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Abstract ─ The aliasing problem in ASM-FDTD is 

presented in detail, to overcome the problem of the 

ASM-FDTD method to simulate the Electromagnetic 

pulse (EMP) propagation in periodic tunnel structure, 

the prony’s method is employed to model the time 

domain field of the ASM-FDTD. The solution of the 

aliasing problem is achieved through evaluating of the 

exponential models at intermediate spectral points with 

interpolation, and the computational resource is also 

saved for the later time response. The accuracy of the 

approach is verified by comparing the results with the 

MW-FDTD which is calculated by parallel computing. 

  

Index Terms ─ Aliasing problem, array scanning 

method (ASM), finite-difference time domain (FDTD), 

periodic structures, tunnel.  
 

I. INTRODUCTION 
EMP propagation in tunnel is a significant subject 

to study, the interest mainly comes from two aspects. 

First is the electromagnetic protection against the  

EMP weapons, second is the ultra-wideband (UWB) 

communication in tunnel. The well-known finite-

different time-domain (FDTD) technique is an ideal 

method due to its accuracy and flexibility, but the main 

problem is the high memory requirement and heavy 

computational burden when deal with these large-scale 

problems [1]-[12]. A successful technique to deal with 

this problem is MW-FDTD [13] which requires a 

relatively small FDTD computational mesh along with 

the pulse, this technique is applicable only when the 

significant pulse energy exists over a small part of the 

propagation path at any instant time. However, when a 

long distance is simulated, much computer resources 

are required. The ASM-FDTD [14]-[16] method is a 

novel technique, combining the spectral FDTD method 

[17] to model the excitation of infinite periodic 

structures. Tunnel system is periodic in one dimension. 

By considering the influence of the steel-bar structure 

in the around reinforce concrete, and the impressed 

excitation sources is often introduced at the sectional 

surfaces. So the ASM-FDTD technique can be dealt 

with, as a result, only a single periodic cell of the 

periodic tunnel structure needs to be considered. The 

computational resources are reduced.  

However, in the implementation of the ASM-

FDTD technique, it involves the aliasing problems 

which is similar to the Discrete Fourier Transform (DFT). 

And it is difficult to distinguish the overlapping signals. 

To overcome the problem, it needs to increase the 

number of spectral sampling points in Brillouin zone or 

to enlarge the size of periodic cell, which requires a lot 

of computational resources. Another problem is a long 

time running is needed when simulating the long distant 

tunnel structure.  

The Prony’s method [18] is a technique to model 

the sampled data as a linear superposition of complex 

exponentials. In the present paper, the Prony’s method 

is combined with the ASM-FDTD method, by using  

the periodic sources with different phase shift. Results 

show that they are agree very well with each other, 

which means the laws of the integral field could be 

expressed by a set of exponential parameter values 

simply. Firstly we obtain the exponential parameter 

values from a short time-domain response of the 

integral field with respect to every spectral points,  

then the exponential models is used to extrapolate the 

later time response of the integral field, so a large 

computation time will be reduced. On the other hand, 

based on the known parameter values corresponding to 

the finite spectral sampled points, we could estimate the 

parameter values at every spectral point in Brillouin 

zone approximately, by using interpolation method. 

Thus the integral fields at every spectral point are also 

obtained by the exponential models analytically and the 

aliasing problem can be solved.  

This paper is organized as follows. In Section II, 

the Fourier transform (FT) property of the ASM-FDTD 

is presented, the details of the aliasing problem is  

made clear systematically according to the FT theory. 

In Section III we outline the application of Prony’s 

method to fit the exponential model to the integral field 

and show the exponential parameter values versus the 

spectral sampling points. In Section IV, the estimation 
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of the parameter values by interpolation and the 

solution to the aliasing problem are described. The final 

results of the problem are compared with the MW-

FDTD method. 

 

II. FOURIER TRANSFORM PROPERTY OF 

ASM 

In time domain, 0( , , , )tot zE r r k t  is the total electric 

field at r in the infinite periodic structure along the  

z direction produced by a set of sources at 

0 l ( 0, 1...)zr m m    with a phase shift exp( ).zjk   

Between the adjacent sources and 
0( , l , , )tot z zE r r n k t  

is the field at r in the same periodic environment 

produced by a single source at 
0 lzr n , according to 

the superposition principle we can obtain: 

 

0 0

0

( , , , ) ( , l , , )

( , l , ) z

tot z tot z z

n

jk n

tot z

n

E r r k t E r r n k t

E r r n t e 






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 
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


, (1) 

where   is the period along the z direction and 
zk  is 

the phasing parameter. Multiply both side of (1) with 
zjk m

e
  and integrate from    to    with ,zk  

following the orthogonal property of the complex 

exponential function we have: 
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In an infinite periodic structure, 

 0 0( , 1 , ) ( 1 , , )tot z tot zE r r m t E r m r t    . (3) 

Substitute (3) into (2), 
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So 0( l , , )tot zE r m r t  at 0 lzr m  produced by a 

single source at r in n = 0 periodic cell can be calculated 

by 0( , , , )tot zE r r k t  which could be obtained by spectral 

FDTD with the periodic condition: 

 0 0( 1 , , , ) ( , , , ) zjk

tot z z tot zE r r k t E r r k t e
    . (5) 

From (1) we can find that 0( , , , )tot zE r r k t  is periodic 

with period 2 :   
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   , 0,1...i  , (6) 

the property of conjugation, 

 *

0 0( , , , ) ( , , , )tot z tot zE r r k t E r r k t   . (7) 

For brevity we set: 

 0 0 0, 1 , 2zf T f k    , (8) 

 0 0 0( l , , ) ( ), ( , , , ) ( )tot z tot zE r n r t G nf E r r k t g    . (9) 

Substitute them into (4) and (6): 
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0( ) ( ) ( 0, 1, )g iT g i     . (11) 

By using the simple left endpoint rule of numerical 

integration, from (10) we have: 
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where 
0T T N  is the sampling interval and N is the 

number of sampling points, substitute (8) and (9) into 

(12): 
/2 1

2

0 0
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For the property of (7) that only half of the sampling 

points need to be computed here. 

Suppose that ( )h   is the sampling function and its 

Fourier transform (FT) is ( )H f , which can be shown: 

 
1
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( )g   is a periodic continuous function, its FT is ( )G f  

can be expressed as: 

 
0 0( ) ( ) ( )

n
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
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Sample ( )g   with ( )h  , the result is ( ) ( )g h   and 

its FT can be expressed as [19]: 
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According to the convolution theorem, from (14) 

and (15) we have: 
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Form (16) and (18) we get: 

 0( ) ( 0, 1,...)GH f a    , (19) 

 0 0

1
( ) [( ) ]

m

GH f G mN f
T

 

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  . (20) 

So, 

 0[( ) ]
m

Ta G mN f 

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  . (21) 

Substitute Ta  into (17) we finally get: 

 0 0( ) [( ) ]d

m

G f G mN f 

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By considering the scaling factor T in (20) we can 

find
0( )dG f  or 

0( )GH f  is the final result we get 

according to the numerical integration and the DFS 

respectively. It is not the field of the observation point 

in the th  cell we wanted, but a superposition of the 

field at a set of periodic observation points with period 

0Nf , which can be shown in Fig. 1 along z direction  

in space domain with the consideration of 
0 .f   The 

mark  denote the observation points at positive z 

direction and  denote the points at negative direction  

if the source is set at the origin, where reveals the 

aliasing problem clearly in the ASM-FDTD.  

Suppose the velocity of propagation is 
0v , convert 

(22) into time domain we obtain: 

 
0 0 0 0( ) [ ( ) ]d

m

G f v G mN f v 




  . (23) 

(23) can be shown by Fig. 2, here the mark  and  

denote the points in time domain corresponded to the 

observation points’ position in Fig. 1, they are symmetric 

with each other at the points of 0(2 ).mN v  

 

S

N 2N mNN2NmN ( 1)m N( 1)m N 

N

0

z

 
 

Fig. 1. Aliasing problem in space domain. 

0mN v

S

0N v 02N v

t

0  
 

Fig. 2. Aliasing problem in time domain 

 

To lessen the aliasing problem, the interval of the 

points in time domain shown in Fig. 2 should be apart 

from each other as much as possible, it can be achieved 

by increasing N or enlarging ,  both of them will 

heavily increase the computational requirements. The 

effective interval 
dT  is its least distant to the adjacent 

points. From (23) and Fig. 2, any sampling point at cell 

  except 2N  , the dT  can be shown as: 

 
0min[2mod( , 2), 2mod( , 2)]dT N N N v    . (24) 

We will get 
max 0(2 )dT N v  when set the 

sampling points at (2 1) 4m N   . A further analysis 

shows that the two symmetric points overlap with each 

other when 2mN  , if the periodic cell is symmetric 

itself and both 
0r  and r are at symmetric position, the 

field of the two symmetrical sampling points will be 

exactly equal, then the output of ASM-FDTD will be 

accurately double to the standard FDTD method, the 

effective interval will be 0 ,dT N v  and a minimum 

aliasing error will appear. But if 0( )G nf  is infinite 

duration in time domain, the period of N  should tend 

to infinite to avoid the aliasing problem and there will 

be no advantage of ASM-FDTD. 

 

III. PRONY’S METHOD ANALYSIS AND 

EXTRAPOLATION 
We now outline the Prony’s method to fit the 

deterministic exponential model to the integral field 

0( , , , )tot zE r r k t  in (2) with respect to every spectral 

sampling points 
zk , which can be concisely expressed 

as the form: 

 
( )

0

1

ˆ ( , , , ) ( ) m z

M
s k t

tot z m z

m

E r r k t h k e



 , (25) 

both ( )m zh k and ( )m zs k  are complex here. The 

structure of the tunnel in the ASM-FDTD is periodic in 

the z direction shown in Fig. 3. The top curved 

interface is dealt with Conformal FDTD (CFDTD) [20], 

outside of the soil is truncated by convolution PML 

(CPML) [21] and the infinite periodic structure is 

truncated in the z direction with the PBC. 
 

d

CPML
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concrete

d

CPML

CPML

P
B

C

P
B

C



x

y z  
 

Fig. 3. Geometry of the periodic tunnel structure. 
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The parameters for the soil are dielectric constant 

10.0r   and conductivity 1.0 3s m.e    For the 

concrete 6.0rc  and 5.0 4s mc e   with the thickness 

0.2666m,w  the interval of the steel bar contained in 

the middle of concrete is 0.1333m,d   the top vaulted 

part is a semicircle with the radius 2.0m.r   

In the waveguide system [22], the excitation  

source is usually introduced robustly according to the 

propagation model such as TE10 and TM11. Though in 

this case we can’t get the analytical model of the wave 

propagation, the way that the excitation sources 

induced in the waveguide system can still be employed 

here. It can be shown as: 

 1( , , ) ( , , ) ( , , ) ( )n n

tan s tan s sE i j k E i j k f i j k g t   , (26) 

the subscript ‘tan’ denotes the E-field distributed in  

a transverse cross section at 
sz k z   of the tunnel 

structure in Fig. 3, ( , , )sf i j k  is the function of the 

field distribution and ( )g t  refers to the time function 

determine the bandwidth of the sources. Here we set 

( , , )sf i j k  as the model of TE10 in waveguide with the 

size of 4.0m 6.0m.a b    Though the model doesn’t 

satisfy the boundary condition of the tunnel, we can 

consider that after some length propagation the  

model will be in a steady state which approach TE10 

propagation model of the tunnel itself.  

In ASM-FDTD the spectral points are sampled as 

the midpoint rule of integration that: 

 
2 1

[ 1 ]z i

i
k

N







    , (27) 

the number of sampling points 80,N   for the property 

(7) of ASM-FDTD we compute the 0( , , , )tot zE r r k t  with 

respect to 0i  , period of the single cell 0.4m,   

( )g t  in (26) set to be a differential Gaussian electric 

pulse that 2 2

0 0 0( ) ( )exp(4 ( ) )g t E t t t t     with 

3.0ns,  0 1000V mE  and 0 2 ,t  ( , , )sf i j k located 

at the x y  plane with 2,z   Yee cell size is given 

by 0.01333mx y z       and the time step is 

22.16ps.t   The simulation is performed for 40000 

time steps and a probe is placed at ( 2, 2, 2)a b   to 

sample the y-component of the E-field. 

In the Prony’s method with respect to every 

spectral sampling point zk  in Brillouin zone, we set the 

model order 18,M   the analyzed data sampled since 

the 10000th time step to ensure the propagation model 

to settle down, the samples between 10000 to 15000 

are used for estimating the exponential models, and the  

rest are used for prediction comparison, the sampling 

interval is 22 time steps that 227  modeling samples are  

obtained. Figures 4 (a) and (b) show the comparisons of 

the extrapolation results based on the exponential models 

to the original result of TD field 0( , , , )tot zE r r k t  in ASM-

FDTD for 0.7625i     and 0.2625i      in (27) 

respectively, from which we can find that they are  

in good agreement. It can be seen that in the 

implementation of the ASM-FDTD to simulate the 

EMP propagation in the periodic tunnel structure, the 

total field 0( , , , )tot zE r r k t  can be expressed as a linear 

superposition of complex exponentials with high 

accuracy, so we just determine the models of 

exponential from a finite early-time response, the later 

time response can be obtained by extrapolation from 

the exponential models. In this case, if the simulation 

had been stopped at 15000 time steps instead of the 

40000 time steps, saving about 63% in terms of 

simulation time will be obtained, and this percentage 

would be much greater as the simulation time steps 

increase. 

To further verify the accuracy of the exponential 

models, in (13) we set 50,n   Fig. 5 shows a 

comparison between the final numerical integration 

results obtained based on the exponential models and 

the ASM-FDTD method. From the figure, we can see 

they agree well with each other. And we find the 

aliasing problem in ASM-FDTD apparently, with a 

further analysis from Fig. 2 we know that the main 

waveform in the figure consist of the field at the probes 

of ( 50, 5)m    and ( 50, 6)m     in (22), which 

are 180m and -172m far away off the excitation source 

along the z direction respectively.  

In equation (25), ( )m zh k  and ( )m zs k  can be defined as: 

 
( ) ( )exp( ( ))

( ) ( ) ( )

m z m z m z

m z m z m z

h k A k j k

s k k j k



 



 
, (28) 

mA  is the amplitude of the complex exponential, 
m  is 

the initial phase in radians, 
m  is the damping factor, 

and 
m  is the frequency. The model order 18,M   for 

concisely expressed we select two representative terms, 

Fig. 6 shows the parameters versus to the sampling 

spectral points corresponding to the order 1m  and 

2.m   In fact for the analyzed data is real, the complex 

exponentials must occur in complex conjugate pairs of 

equal amplitude, so the 2M  terms of the orders are 

significant. We can see the parameter ( )m zk  presents 

a very well continuous linear character, ( )m zA k  and 

( )m zk changes with different orders. Some discontinuous 

appear in those curves just at the points with the 

amplitude is low or the damping factor is high. For the 

parameter ( ),m zk  it is so oscillatory of some orders 

even when the amplitude values are great.  
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Fig. 4. Comparison of the integral field in  

ASM-FDTD and the exponential model result for: (a) 

0.7625i     and (b) 0.2625.i     
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Fig. 5. Comparison of the 0( 1 , , )tot zE r n r t  computed 

from the original time response and extrapolated time 

response with the exponential models. 
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Fig. 6. Parameters of the exponential models versus  

the sampling spectral points in Brillouin zone, for 

expressing concisely here we set 1.t   
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IV. ALIASING PROBLEM SOLVED BY 

INTERPOLATION 
The aliasing problem in ASM-FDTD can be 

overcome by increasing the number of spectral sampling 

points with the cost of computational requirement. In 

Section III, we find that the integral field correspond to 

the sampling points can be represented by sums of 

damped exponentials, so if we obtain the parameters of 

the exponentials at every spectral points, the aliasing 

problem can then be solved. In this section we will 

estimate the parameters through interpolation, and then 

solve the aliasing problem in the ASM-FDTD. Cubic 

spline interpolation is employed here for its smooth 

graph and continuously turning tangent. 

Figure 6 show the parameters of the exponential 

models versus the sampling spectral points, one point 

should be emphasized here is the parameter of phase, 

which is obtained by the function of inverse tangent. 

Correspond to the order 2m   we can obtain a 

smoother phase plots by unwrapping, but to the order 

of 1m  there are too many discontinuities that we 

can’t set a correct jump tolerance to get the right 

unwrapped result. Furthermore the phase 
m  in (28) is 

at the range of [ , ],   but the phase we get by inverse 

tangent is at [ 2, 2],   so it needs to combine other 

information such as the phase obtained by inverse 

cosine or sine to convert the phase from the range of 

[ 2, 2]   to the range of [ , ].   So, we transform 

the equation in (28) to: 

 ( ) ( ) ( )m z z zh k p k jq k  , (29) 

which can avoid the above problem properly. The 

parameters ( )xp k  and ( )zq k  corresponding to the order 

1m  and 2m   are shown in Fig. 7. 

Set the endpoint condition of the interpolation to be: 

 
0 1

1M M

 

 




. (30) 

Take the imaginary part of the amplitude as 

example, the resulting curve of interpolation is shown 

in Fig. 8. The other parameters have the same smooth 

results as the figure shown.  

Based on the above analysis, a probe is set at 

( 2, 2, 2),za b l  according to the conclusion in Section 

II, we can set the number of sampling points: 

 0

0

4( )
( )interp

l l
N l l




  . (31) 

The first waveform of 4interpn N  in (13) is the 

transient field we want. Of course we can also set other 

algorithm according (23) just ensure 0n l l    and 

the effective interval in (24) is broad enough. 

Figure 5 shows the aliasing results consist of the  

field with probes of 180m and -172m distant to the 

excitation sources, follow the above criterions we set 

360interpN   and 90.n   Figure 9 shows the comparison 

between the picked-up result and the MW-FDTD 

method where the length of window to be set 20m to 

lessen the truncation error. As seen from the figures, 

these results are consistent well to each other.  
 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
-3000

-2000

-1000

0

1000

2000

( )i a 

 m=1

 m=2

a
m

p
lit

u
d

e
 (

V
/m

)

 
 (a) 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

-2000

-1500

-1000

-500

0

500

1000

1500

( )i a 

 m=1

 m=2

a
m

p
lit

u
d

e
 (

V
/m

)

 
  (b) 

 

Fig. 7. Parameter of the complex amplitude versus the 

sampling spectral points in Brillouin zone: (a) the real 

part and (b) the imaginary part. 
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Fig. 8. The cubic spline interpolation result based on 

the imaginary part of the amplitude. 
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Fig. 9. Comparison of picked-up result from the 

aliasing output of ASM-FDTD with the MW-FDTD 

result. 

 

V. CONCLUSION 
In this paper, the aliasing problem in the ASM-

FDTD has been presented in detail. To overcome the 

problem, the Prony’s method is employed to fit an 

exponential model with the total field of ASM-FDTD 

and a good agreement is observed. By extrapolating  

the total field based on the exponential model and 

interpolating the exponential parameters correspond to 

the spectral points in Brillouin zone, the computational 

requirement is drastically reduced and the aliasing 

problem is solved. Results show good agreement with 

the MW-FDTD. This method can also be applied to 

deal with the aliasing problem in the implementation  

of the ASM-FDTD to simulate some other periodic 

structures, and some other interpolation methods and 

curve-fitting approximation [23] maybe more 

appropriate for this problem. 
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