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Abstract – Automatic protection of EM detecting sys-
tems from unexpected high-power incidence is impor-
tant to the robustness and life of a passive detecting
system. In this paper, an adaptive metamaterial radome
which automatically shields the receiving antenna from
strong incident wave is designed. Based on standard wire
medium, PIN diodes are added between adjacent wires.
When the incident EM wave is weak, the diodes are in
“off” state and affect little to the transmission of the wire
medium. When the incident EM wave is strong enough
to turn the diodes to “on” state, electric currents will be
automatically formed in the diodes and the power trans-
mitted to the antenna will be largely reduced. The adap-
tive transmission of the proposed radome is validated by
the simulation and measurement results.

Index Terms – Metamaterial, radome, tunable devices,
wire media.

I. INTRODUCTION
Conventional radomes are used to provide physical

protection for the antenna from its environment (wind,
rain, sand, ice, etc.) [1], but new radomes also face
the increasing technical requirements such as regulating
electromagnetic (EM) beams. For example, EM meta-
materials are introduced in radomes to provide functions
such as improving the gain, changing the polarization of
the antenna, and filtering the electromagnetic waves [2–
5]. Metamaterials or metamaterials-inspired structures
[6, 7] generally present frequency-selective properties.
So metamaterials-incorporated devices can avoid out-of-
band electromagnetic interference [8].

Wire medium is a classic type of metamaterial [9–
14]. As shown in [15], a standard wire medium aligned
in the z-axis with square lattice has anisotropic permit-
tivity as

¯̄ε =

 ε0 0 0
0 ε0 0
0 0 ε

 , (1)
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(
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2

k2 −q2
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)
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and k0, qz are defined in [15].
In this medium, transmission line mode can be sup-

ported. When the length of the wire is properly designed,
the wire medium reaches Fabry-Perot resonance and can
provide high transmission for all angle incidence with
subwavelength details in this canalization status [9, 10].

In metamaterial designs, active devices are utilized
to provide flexibility for various applications [16–20].
Active metamaterials are also used in radomes to regu-
late the beams to enhance the angular stability [21] or to
actively control the transmission [22–24]. However, for
a detecting system, unexpected high-power incidence of
EM waves is fatal and will affect the robustness of the
detecting system. In this case, active metamaterials are
not so effective in harnessing the EM waves because the
state of the incidence is not known in advance.

In this paper, we propose an adaptive passive
radome based on PIN diodes incorporated wire medium.
This radome provides high transmission for low-power
EM incidence. However, if the EM incidence is strong
enough, the transmission will be dramatically reduced
automatically. The mechanism of the radome is as fol-
lows. When working in a low-power incidence scenario,
the PIN diodes are in “off” state and have little effect
on the canalization working status of the wire medium.
So high transmission is supported in the wire medium.
When the incidence is so strong as to turn the PIN diodes
to “on” state, forward currents will be formed between
the PIN diodes, forming a shielding net in the wire
medium, destroying the canalization status of the wire
medium, and causing low transmission in the radome.
Thus, adaptive transmission and automatic protection for
the passive detecting system is realized from the hard-
ware point of view, and it will significantly enhance the
robustness and lifetime of a detecting system.
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The operating mechanism is detailed below. The
proposed radome was simulated by software CST
Microwave Studio, with the diodes modeled by its
equivalent circuits. Further, it was fabricated and mea-
sured, with its function verified by measurement results.

II. DESIGN OF THE RADOME
The proposed metamaterial radome consists of a

standard wire medium. On a plane normal to the wires,
a layer of PIN diodes is added connecting the neighbor-
ing wires. A thin dielectric layer is added to support the
diodes, on which a metallic circuit is printed to connect
the diodes to the wires, as shown in Fig. 1.

The proposed radome is based on the transmission
properties of the standard wire medium and the turn-
on characteristics of the PIN diodes. The standard wire
medium can be designed to work in the canalization
status. That is, when the length of the metal wire is
integer multiples of half-wavelength, the wire medium
reaches Fabry-Perot resonance. Under such resonance,
the wire medium experiences total wave transmission for
all angles of the incident wave [7–8]. Since the lattice
constant of the wire medium relates to the resolution of
transmission, it should be designed sufficiently small to
capture the detailed information of the transmitted EM
wave.

Moreover, transmission line (TEM) mode is sup-
ported in the canalization status [7]. So, as shown in
Fig. 2 (a), the transverse electric field between the metal-
lic rods can provide a bias for the PIN diodes, provid-
ing us the chance to add semiconductors to dynamically
adjust the transmission characteristics of the wire media.

Hence, a layer of PIN diodes is integrated, as illus-
trated in Fig. 2 (b). While the wire medium works in
canalization status, when the incident power is not so
strong as to turn the diodes on, the PIN diodes stay in
“off” state and the diode array is equivalent to a layer
of dielectric plane. In this case the canalization status of
the wire medium will be largely preserved, leading to
high transmission characteristics of the radome. When

Fig. 1. Structure of the proposed radome.

(a) (b)

Fig. 2. Scheme of PIN diodes integration in the wire
medium: (a) CST result of electric field in a standard
wire medium in the canalization status, (b) diode inte-
gration scheme.

the incident power is so strong that the transverse electric
fields between adjacent wires exceed the turn-on voltage
of the diodes, the diodes will be turned on, and a forward
current will be formed through the sheet.

Thus, an equivalent metallic net is generated on
the diode layer, reflecting the incident electromagnetic
waves automatically. With the canalization state of the
wire medium destroyed by the forward currents, the
radome shows low transmission.

III. SIMULATION ANALYSIS
A. The simulation models

The wire medium modeled consists of copper rods
with diameter 2 mm and length 150 mm (2.5 wave-
lengths under 5 GHz). These rods form a 40×33 array in
a square lattice with lattice constant of 10 mm. Near one
end (20 mm away from the end) of the wire medium, a
thin F4B sheet with thickness 0.508 mm, and εr = 2.2 is
used as the support medium for the diode array. On this
sheet periodical holes are arranged for the metallic rods
to go through. Between the holes, short metallic wires
with width 0.3 mm are printed as a circuit to connect a
PIN diode to its neighboring rods. The diode considered
is the RF PIN diode BAR64-5 of Infineon Corporation.
According to [25], the photo, the hardware basing cir-
cuit, and the equivalent circuit (EC) for the PIN diode
(D1) used in the design is shown in Fig. 3. The oper-
ating frequency of the diode is 5 GHz, which is beyond
the highest specified frequency by the manufacturer [25].
As the EC parameters for the design are not provided
by the manufacturer, in this paper, the diode parameters
were extracted from the measured S-parameters of the
diode [26]. The extracted parameters are Rs = 3 Ω, L =
1.8 nH, CT = 0.22 pF, and Rp = 2850 Ω.

Two horn antennas operating at 5 GHz are modeled
as the transmitter and receiver, as shown in Fig. 4 (a).
An observation plane is defined as a plane transverse to
the wave transmission between the wire medium and the
receiver. On this plane, the electric field is sampled to
calculate the transmission of the radome.
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Fig. 3. The photo, the hardware basing circuit, and the
equivalent circuit of the PIN diode (D1) used in the
design under “on” or “off” states.

(a)

(b) (c)

Fig. 4. Illustration of the proposed radome: (a) The finite
sized model, (b) the unit cell model, and (c) the cut plane
where diodes are integrated.

Apart from the above model, unit cell models for
diode “on” and “off” states are also used to study the
proposed radome with sufficient periodicity. In the unit
cell model, for the convenience of modelling, each PIN
diode is separated into a pair of serially connected iden-
tical PIN diodes, as shown in Fig. 4 (c).

In both the finite structure model and unit cell
model, a radome formed by the same standard wire
medium without diodes and the F4B sheet is used as a
reference.

B. Simulation results
With the finite model shown in Fig. 4 (a), the S

parameters were calculated. Figure 5 shows that the

Fig. 5. The transmission coefficients of the radomes.

difference in S21 between the proposed radome with
Diodes “off” and the reference radome is generally
less than 1 dB. It indicates the proposed radome only
slightly degrades the transmission when the diodes stay
off. When the diodes are turned on by strong incidence,
the transmission gets obviously reduced. Compared with
that of the reference, this difference reaches 6.6 dB at 5
GHz.

The amplitudes of electric field on the observation
plane in the near field are compared in Fig. 6. It can be
seen that the field distribution of the radome with diodes
“off” is similar to that from a horn antenna with a refer-
ence radome. That is because in “off” state, known from
the EC model, the impedance of the diode is very high,
leading to small leakage currents between the metal-
lic wires. So, compared to that in the case of standard

(a) (b)

(c)

Fig. 6. Simulated electric field distribution on the obser-
vation plan: (a) The reference radome, (b) radome with
diodes “off,” and (c) radome with diodes “on.”
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wire medium, the leakage currents have little effect on
the transverse field between the metallic wires. Conse-
quently, the canalization status of wire medium is largely
preserved. However, with diodes “on,” the impedance
of the diode is small and the leakage currents between
the metallic wires are large. The large leakage currents
form a current net in the diode plane, dramatically reduc-
ing the transverse electric field on that plane. Without
the supporting of the transverse electric field, the canal-
ization status of the wire medium disappears, and the
EM wave transmitted through the radome will be largely
reduced. That is why we can find significantly weaker
electric field on the observation plane, as shown in Fig. 6
(c), which demonstrates an obvious shielding effect of
the radome.

(a)

(b)

Fig. 7. The transmission and reflection of the three
radomes under unit-cell models with different incident
angles: (a) S21 and (b) S11.

The reflection and transmission coefficients of the
proposed radome are simulated with unit cell models.
The incident angles of 0 and 30 degrees were investi-
gated. As shown in Fig. 7, for the reference radome, the
simulated transmission is 0 dB, both for the normal inci-

dence case and the oblique incidence one. As for the
radome with the diodes in “off” state, the S21 is around
-0.6 dB for the normal or the oblique incidence cases,
indicating that high transmission is supported, which is
affected little by the incident angle. However, when the
diodes are on, the proposed radome has highest reflec-
tion and lowest transmission for both cases. Specifically,
the S11 results are about -3.5 dB at 5 GHz and the S21
results are low. While when the diodes are off, the reflec-
tion is around -20 dB, and the transmission is over -1 dB
for either incidence.

IV. EXPERIMENTAL RESULTS
The proposed radome as investigated in Section III

was fabricated by using copper rods, F4B and RF PIN
diodes BAR64 of Infineon Corporation. In order to gen-
erate a strong incident electromagnetic wave to turn the
diodes on, a power amplifier with output power of 39
dBm was used for feeding the antenna when the “on”
state of the diode is required. Circulator and attenua-
tors are utilized in the measurement system for protec-
tion measurement for high-power case. The near fields
from the radome are scanned as shown in Fig. 8. The
scan plane is 5 wavelengths (300 mm) away from the
radome.

As shown in Fig. 9, the measured field distributions
show similar trends to the simulation results. When the
input signal is weak, which cannot turn on the diodes,
the electric field on the observation plane has a similar
distribution pattern to that without the radome. When the
high-power amplifier is used, the incident electric field is
so strong that the diodes are turned on, and the electric
field, as shown in Fig. 9 (c), gets reduced by more than
3 dB on the observation plane compared with Fig. 9 (b).
To some degree, the proposed radome reaches the goal
to shield the receiver from strong electromagnetic wave.

Fig. 8. Measurement environment and the details of the
fabricated radome (lower right-hand corner)

Figure 9 also shows that the field amplitude in the
case with the radome under low-power incidence is evi-
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(a)

(b)

(c)

Fig. 9. Near-field scanning results of field intensity
and phase distribution: (a) Antenna without radome, (b)
antenna with radome under low-power incidence, and (c)
antenna with radome under high-power incidence.

dently smaller than that without the radome. The diode-
integrated wire medium radome introduces larger losses
in physical measurement than in simulation. The reasons
are as follows:

1. The F4B board, the printed circuit, and the weld-
ing of the PIN diodes bring greater loss to the trans-
mission channel in measurement than in simulation,
which affected the transmission of the radome.

2. The manufacturing of the wire medium in the
radome was not precise enough; e.g., some metal-
lic rods were not sufficiently parallel.

3. The diode’s equivalent circuit model is based on cir-
cuit tests with voltage bias instead of EM wave scat-
tering experiments. So, the equivalent circuit model
is not sufficiently accurate when predicting its EM
scattering effect.

Table 1: Comparison of self-tuning radomes (radome
function: low power transmission, and high power
absorption)

Ref. Structure Freq.
(GHz)

Verification

Sim. Meas.
[20] Metasurface+PIN

diodes
2.5 √ ◦

[21] Metasurface+
PIN diodes

6.5 √ ⃝

This
work

Metamaterial+PIN
diodes

5 √ √

The comparison between the proposed radome and
other self-tuning radomes in the literature is made in
Table 1.

V. CONCLUSIONS
In this paper, a passive metamaterial radome based

on PIN diodes is proposed, to automatically shield the
receiver from high-power EM incidence and protect
the receiver system. The mechanism of the radome is
explained. Simulation results show that the proposed
radome shows obviously different transmission property
under diodes “off” and “on” states. The reflection is
around -20 dB with diodes “off,” while it is -3.5 dB with
diodes “on.” Experimental results show that the trans-
mission also gets reduced by more than 3 dB, when the
receiver is illuminated by strong incidence with power of
39dBm, compared with the weak incident power case.
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