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Abstract ─ In this letter, support vector regression 

(SVR) is used to predict the electromagnetic (EM) 

response of a complex shaped reflectarray (RA) unit  

cell. The calculation of the scattering coefficients of 

passive RA elements with periodic intervals is firstly 

transformed into a regression estimation problem, and 

then an analysis model is established by SVR to quickly 

predict the EM response of the unit cells. To this end,  

the full-wave (FW) simulation software is used to obtain 

a set of random samples of the scattering coefficient 

matrix of the RA antenna unit cell, which is used for 

SVR training. Under the same conditions, the radial basis 

function network (RBFN) is also used to predict the EM 

response of the elements, and the comparison results 

show the effectiveness and accuracy of the proposed 

method. 

 

Index Terms ─ Electromagnetic response, reflectarray 

antenna elements, scattering matrix, support vector 

regression. 
 

I. INTRODUCTION 
Microstrip reflectarray (RA) antennas have replaced 

traditional parabolic reflectors and array antennas with 

advantages such as simple structure, easy manufacturing 

and transportation, and low manufacturing cost [1,2].  

An important step in synthesizing such a high-

performance RA antenna is to analyze its electromagnetic 

(EM) response. There are many different methods for  

the analysis of RA antennas. Considering the periodic 

characteristics of such antennas, the most commonly 

used method is the full-wave (FW) simulation which 

assumes the local periodicity [3,4]. Traditionally, a  

wide range of EM simulation software, such as High 

Frequency Structure Simulator (HFSS) and CST 

Microwave Studio [5], which used to calculate the RA 

unit cells' scattering matrix and establish scattering 

matrix-versus-descriptors lookup tables (LUTs) [6,7]. 

As we all know, the main disadvantage of establishing  

a database is that it requires a large number of samples 

and   uses interpolation techniques [8], and the standard 

interpolation method cannot be used for EM prediction 

because of the high nonlinearity between the descriptor 

(frequency, angle of incidence, geometry, etc.) of the unit 

cell and the corresponding EM response [1,7,9]. Since 

the number of LUTs items increase exponentially with 

the degrees of freedom (DoFs) of the unit cells [6], 

involving a large amount of memory and computation 

time. In addition, parametric scanning is usually required 

to analyze the design of each possible cell, which is also 

very time-consuming [9]. Therefore, the FW method is 

rarely used in actual antenna synthesis [6]. 

The rapid development of machine learning 

methods has made it widely used in the field of antennas 

and electromagnetics. At present, there have been many 

successful applications including antenna diagnosis  

[10], modeling [11] and parameter reconstruction [12]. 

Several papers have used machine learning methods to 

design and analyze antennas. In [5,13], ANNs were used 

to design and analyze RA antenna and to predict 

magnitude, but the results were limited and overfitting 

problems may be encountered. In [7], Salucci, et al used 

the ordinary kriging (OK) based on statistical learning 

method to quickly predict the EM response of RA 

antenna. Inspired by this, support vector regression 

(SVR) has a large number of kernel functions that can be 

used compared to other regression methods, has a more 

solid mathematical theoretical foundation, and has the 

advantages of strong generalization ability and good 

robustness. Therefore, this paper intends to use SVR 

algorithm to predict the magnitude and phase response 

of RA antenna unit cells with complex shapes under 

different polarization states (i.e., co-polarization and 

cross-polarization), so as to overcome the problems of 

calculation time and memory of traditional FW 

simulation and the accuracy of ANNs.  

The evaluation of the scattering coefficient of a 

typical RA antenna element characterized by arbitrary 

DoFs is first recast as a vectorial regression problem. 

Then, CST is used to simulate different RA antennas to 

obtain a set of data for SVR training and establish a 

substitute model. Finally, the results of SVR training are 

compared with the FW simulation results and the radial 

basis function network (RBFN), to prove the superiority  
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of the proposed method. 

 

II. OVERVIEW OF RA ANALYSIS  
Microstrip RA antenna comprises a planar reflective 

surface and a feeder that illuminates a passive array of 

microstrip patches and produces an induced current, 

which in turn properly focuses the reflected beam by 

controlling the scattering properties of the RA surface [2]. 
 

 
 

Fig. 1. Sketch of the RA antenna. 
 

A microstrip RA consists of a planar array of N N  

patches that are periodically arranged on a grounded 

single-layer dielectric substrate (Fig. 1). Each nth 
2( 1,..., )n N   array element is described by I DoFs 

( )( ) { ( ); 1,..., }in L n i IL . The field radiated by the RA, 

( , ;  )f E , is given by [7,14,15]:  
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where f is the working frequency, (sin cos , r  

sin sin ,cos )   , ( , ,0)n n n r  is the location of  

the nth patch element, 0 0(2π ) /k c f  is the free-space 

wavenumber ( 0c  being the speed of light), and ( , )n n 

are the elevation angle and the azimuth one of the 
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is the field pattern radiated by the feed on the nth 

element, 
Fr  and ( , , )FE f 

 
being the feeder position 

and the element factor, respectively. We can see that the 

scattering matrix ( , ;  , ( )) n n f nL  is largely dependent 

on the shape of the RA cells, exhibits a high degree of 

nonlinearity, and has no closed-form expression [15] that 

can be directly utilized. In this case, we need to find an 

evaluation function 𝑆̃(𝒛), that maps the input space  to 

a high-dimensional space in which the linear function 

( )z  can be used to accurately perform the regression. 

To be exact, it is to find an evaluation function such that 

𝑆̃(𝒛) ≈ 𝑆(𝒛) , z , where z is the input vector of  

I+3 dimension which is defined by the incidence angles 

  and  , the working frequency f and the geometric 

parameters of I DoFs. The definition of input space  is 

as follows: 

     
min max min max min max{ [ , ]; [ , ]; [ , ];f f f          

( ) ( ) ( )

min max[ , ]} ( 1,..., )i i iL L L i I  .               (3) 

 

III. RESPONSE PREDICTION OF UNIT 

CELL BASED ON SVR 
In this work, SVR is applied to find a surrogate 

model [16] to accommodate the inputs of the RA antenna 

unit cells. In order to find the mapping between the input 

z and the EM response output function 𝑆̃(𝒛) , the 

elevation θ, the azimuth φ, the working frequency f, and 

the I DoFs of the array element are first discretized in

min max minA [ ( 1) ;  1, , ;  =( ) /           a a a A
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i i id D i I L L L D      quantized 

values, respectively (D indicates the total number of 

patch geometric shapes after removing the overlapping 

part of the ring patch). In this way, an FW simulation is 

performed for each mth ( 1,..., ,m M )   M A B C D  

unit cell. Given an input  [ [ , , , ],m m a b c df z z L  

corresponding output ( )mz
 
will be obtained, aiming at 

establishing the sample set { , ( ) ;  1,..., }m m m Mz z  

required for SVR training model. Although FW simulation 

can be used to calculate function ( )z  simply and 

accurately, since the number of LUTs increases 

exponentially with the increase of DoFs [6], it is 

necessary to consider the storage and calculation time 
FW

allT  of the simulation of unit cells with complex shapes 

( FW FW FW

all sin sin,T M T T  is the time taken to calculate a 

single  matrix). 

To solve the problem of database storage and 

computing time, the machine learning method based  

on SVR is proposed in this paper. Getting an accurate 

prediction of the output 𝑆(𝒛) , a certain number of 

samples should be randomly selected from the sample  

set simulated by FW for SVR learning, which is called 
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the training set { ,S( ); 1,..., }k k k Kz z . After the 

corresponding relationship between input and output is 

established by SVR, the EM response of the RA can be 

obtained quickly and accurately given any test data that 

is not in the training sample. 

In the next section, the performance of the RA EM 

response estimation problem is also evaluated from the 

aspects of calculation error and time saved. The matrix 

norm error 
1  and the phase mean squared error 

2  are 

given by [7,17]: 

 Ξ1 ≜
1

𝑅
∑

‖𝑆̃SVR(𝒛𝑟)−𝑆(𝒛𝑟)‖
2

‖𝑆(𝒛𝑟)‖2 ,𝑅
𝑟=1                   (4) 

where  denotes the exact FW-computed scattering 

matrix,  being 2l -norm, ( 1,..., )  R M K r R  indicates 

the number of samples in the testing set, and, 

Ξ2 =
1

4𝑅
∑ ∑ |

1

π
arg [

𝑆̃xx
SVR(𝒛𝑟)

𝑆xx(𝒛𝑟)
]|

2

{𝑥,𝑦}={𝜃,𝜑}
𝑅
𝑟=1 ,        (5) 

where the π  normalization accounts for the fact that the 

phase is expressed in radians, whereas the coefficient  

1/4 refers to the four entries of the scattering matrix. 

These metrics can quantitatively evaluate the prediction 

accuracy of method (4) and its reliability in estimating 

the phase of the scattering matrix (5) [7,17]. Another 

noteworthy evaluation factor is the computational 

efficiency, that is, the time saved by SVR compared to 

the FW simulation, given by: 

 
SVR SVR
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1
T T

T
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
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where FW FW

set sinT R T  is the time for FW-computing the R 

items of testing set, SVR

trainT  is the time for the SVR training 

process, and SVR

testT  (can be ignored) is the time for the 

SVR testing process. 

Plus, two important evaluation indicators used for 

regression analysis, the determination coefficient ( 2R ) 

and the root mean square error (RMSE) are defined as 

follows: 
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where mean(·) represents the average. 
 

IV. NUMERICAL RESULTS  
In this paper, the scattering matrix of a RA element 

printed on a single-layer dielectric substrate with lattice 

period is studied, in which the thickness of the dielectric 

substrate is 1.524mm, the complex relative permittivity 

is
2

1 0 2 02.2 1.98 10 ( / 3) ,  ( / 3)      （r j d x d y [see 

Fig. 2], 0  being the wavelength at the central frequency

0 )f , and the patch shape is multiple concentric square 

metal slots [i.e., the “Squared Phoenix” cell] [1,9,18]. 
The EM response calculation of the RA characterized by 

I = 4 DoFs is first discretized according to the following 

steps — min max min0 [deg], 40 [deg], 5, 0 [deg],A     

max min 0 max 045 [deg], 4,  0.9 , =1.1 , 3,B f f f f C    

(1) (1) (2) (2)

min 0 max 0 min 0 max 00.10 , 0.30 , 0.09 , 0.25 ,L L L L      

(3) (3) (4) (4)

min 0 max 0 min 0 max 00.04 ,  0.2 ,  0.03 , 0.15 , 5iL L L L D       

( 1,..., ).i I
 
Excluding the overlapping parts of the 

concentric metal slots, the total number of geometric 

shapes is D = 120. The training samples required for the 

SVR are obtained by CST simulation modeling. Through 

CST simulation modeling, the total number of items in 

the sample set  is =7200M . 
 

 
 

Fig. 2. Geometry of I=4 “Square Phoenix” unit cell. 

 

The 7200 data generated by the FW simulation were 

divided into two subsets: a training set consisting of 

6000 samples and a testing set which consists of 1200 

samples. The inputs of SVR are the elevation ,a the 

azimuth b , the frequency cf , and I DoFs of geometric 

shapes, and the outputs are the magnitude, the phase, the 

real part and the imaginary part of the co-polarization

( )S z  and cross-polarization ( )S z , respectively. The 

LIBSVM library [19] with the Gaussian kernel is used to 

get the SVR model. Two important parameters involved 

in SVR strategy—the penalty factor C and  (  is the 

parameter that comes with the kernel function), can be 

obtained by cross-validation and mesh parameter 

optimization [20], as shown in Table 1. 

 

Table 1: The penalt factor C and 1 /   of SVR obtained 

by cross-validation 

 
Co-polarization Cross-polarization 

C 1 /   C 1 /   

Magnitude 18 0.707 816 1.212 

Phase 724 0.128 924 2.507 

Real part 141 0.500 544 0.771 

Imaginary part 364 0.911 512 0.354 
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Under the same conditions, the RBF method with 

simple network topology and fast learning speed is used 

as a comparison to illustrate the effectiveness of the 

proposed method. This paper calls the NEWRB toolbox 

function built in MATLAB to predict the EM response 

of RA antenna unit cell. Given that RBF and SVR are 

modeled under the same conditions, the maximum 

number of neural units in the RBF hidden layer is the 

total number of training data sets. 

For verifying the validity of the proposed method,  

a sample that is not belong to  is randomly selected 

for numerical verification. Figures 3 (a) and 3 (b)  

show the plots of the magnitude and phase of ( )S z  

versus the elevation   when 0f f  and =45 [deg],
(1) (2) (3) (4)

0 0 0 00.19 ,  0.16 ,  0.07 ,  0.05 .L L L L      
 
We can 

observe from the plot, compared with the RBF prediction 

method, as the elevation angle changes, the SVR is 

closer to the true value in predicting the scattering 

magnitude and phase. 
 

 
(a)                                                    (b) 

 
 (c)                                                   (d) 

 

 
(e)                                                   (f) 

 

Fig. 3. Behavior of (a), (c), and (e) magnitude and (b), 

(d), and (f) phase of ( )S z  versus changes in (a) and (b) 

elevation angle  , (c) and (d) element size [i.e., 1L（）], 

and (e) and (f) frequency. 
 

The same consideration is given to the magnitude 

and phase of the EM response vary with the cell size 

[Figs. 3 (c), (d)] and frequency [Figs. 3 (e), (f)] of the 

element (where   is 0 [deg]), we can see from the plots 

that the prediction results of SVR are also more accurate 

than that of RBF. As we expected, in these comparisons, 

using SVR to predict the EM response of a RA antenna 

element with a complex shape is significantly better than 

the predicted value of RBF in terms of prediction 

accuracy. 
 

 
   (a)                                                   (b) 

  
  (c)                                                   (d) 

 
   (e)                                                   (f) 

 
  (g)                                                   (h) 

 

Fig. 4. Actual versus estimated values of (a) and (b)

( )mS z , (c) and (d) ( )mS z , (e) and (f) Re[ ( )],mS z  

and (g) and (h) Im[ ( )], 1,...,mS m M z , when using (a), 

(c), (e), and (g) SVR and (b), (d), (f), and (h) RBF 

prediction method. 
 

Owing to the scattering coefficient is a complex 

number, the magnitude and phase of the scattering 

coefficient can be directly obtained from the real part and 

the imaginary part. Therefore, with purpose of further 

evaluating the enthusiasm of the SVR, it is also 

necessary to establish a training model of the real part 

and the imaginary part of the scattering coefficient by 

using SVR. Figure 4 shows the scatter plots of the 

magnitude [Figs. 4 (a), (b)], the phase [Figs. 4 (c), (d)], 
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the real part [Figs. 4 (e), (f)], and the imaginary part 

[Figs. 4 (g), (h)] of ( ), 1,...,mS m M z , with the line  

Y = X representing the ideal bisector. The more 

concentrated the scatter is on the ideal bisector, the higher 

the accuracy predicted. From the scatter distribution in 

Fig. 4 and the determination coefficient 2R  and RMSE 

calculated by formulas (7) and (8), we can see that the 

SVR can accurately predict the EM response of RA 

antenna element with complex shapes, which are closer 

to the ideal bisector than the RBF ones [Figs. 4 (b), (d), 

(f), and (h)]. In addition, SVR

1 0.0788   and SVR

2 = 0.0223  

versus RBF

1 0.0862   and RBF

2 = 0.0477 , calculated by 

formulas (4) and (5) can be more explained. It is worth 

mentioning that SVR greatly improves the calculation 

efficiency of the EM response of the RA, SVR 0.15T    

( FW 2

sin 1.20 10 [s]T   ) can be obtained from formula (6),  

that is to say, 15% time is saved compared with FW 

simulation. Similarly, time savings using the RBF method 

can also be obtained, RBF 0.70T  , 70% time is saved 

(The training time of RBF is RBF 4

train 4.32 10 [s]T   ). From 

the perspective of quantitative indicators, in terms of time 

savings, there is no doubt that the SVR is more time-

saving than the FW simulation in predicting EM response 

of the RA, but it is slightly inferior to the RBF, because 

the SVR needs to use mesh parameter optimization and 

cross-validation to find the optimal values of C and  , 

while RBF is not needed. 
 

 
 (a)                                                  (b) 

 
(c)                                                 (d) 

 
(e)                                                 (f) 

 

Fig. 5. Behavior of (a), (c), and (e) magnitude and (b), 

(d), and (f) phase of ( )S z  versus changes in (a) and (b) 

incidence angle  , (c) and (d) element size [i.e., 1L（）], 

and (e) and (f) frequency. 

  
(a)                                                    (b) 

  
(c)                                                    (d) 

 

Fig. 6. Actual versus estimated values of (a) and (b)

Re[ ( )]mS z , and (c) and (d) Im[ ( )], 1,..., ,mS m M z  

when using (a) and (c) SVR, and (b) and (d) RBF 

prediction method.  

 

Cross-polarization component ( ), 1,..., mS m Mz  is 

also very important for the performance analysis of RA 

antenna. We can clearly see from the Figs. (5) and (6) 

that the RBF results deviate significantly from the ideal 

curve for both the curve that varies with a single input 

variable (Fig. 5) or the scatter cloud (Fig. 6), and the 

proposed method is significantly better than the 

predicted value of RBF. Similarly, the corresponding 

prediction errors of ( ), 1,...,mS m M z
 
can be obtained 

from formulas (4) and (5), namely SVR

1 0.1021   and 
SVR

2 =0.1764  versus RBF

1 0.1288   and RBF

2 =0.1953.  

Although the cross-polarization scattering characteristics 

of the “Square Phoenix” unit cells are weaker than the 

co-polarization scattering characteristics [18], from 

these quantitative indicators and Fig. 5 and Fig. 6, it  

is sufficient to prove the applicability of the proposed 

method to the EM response prediction of complex RA 

antenna elements. 

 

V. CONCLUSION 
In this letter, an effective and accurate prediction 

methodology, a machine learning method based on SVR 

is proposed to predict the EM response of complex RA 

antenna elements. The original arbitrary number of DoFs 

passive EM scattering problems is transformed into a 

regression estimation problem, and scattering model is 

established by using SVR through appropriate offline 

training, which overcomes the problems of traditional 

FW simulation and database. The calculation of the 

magnitude and phase of the scattering coefficient shows 

that the SVR and the FW simulation results are in good 

agreement (see Fig. 3), even for the cross-coefficient (see  
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Fig. 5), although they are highly nonlinear, which is very 

difficult to model. Through the quantitative calculation 

of equations (4) and (5), it is strongly demonstrated that 

compared with the ANNs algorithm based on RBFN, the 

EM response of complex RA antennas can be predicted 

more accurately by SVR. Although the time saved by 

SVR is second to RBFN, it is also more efficient than the 

FW simulation algorithm. With flexible tradeoff accuracy 

and computational efficiency, SVR can provide reliable, 

accurate and fast estimation of EM response, and providing 

an effective way to solve EM scattering problems. 
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