude of the first approximation of the 

current density given by (25) for V = 4 and W = 2 (solid 

curve 1), W = 180 (dotted curve 2). 
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The results calculated via (25) marginally depend on 

the number of radial division (V). Their dependence on 

angular division (W) is rather slight – in practice, the 

results remain the same for W > 18. The magnitude of 

the density of the induced eddy currents acquires the 

highest values at the point closest to the neighboring 

conductor, i.e., for θ = 0°. It strongly depends on 

frequency, which is shown in Fig. 5. 

 

 
 

Fig. 5. Magnitude of current density given by (25) at 

point r = R1, θ = 0° vs. frequency f for d = 3R2 (solid 

curve a), d = 4R2 (dashed curve b), d = 5R2 (dotted curve 

c); calculations performed for V = 20 and W = 180. 

 

The same results are obtained when applying (1). 

So, the first approximation given by (25) describes the 

current density induced in conductor 2 as if current I1 

was located on the axis of conductor 1. 

The first approximation of current density, ),(
)1(

21 θrJ , 

strongly depends on the distance d, which is shown in 

Fig. 6. 
 

 
 

Fig. 6. Magnitude of current density given by (25) on the 

surface of conductor 2 for various distances d. 
 

The argument of current density, ),()1(
21 θrφ , also 

depends on distance d – see Fig. 7. 

 
 

Fig. 7. Argument of the current density given by (25) on 

the surface of conductor 2 for various distances d. 

 

A similar procedure can be applied, when the second 

conductor carries current I2 which induces eddy currents 

in the first conductor (Fig. 8).  
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Fig. 8. Quantities used for calculating the current density 

induced in conductor 1 due to magnetic field generated 

by current I2 in conductor 2. 
 

In general, the current density in the second 

conductor is non-uniform as well. Therefore, the cross 

section of conductor 2 is divided into polar segments of 

radial dimension: 

 
S

R
rΔ 2 , (26) 

and angular span: 

 
T

π
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2
 , (27) 

as shown in Fig. 9. 
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Fig. 9. Division of conductor 2 into polar segments. 
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Current of density J2(rs, θt) is approximated by a 

system of filaments located at points Y(rs, θt) in the 

cylindrical co-ordinates associated with conductor 2, 

where: 
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Then from Fig. 8 it follows that: 
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Hence, the current in each segment equals: 
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Applying the procedure given above in (19)-(25)  

for the second conductor, the following formula 

representing the first approximation of the eddy current 

density induced in the first conductor by current I2 in 

conductor 2 is obtained: 
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In case of two identical conductors the distributions 

of current density magnitude and argument will be 

symmetrical to those given by (25) – see Fig. 10 and Fig. 

11. 

The proposed method was compared with finite 

element method (FEM) – Table 1.  

 

 
 

Fig. 10. Distributions of magnitude of eddy current 

densities given by (25) on the surfaces of two same 

conductors due to currents in the neighboring conductor. 

 

 
 

Fig. 11. Distributions of argument of eddy current 

densities given by (25) on the surfaces of two same 

conductors due to currents in the neighboring conductor. 

 

Table 1: Magnitudes of the total current densities 

induced at characteristic points on the surfaces of two 

same conductors arranged in a twin line 

R1 = R2 = 0.01 m; d = 3R2; 

σ1 = σ2 = 55106 Sm-1 

I = 1 kA;  f = 200 Hz 

Proposed 

Method 
FEM 

J(1) 

kAm-2 

J 

kAm-2 

Conductor 1 

ρ = R1 

φ = 0 2352 2321 

φ = π/2 650 650 

φ = π 3753 3714 

Conductor 2 

r = R2 

θ = 0 3753 3714 

θ = π/2 650 650 

θ = π 2352 2321 
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III. THE SECOND APPROXIMATION 

The current of density ),(
)1(

21 θrJ  induced in the 

second conductor by current by current I1 induces itself 

current of density ),(
)1(
21,1 φρJ  in the first conductor (this 

can be considered as a reverse reaction). However, 

),(
)1(

21 θrJ  is non-uniformly distributed - see (25) and 

Figs. 6 and 10. To determine ),(
)1(
21,1 φρJ , a set of filaments 

arranged in polar grid as in Fig. 9 can be used. The 

procedure is quite similar to that described by (26)-(35) 

with that difference that ),(
)1(

21 θrJ  is used instead of J2
(0). 

Hence, 
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and the reverse reaction in conductor 1 can be written as: 
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The induced current of density ),(
)1(
21,1 φρJ  is then  

a source of further magnetic field which induces 

secondary eddy currents in conductor 2. To evaluate 

their density, the same polar grid as in Fig. 3 can be used, 

but this time the currents associated with the filaments 

are as follows: 
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Each such a current contributes to the second 

correction to the eddy currents in a similar way as given 

by (25) so that: 
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A similar procedure can be repeated for the second 

correction in conductor 1. To avoid extensive repetitions, 

only the key formulas are given below: 
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and finally, 
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In a similar way the corrections of third and higher 

orders can be found. But numerical calculations show 

they are very low compared to the first one even for high 

frequency. So, they can be often neglected. 

 

IV. THE TOTAL INDUCED CURRENT 

DENSITY 
The total current density induced in the neighboring 

conductor is a sum of all the corrections. As mentioned 

above, the third and higher order terms can be often 

neglected so that the results can be limited to the first two 

terms. Hence, the total induced current density can be 

approximated as follows: 

 In conductor 2: 

 ),(),(),(
)2(

21
)1(

2121 θrJθrJθrJ  , (44) 

 And in conductor 1: 

 ),(),(),(
)2(

12
)1(

1212 φρJφρJφρJ  . (45) 

Figures 12 and 13 show the magnitude and argument of 

J21 given by (44) on the surface of conductor 2, whereas 

Figures 14 and 15 show the quantities for J21 and J12 for 

some exemplary values of geometrical and excitation 

parameters. 

 

 
 

Fig. 12. Magnitude of current density given by (44) on 

the surface of conductor 2 for various distances d. 
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Fig. 13. Argument of current density given by (44) on 

the surface of conductor 2 for various distances d. 

 

 
 

Fig. 14. Magnitude of current densities given by (44) and 

(45) on the surface of conductors for various distances d. 

 

Table 2 presents a comparison of the results 

obtained via the proposed method and finite elements. 

 

Table 2: Magnitudes of the total current densities 

induced at characteristic points on the surface of the 

conductors induced by the currents I1 = I2 = 1 kA – the 

first and the second approximations 

R1 = R2 = 0.01 m; 

d = 3R2; 

σ1 = σ2 = 55106 S/m 

I = 1 kA;  f = 200 Hz 

Proposed 

Method 
FEM 

J(1) 

kAm-2 

J 

kAm-2 

J 

kAm-2 

Conductor 1 

ρ = R1 

φ = 0 2352 2354 2321 

φ = π/2 650 652 650 

φ = π 3753 3756 3714 

Conductor 2 

r = R2 

θ = 0 3753 3756 3714 

θ = π/2 650 652 650 

θ = π 2352 2354 2321 

 

 
 

Fig. 15. Argument of current densities given by (44) and 

(45) on the surface of conductors for various distances d. 

 

V. CONCLUSION 
An analytical-numerical method for determination 

of the current density induced in a round conductor by 

magnetic field generated by a sinusoidal current in a 

neighboring round parallel conductor was presented in 

the paper. The total current density was expressed as a 

series of successive corrections. The solution was given 

in the form of infinite Fourier series.  

Based on the performed calculations it can be stated 

the current density induced in a round conductor 

(without current) by current in the neighboring round 

conductor can be limited to the second correction. This 

statement seems valid even for high frequency. 

Besides, the current density induced in “source” 

conductor by the current density previously induced in 

considered conductor makes an important impact on 

distribution of the “source” current and should not be 

neglected. 

The proposed method can be used for any 

dimensions and electrical properties of the conductors 

and any distance between them. It is shown that the 

induced currents can be neglected when the distance 

between conductors amounts to at least four conductor 

diameters. 

The results shown in Tables 1 and 2 confirm that the 

current densities calculated via the proposed method and 

those determined by FEMM software agree very well, 

indicating the correctness of the proposed approach. 

The solutions for current density presented in the 

paper can be used to find impedances, magnetic fields, 

power losses and temperatures in a system of cylindrical 

conductors with taking into account the induced 

currents. 
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