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Abstract – This paper presents a study of linear antenna
array (LAA) synthesis with a seagull optimization algo-
rithm (SOA) to achieve radiation patterns having low
maximum sidelobe levels (MSLs) with and without
nulls. The SOA is a new optimization technique based
on the moving and attacking behaviors of the seagull in
the nature. In this study, the original mathematical model
of SOA is modified by compensating the exploration and
exploitation features to improve the optimization perfor-
mance. The optimization ability of the modified SOA
(MSOA) is tested with seven numerical examples of
LAA. In the first three examples, the amplitude values
of the array elements are optimized by MSOA whereas
the element position values are calculated by MSOA for
the last four examples. The numerical results obtained by
MSOA are compared with those of different algorithms
from the literature. The results reveal that MSOA algo-
rithm is very good at optimizing antenna array parame-
ters to obtain a desired radiation pattern. Additionally, it
is seen that MSOA finds better results than the compared
algorithms in terms of MSL and single and multiple null
depth levels (NDLs). The contribution of the modifi-
cation of MSOA is shown with a convergence curve to
compare with the original one.

Index Terms – antenna array synthesis, linear antenna
arrays, maximum sidelobe level, null depth level, seagull
optimization algorithm.

I. INTRODUCTION
Antenna arrays are widely used in many communi-

cation and radar systems to improve the quality of the
signal [1]. The quality of antenna array design signif-
icantly effects the performance of these array systems.
In recent years, a lot of research has been carried out on
the design of antenna arrays to achieve desired radiation
pattern synthesis. These parameters are mainly ampli-
tude, phase, and position values of array elements. From
this perspective, calculating proper array parameters is

an optimization problem. Therefore, many optimization
methods have been used to obtain the desired antenna
array radiation pattern. Modifications on the radiation
pattern are performed for different purposes. Maximum
sidelobe level (MSL) reductions are basically used to
diminish the negative effect of the electromagnetic pol-
lution. Additionally, the radiated power can be better
focused on the main beam direction with the help of
sidelobe reduction. Placing nulls on the radiation pat-
tern are generally used to prevent interferences caused
by unwanted signals received from other communication
systems.

There are several different geometrical structures
of antenna arrays used in the wireless systems such as
linear [2–12], circular [13–18], elliptical [19–21], and
planar antenna arrays [22, 24]. Linear antenna arrays
(LAAs) are very common geometry among the array sys-
tems. Several antenna elements are placed in a straight
line for this geometry. Because of its simple structure,
LAAs are used in a wide range of applications. Hence,
the synthesis problem of LAA has received remarkable
attention throughout the years. Different optimization
methods such as grey wolf optimizer (GWO) [2], moth-
flame optimization (MFO) [3], ant lion optimization
(ALO) [4], biogeography-based optimization (BBO)[5],
tabu search algorithm (TSA) [6], memetic algorithm
(MA) [6], genetic algorithm (GA) [6], fitness-adaptive
differential evolution algorithm (FiADE) [7], parti-
cle swarm optimization (PSO) [7, 8], harmony search
algorithm (HSA) [9], backtracking search algorithm
(BSA) [10], comprehensive learning particle swarm
optimizer (CLPSO) [11], and mean variance mapping
optimization (MVMO) [12] have been proposed and
employed to solve these synthesis problems. GWO is
used to obtain an optimal pattern synthesis of LAA with
a reduced MSL and nulls in the desired directions [2].
The side lobes of two LAAs with different sizes are sup-
pressed by MFO algorithm [3]. Sidelobe reduction and
null placement are also carried out by means of ALO
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evolutionary algorithm in [4]. BBO is employed in [5]
to achieve an optimum pattern synthesis with low MSLs
by using amplitude as well as phase and position values
of array elements. Cengiz and Tokat [6] have employed
TSA, MA, and GA to synthesis three LAAs with differ-
ent number of array elements. FiADE by Chowdhury et
al. [7], which is a modified version of the classical DE
algorithm, is also used for LAA. The element positions
of the LAA elements are determined by using PSO algo-
rithm to get a low MSL and null placement [8]. HSA
is also employed to obtain lower MSLs and deeper null
levels [9]. Guney and Durmus [10] have used BSA for
pattern nulling of LAA. CLPSO, an improved variant of
PSO, is employed by Goudos et al. to optimize three dif-
ferent LAAs [11], and MVMO has been applied to LAA
synthesis by Guney and Basbug [12].

This paper presents a simple and effective method
using the seagull optimization algorithm (SOA) to design
an LAA by optimizing only the amplitude and posi-
tion values of the antenna array elements. Generally,
variable attenuators are used to control amplitude val-
ues of the array elements in practice. A symmetrical
linear array ensures cheaper practical implementations
and less computational effort for calculations. If the
design is desired to be dynamic, mechanical driving sys-
tems are needed to move antenna array elements for the
position-only control techniques. The SOA is a novel
bio-inspired metaheuristic algorithm proposed by Dhi-
man and Kumar [25]. The simple structure of SOA with
few parameters makes it applicable to different engineer-
ing problems [26–28]. Nine well-known optimization
algorithms are chosen for different benchmark compar-
isons with SOA to validate its performance [25]. The
algorithms compared with SOA are GA, differential evo-
lution algorithm, PSO, spotted hyena optimizer, multi-
verse optimizer, MFO, sine cosine algorithm, GWO, and,
gravitational search algorithm [25]. In this paper, a mod-
ified version of SOA (MSOA) is employed. The modifi-
cation is on the step size of SOA that defines the move-
ment behavior of population elements. The original ver-
sion of SOA has already a linear changing strategy for
the parameter of the movement behavior. However, this
strategy is limited with a linear decrease. In this paper, a
nonlinear changing is proposed to improve search qual-
ity of SOA with a better exploration in the early phase of
the algorithm and a better exploitation in its later phases.
The enhancement that achieved by the modification is
shown with two pairs of convergence curve comparisons
in the first and second examples.

In this paper, seven different LAA optimization
examples are considered. For the first three examples,
the amplitude values of LAA are calculated by MSOA
to achieve low MSLs. The fourth example includes the
optimization of the element positions in the LAA to

reduce sidelobe levels. In the last three examples, ele-
ment positions are determined by MSOA to locate nulls
at the desired directions of the radiation pattern. The
results of MSOA are compared with those of GWO [2],
MFO [3], ALO [4], BBO[5] , MA [6], GA [6], TSA [6],
FiADE [7], PSO [8], HSA [9], BSA [10], CLPSO [11],
and MVMO [12]. It was shown that MSOA can obtain
better results than those of the other compared algo-
rithms.

II. PROBLEM FORMULATION
A symmetrical LAA that consists of even number

(2N) isotropic elements is illustrated in Figure 1. The
array elements are placed symmetrically along the x-
axis. Because of the symmetrical structure, LAA has a
symmetrical radiation pattern. The elements placed sym-
metrically can also reduce the computational cost since
it is sufficient to optimize only N elements. The array
factor of LAA shown in Figure 1 is given by [1]:

AF(θ) = 2
N

∑
n=1

In cos(kdn sinθ +δn) , (1)

where In and δ n are amplitude and phase of nth element,
respectively. dn is the distance from the array center to
the nth element. θ is the scanning angle from broadside
and k is the wave number which equals to 2π/λ . In the
first three examples of this study, the main purpose is to
obtain optimum amplitude values (In) of equally spaced
antenna array elements to generate diagrams with low
MSL values. For the fourth example, the position val-
ues (dn) of the array elements are optimized by using
MSOA to obtain patterns with low MSL values. In the
last three examples, in order to achieve radiation pat-
terns with low MSLs and deep nulls placed in desired
directions, the element positions (dn) of the antenna
arrays with constant excitations are calculated by means
of MSOA.

Fig. 1. Geometry of a symmetric linear antenna array
with elements positioned along x-axis.
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A general fitness function is formulated for the all
examples as

Fitness = fMSL + fFNBW + fNULL , (2)
where f MSL, f FNBW , and f NULL functions are used to sup-
press the MSL, limit the first null beamwidth (FNBW),
and place nulls at desired directions, respectively. The
function f MSL can be formulated as follows:

fMSL =
∫

π/2

θNULL

EMSL(θ)dθ , (3)

where θ NULL is the first null point in degree on the right
side of the main beam. EMSL(θ ) is formulated as follows
to calculate the values that are greater than the desired
MSL (MSLd) on the sidelobes:

EMSL(θ) =

{
(AFdB(θ)−MSLd)

2, for AFdB(θ) > MSLd
0, elsewhere,

(4)

where
AFdB(θ) = 20log(AF(θ)normalized). (5)

The function f FNBW in (2) can be given by

fFNBW =

{
(FNBW0− fFNBWmax)

2, for FNBW0 > fFNBWmax
0, elsewhere,

(6)

where FNBW0 and f FNBW max are the FNBW calculated
by MSOA and the desired maximum FNBW, respec-
tively. f NULL in (2) is defined as

fNULL(θ)=

{
(AFdB(θ)−NULLd)

2, for AFdB(θ) > NULLd
0, elsewhere,

(7)

where NULLd is the desired NDL at the predetermined
null angle.

III. METHOD
A. Seagull optimization algorithm

Seagulls are sea birds with many species with differ-
ent masses and lengths that can live all over the planet.
They are omnivores that feed on insects, fish, lizards,
frogs, and eggs. The body of seagulls is generally cov-
ered with white plumages. Seagulls are highly intelligent
animals. They use their intelligence to find and attack the
prey. For example, they use breadcrumbs to attract and
hunt the fishes. They can also produce sounds like rain
to deceive and catch the earthworms. Generally, seagulls
live in colonies and there are two most important behav-
iors for seagulls in terms of swarming. They migrate
to other locations and attack their preys together accord-
ing to a plan. The migration and hunting behaviors of
the seagulls are illustrated in Figure 2 [25]. During
the migration, the seagulls instinctively consider three
different points. First, they try to avoid collision with
other population members. Second, each seagull tends
to approach the neighbor that has better fitness. Lastly,

Fig. 2. Schematic models of seagulls for their migration
and attacking behaviors.

all seagulls try to sustain their near positions to the seag-
ull which has the best fitness in the flock. When one of
the seagulls searches and attacks the prey, it follows a
spiral path in the air.

The mathematical model of SOA [25] is based on
the pattern of seagull behavior. First of all, the seagulls
in the population are distributed randomly as population
members through the solution space. The cost function
values are calculated for each seagull by using their posi-
tions. The cost function as an objective function for the
metaheuristic optimization algorithms is the reciprocity
of fitness function. In this study, the cost function spe-
cialized for antenna array synthesis problems is used.

The migration is a movement of seagulls to find a
better hunting place in terms of rich prey populations.
The members of seagull population try to avoid a colli-
sion with the other members. To model this behavior α

parameter is used as follows:

~Cs = α .~Ps(x), (8)
where ~Cs denotes the position of the seagull that tries to
prevent from colliding with other search member. ~Ps, x,
and α represent the current position of search member,
the current iteration, and the movement behavior of the
search member in a given search space, respectively. The
parameter α is given by

α = fc − (x(
fc

Maxiteration
)), x = 0,1,2, ...,Maxiteration,

(9)
where f c is the starting value for the parameter α . α

linearly decreases as iteration progress to 0 as defined
in eqn (9). After the collision avoidance mechanism is
assured, the search members fly in the direction of the
best neighbor. The next position of the search member
~Ms can be written as

~Ms = B . (~Pbs(x) − ~Ps(x)), (10)
where B, ~Pbs, and ~Ps represent scaling factor, member
having the best cost function value, and current position
of search member, respectively. B value is randomized
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as follows:
B = 2.α2.rd, (11)

where rd is a pseudo random number in [0, 1]. After
these processes, the search member changes its position
according to the best search member in the population
with the following distance formula between the search
member and the best member:

~Ds =
∣∣∣ ~Ms + ~Cs

∣∣∣ . (12)

The attack is performed by the seagulls to the prey
through a spiral-shaped track. This path is modeled as
the following formula:

~Ps(x) = (~Ds x′ y′ z′) + ~Pbs(x), (13)
where ~Ps(x)is the best solution. x’, y’, and z’ in eqn are
used to generate the spiral motion:

x′ = r cos(k)
y′ = r sin(k)
z′ = r.k

, (14)

with
r = u ekv, (15)

where r, k, u, and v are variable radius of each turn,
random number in [0, 2π], scaler, and power constants,
respectively.

B. Modification on seagull optimization algorithm
This paper also proposes a modification to improve

the searching ability of SOA in terms of exploration and
exploitation. For this purpose, instead of using eqn (9),
α parameter in eqn (8) is decreased gradually by tracing
a special nonlinear curve defined as follows:

α = fc .e
(

−7x
2Maxiteration

)2

, x = 0,1,2, ...,Maxiteration ,
(16)

The main idea of this modification is providing a
better exploration in the beginning of the iteration pro-
cess and a finer tunning at the rest of the optimization.
In order to achieve this aim, the formulation in eqn (16)
is used to provide large steps in the beginning and small
steps through the rest of the process as shown in Figure 3.
The performance contribution of this modification is val-
idated by comparing the convergence curves of SOA and
MSOA solutions for the first example in the following
section.

IV. NUMERICAL RESULTS
The results of seven LAA synthesis examples

obtained by MSOA are presented in this section. The
computer hardware used for the simulations is a Core i5
microprocessor with 16 GB RAM and 2.10 GHz clock
speed. The MSOA is implemented on MATLAB version
R2020a. The number of iterations for each run is set
to 1000. The simulation results for the first three exam-
ples and the last four examples are obtained within 35–40
and 50–55 seconds, respectively. The algorithm is run 20
times for each example and the best results are evaluated.

Fig. 3. The changes of α that models the movement
behavior of the search member for the MSOA and SOA.

The movement behavior (α) and control frequency (fc)
parameter of MSOA are set to [2, 0] and 2, respectively.
The population size is fixed to 30. Schematic models of
seagulls for their migration and attacking behaviors.

The synthesis results of MSOA are compared
with those of 13 different algorithms, GWO [2],
MFO [3], ALO [4], BBO [5], MA [6], GA [6],
TSA [6], FiADE [7], PSO [7, 8], HSA [9], BSA [10],
CLPSO [11], and MVMO [12]. In the first three exam-
ples, MSOA is used to calculate the amplitude values of
the array elements to achieve radiation patterns with low
MSL values and the results are compared with those of
GWO [2], MFO [3], ALO [4], and BBO [5]. For the
last four examples, the position values of the array ele-
ments are optimized by MSOA and the achieved results
are compared with MA [6], GA [6], TSA [6], FiADE [7],
PSO [7, 8], HSA [9], BSA [10], CLPSO [11], and
MVMO [12].

A. Amplitude only control
In this section, three examples that demonstrate

the LAA synthesis with MSL reduction by controlling
amplitude-only are given. The phase and interelement
position values of the array elements are fixed to δ n =
0 and λ /2, respectively. The radiation patterns are plot-
ted by using the best amplitude values achieved by 20
different optimization runs.

For the first example, the synthesis of 10-element
LAA is considered to achieve low MSL values. The
cost function given by eqn (2) is used to optimize with
MSOA. Thanks to the array symmetry, it is enough
to consider only five elements to optimize their ampli-
tude values. The radiation pattern with low MSL value
obtained by MSOA is given in Figure 4. For a com-
parison, the radiation patterns of GWO [2], MFO [3],
and ALO [4] are also given in Figure 4. The MSL
results achieved by MSOA are compared with those of
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Fig. 4. Radiation patterns optimized by MSOA and the
compared algorithms GWO [2], MFO [3], and ALO [4]
for 10-element LAA.

Fig. 5. Convergence curve plots of MSOA and SOA for
the first example with 10-element LAA.

GWO [2], MFO [3], ALO [4], and uniform array in
Table 1. From the table, it can be said that the MSL value
achieved by MSOA is better than those of GWO [2],
MFO [3], and ALO [4]. For this example, the conver-
gence curves of the original SOA and MSOA can be seen
in Figure 5. It can be concluded from the figure that
MSOA can converge faster than the original SOA.

In the second example, a 16-element LAA is opti-
mized by using MSOA method to obtain radiation pat-
tern with low MSL. Figure 6 shows the patterns obtained
by MSOA, GWO [2], and MFO [3]. Table 2 presents
a comparison between the MSL results achieved by
MSOA and those of GWO [2], MFO [3], and uniform
array. As shown in Figure 6 and Table 2, the MSL value
calculated by MSOA is –40.65 dB which is better than

Table 1: Comparison of the MSL values for 10-element
symmetrical LAA design

Algorithm MSL (dB)
MSOA –27.52

GWO [2] –26.05
MFO [3] –26.07
ALO [4] –26.08
Uniform –12.97

Table 2: Comparison of the MSL values for 16-element
symmetrical LAA design

Algorithm MSL (dB)
MSOA –40.65

GWO [2] –40.50
MFO [3] –40.25
Uniform –13.15

Fig. 6. Radiation patterns optimized by MSOA and com-
pared algorithms GWO [2] and MFO [3] for 16-element
LAA.

the other compared values. In Figure 7, the convergence
curves of the MSOA suggested in this article and original
SOA are illustrated. It is very clear from Figure 7 that the
MSOA leads to better convergence and that 1000 itera-
tions are needed to find the optimal solutions.

The difference of the third example from the second
example is only that the main beam is limited in a fixed
region. The third example is designed for a fair compar-
ison with the similar examples from the literature. The
main beam is confined as another optimization constraint
in addition to the sidelobe restriction. The radiation pat-
tern obtained by MSOA is shown in Figure 8 in com-
parison with ALO [4] and BBO [5]. The MSL value
obtained by MSOA is given in Table 3. In the same
table, the MSL results from the literature obtained by
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Fig. 7. Convergence curve plots of MSOA and SOA for
the second example with 16-element LAA.

Fig. 8. Radiation patterns optimized by MSOA and com-
pared algorithms ALO [4] and BBO [5] for 16-element
LAA with constraint FNBW.

other compared algorithms can also be seen. From the
table, it can be noted that MSOA has found better MSL
value than ALO [4] and BBO [5] algorithms.

The amplitude values of array elements obtained by
MSOA for the patterns in Figures 4, 6, and 8 are listed in
Table 4.

B. Position only control
In this section, four examples in which position val-

ues of the array elements are adjusted by MSOA are
given. The amplitude (In) and phase (δ n) values of the
array elements are fixed to 1 and 0◦, respectively.

For the fourth example, 2N = 12 element linear array
is considered to achieve a radiation pattern with low
MSL values. The cost function given in eqn (2) is used
to obtain low MSL by calculating the position values

Table 3: Comparison of the MSL values for 16-element
symmetrical LAA with constraint FNBW

Algorithm MSL (dB)
MSOA –33.53

ALO [4] –30.85
BBO [5] –33.06

Table 4: The element amplitudes (In) for the array pat-
terns given in Figures 4, 6, and 8

Number of elements Optimized amplitude values
10 (Figure 4) [1.0000 0.8887 0.6944 0.4657

0.3154]
16 (Figure 6) [1.0000 0.9342 0.8121 0.6543

0.4835 0.3220 0.1888 0.1026]
16 (Figure 8) [1.0000 0.9466 0.8465 0.7125

0.5606 0.4071 0.2681 0.2055]

Fig. 9. Radiation patterns optimized by MSOA and com-
pared algorithms TSA [6], MA [6], GA [6], PSO [7], and
FiADE [7] for 12-element LAA.

of array elements (dn). Figure 9 illustrates the array
radiation patterns achieved by using MSOA, TSA [6],
MA [6], GA [6], PSO [7], and FiADE [7]. Table 5
presents the MSL values of the radiation patterns cal-
culated by MSOA and the other compared algorithms.
From Table 5, it is clear that MSOA has achieved a better
MSL value than the other algorithms. It is observed that
the physical dimension of antenna array synthesized by
MSOA in this work is more compact than those of other
antenna arrays optimized by TSA [6], MA [6], GA [6],
PSO [7], and FiADE [7].

In the fifth example, the element positions of 2 N =
22 element LAA are optimized by means of MSOA to
obtain a radiation pattern with nulls at 9◦ as well as the
low MSL values. Figure 10 presents the radiation pattern
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Table 5: Comparison of the MSL values for 12-element LAA design by controlling the positions of array elements
Algorithm MSOA TSA [6] MA [6] GA [6] PSO [7] FiADE [7]
MSL (dB) –19.25 –18.40 –19.10 –18.77 –17.90 –18.96

Table 6: MSL and NDL values of the patterns achieved by MSOA and other optimization algorithms for 22-element
LAA with null at 9◦

Algor ithm MSOA TSA [6] MA [6] PSO [7] HSA [9] BSA [10]
MSL (dB) –23.90 –17.17 –18.11 –20.68 –23.28 –23.54

NDL (dB) (9◦) –119.80 –67.94 –73.92 –49.94 –103.30 –104.61

Fig. 10. Radiation patterns with null at 9◦ optimized
by MSOA and compared algorithms TSA [6], MA [6],
PSO [7], HSA [9], and BSA [10] for 22-element LAA.

calculated by MSOA. The figure also includes the radi-
ation patterns produced by TSA [6], MA [6], PSO [7],
HSA [9], and BSA [10]. Table 6 gives the MSL and NDL
comparisons between MSOA and the other algorithms.
From the table, it can be said that MSOA achieved better
MSL and NDL values than the other algorithms.

There are two differences between the fifth and sixth
examples. The first one is that the LAA considered in
the sixth example is 2N = 28 element antenna array. As
a second difference from the fifth example, in the sixth
example, multiple nulls (30◦, 32.5◦, and 35◦) are placed
on the radiation pattern instead of a single null. The

Fig. 11. Radiation patterns with nulls at 30◦, 32.5◦,
and 35◦ optimized by MSOA and compared algorithms
BSA [10], CLPSO [11], and MVMO [12] for 28-element
LAA.

resultant array pattern with a low MSL value and multi-
ple nulls at 30◦, 32.5◦, and 35◦ is given in Figure 11. The
figure also owns the array patterns obtained by BSA [10],
CLPSO [11], and MVMO [12]. For a more precise com-
parison, The MSL and NDL values obtained by MSOA
and the other algorithms are tabulated in Table 7. From
Table 7, it can be concluded that MSOA has achieved
better values than the other algorithms in terms of MSL
and NDL parameters.

For the last example, the number of elements is
increased to 2N = 32 to test MSOA for a larger paramet-
ric dimension. The target in this example is to achieve a

Table 7: NDL and MSL values of the patterns obtained by MSOA, BSA [10], CLPSO [11], and MVMO [12] for
28-element LAA with nulls at 30◦, 32.5◦, and 35◦

Algorithm MSOA BSA [10] CLPSO [11] MVMO [12]
MSL (dB) –22.57 –21.90 –21.63 –21.63

NDL (dB) (30◦) –87.10 –82.49 –60.04 –70.19
NDL (dB) (32.5◦) –103.30 –93.59 –60.01 –78.79
NDL (dB) (35◦) –86.56 –80.49 –60.00 –71.79
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Table 8: Comparison of results of different algorithms for 32-element LAA with null at 9◦

Algorithm MSOA PSO [8] HSA [9] BSA [10]
MSL (dB) –21.49 –18.80 –19.51 –20.50

NDL (dB) (9◦) –114.50 –62.20 –88.08 –107.50

Table 9: Element positions optimized by MSOA for the array patterns given in Figures 9–12
Number of elements [d1, d2, . . . , dN]

12 (Figure 9) [0.4206 1.2580 2.2039 3.1671 4.4298 5.7448]
22 (Figure 10) [0.2804 0.8094 1.3807 1.9663 2.4326 3.2601 3.7161 4.6507 5.3881 6.5371 7.6742]
28 (Figure 11) [0.5756 1.0542 2.1406 2.7600 3.7187 4.4164 5.3123 6.1621 7.3610 8.2936 9.3923

11.0114 12.5343 14.0927]
32 (Figure 12) [0.2150 1.2795 1.9403 2.7564 3.2846 4.2449 5.0273 5.7899 6.4887 7.2680 8.1098

8.9617 10.4744 11.9414 13.7327 15.3084]

Fig. 12. Radiation patterns with null at 9◦ optimized by
MSOA and compared algorithms PSO [8], HSA [9], and
BSA [10] for 32-element LAA.

pattern with a low MSL and a deep NDL at 9◦. Figure 12
presents the radiation patterns calculated by MSOA and
the other algorithms including PSO [8], HSA [9], and
BSA [10] from the literature. Table 8 gives the MSL and
NDL values of the radiation patterns given in Figure 12.
It is apparent from the figure and the table that MSOA
has obtained better MSL and NDL results than the com-
pared algorithms.

The element position values calculated by the
MSOA for the patterns given in Figures 9, 10, 11, 12
are tabulated in Table 9.

V. CONCLUSION
In this paper, MSOA, a modified version of SOA,

is employed to optimize the array amplitude and posi-
tion values in order to achieve desired radiation patterns.
Seven examples including 10-, 12-, 16-, 22-, 28-, and 32-
elements LAA are considered for different purposes. The

main idea in this work is to produce radiation patterns
with low MSL and deep NDL values. From the over-
all results, it can be concluded that MSOA has a good
performance to synthesize LAA radiation patterns.

It is also shown that the modification on SOA pro-
posed in this article ensures that the algorithm converges
faster. The comparisons with the other algorithms from
the literature show that MSOA is a very good competitor
in the engineering optimization field. Although MSOA
is used for LAAs in this study, it can be apparently said
that the algorithm is suitable to be used for the other array
geometries such as circular, elliptical, and planar.
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