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Abstract – Symmetry is a key factor for Branch-Line
Couplers (BLCs) in RF and microwave systems. This
balanced approach evenly distributes power between two
output ports, aiding impedance matching and reducing
unwanted coupling and crosstalk, while increasing input-
output isolation. Furthermore, the symmetrical design
of BLCs ensures favorable return loss and phase bal-
ance, which are essential for phase-sensitive detectors
and beamforming. This symmetry also guarantees con-
sistent performance over a wide frequency range, making
it suitable for broadband or multi-frequency applications.
We present a compact BLC operating in two frequency
bands, ideal for 5G sub-6 GHz applications. It uses T-
shaped lines with folded lines and stubs in a Minkowski
fractal shape, resulting in a size reduction of 90%. The
design and simulation were performed using the CST
Microwave Studio at 0.7 GHz and 3.5 GHz, achiev-
ing a new high frequency band ratio of 5. A prototype
on Rogers RT5880 substrate (εr = 2.2,h = 0.787 mm)
was tested to validate the design’s effectiveness, offer-
ing potential for modern wireless applications requiring
versatile frequency band operation.

Index Terms – Balanced, Coupler, Fifth-generation,
Fractal, Frequency ratio, Low-band, Mid-band,
Minkowski, Simultaneous, Symmetrical.

I. INTRODUCTION
Recent advancements in technology and commu-

nication systems have spurred a growing demand for
compact, multifrequency, and high-bandwidth devices to
enhance circuit designs’ efficiency and performance [1].
In the realm of microwave and millimeter wave frequen-

cies, maintaining symmetry in the design of microstrip
couplers plays a crucial role in ensuring equal power dis-
tribution while minimizing undesirable coupling effects
[2]. However, traditional BLC with four ports, includ-
ing an input port, an isolated port, and two coupled
ports with a 90◦ phase difference, no longer meet the
requirements of modern device design trends, which
emphasize the need for dual-band or multiple-band func-
tionality [3].

Various methods have been proposed to achieve
dual frequency operation in BLCs, including the intro-
duction of stubs in T [4, 5] or π-shapes [6, 7] and
coupling lines [8, 9] to convert single-band sections
into dual-band counterparts. However, these approaches
exhibit limitations such as large circuit sizes, small
frequency ratios, complex structures, high insertion
loss, and a restricted frequency range, making them
unsuitable for lower 5G bands, such as 0.7 GHz and 3.5
GHz [10]. Recent research has reported dual-band BLCs
with higher frequency ratios [11, 12], but their optimal
performance is observed when the midpoint frequency
is higher than 3 GHz.

To address the demands of lower sub-6 GHz 5G fre-
quency bands with a wide frequency ratio, this paper
introduces a compact and simple dual-band BLC design.
It uses T-shaped technique with folded lines in the
form of Minkowski fractal geometry (MFG) to achieve
compact packing of transmission lines (TL), effectively
reducing the overall size in comparison to traditional
configurations. The paper presents analytical equations,
design details, and prototype realization of this dual-
band branch-line coupler (DB-BLC), showing excellent
agreement between measured and simulated results at
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frequencies below 4 GHz. In addition to 5G applications,
the proposed BLC can be used in radar systems, where
it can split incoming and outgoing signals between
radar transmitters and receivers, facilitating tasks such
as topography measurement, vegetation analysis, and
weather monitoring [13].

II. DESIGN ANALYSIS OF THE DUAL-BAND
STRUCTURE

A. Dual-band branch-line coupler
The traditional BLC’s λ/4-wave sections are trans-

formed into dual-band equivalents by adding extra T or π

stubs. In this work, we adopt the T-shaped TL approach
for simplicity. Figures 1 (a) and (b) show the layout of a
standard BLC and how the λ/4-wave sections are con-
verted into T-shaped segments. This design equates the
ABCD matrix of the conventional λ/4-wave TL to the
ABCD matrix of the T-shaped segments as:[

AT BT
CT DT

]
=
[
Mse

][
Msh

][
Mse

]
, (1)

Mse and Msh represent the ABCD matrices for the T-
section’s series and shunt elements, respectively.

And the ABCD matrix of the λ/4−wave transmis-
sion line is given by:[

A B
C D

]
λ/4

=

[
0 ± jZo

± j 1
Zo

0

]
, (2)

Having Zo as the characteristic impedance of the pri-

(a)

(b)

Fig. 1. The layout diagram of (a) conventional BLC and
(b) proposed T-section.

mary branch line. The solutions to equations (1) and (2)
results in:

tanθb = 2 ×
(

Zb

Za

)
× cot 2 θa, (3)

(a)

(b)

(c)

Fig. 2. The relationship between (a) the electrical lengths
(θa,θb) and the frequency ratio K, (b) the relationship
between the (Za,Zb) when Zo = 35.35 Ω and frequency
ratio K, and (c) the relationship between (Za,Zb) when
Zo = 50 Ω and the frequency ratio K.



967 ACES JOURNAL, Vol. 38, No. 12, December 2023

Zo = Za × tan θa, (4)
where θa f 1 and θa f 2 represent the electrical lengths of
the lines at designed frequencies. Furthermore, the solu-
tion to equation (4) is obtained as:

pπ = θa f1 ± θa f2 , p = 1,2,3, · · ·, (5)
θa f2
θa f1

=
f2

f1
= K. (6)

Therefore, from equations (3) and (5), we have:

θa f1 =
π

K +1
, θa f2 = K ×θa f1 , (7a)

θb f1 =
2π

K +1
, θb f2 = K ×θb f1 . (7b)

The values for the line impedances can be deduced
using the following equations:

Za =
Zo

tan θa f1
, (8a)

Zb =
1
2
× Za × tan2 2θa f1 . (8b)

By using equations (1) to (8), we can understand
how electrical lengths change with the frequency ratio
K, as shown in Fig. 2 (a). We also explore the behavior
of characteristic impedances, denoted Za and Zb, in our
design. These operate at two different impedance val-
ues: 50 Ω and 35.35 Ω. Figures 2 (b) and (c) illustrate
how these impedance values change with the frequency
ratio K.

The practical impedance range for (Za,Zb) is 22.5
Ω to 180 Ω, as shown in Figs. 2 (b) and (c). This limits
frequency ratios K to 1.93-2.33 and 3.5-8.7. Achieving
ratios between 2.34 and 3.49 is challenging due to high
impedance.

Alternatively, in [11, 12], coupled lines achieve
2.34-3.49 ratios, but suffer high insertion loss [14]. T-
sections in BLC [15–17] have limited ratios. For exam-
ple, [15] and [16] achieve 2.22 and 2.42 ratios at 0.9/2
GHz and 2.4/5.2 GHz. The highest ratio in [17] is 4.8.

Our work achieves a ratio of 8.7, offering greater
versatility for dual-band BLCs, as shown in Figs. 2 (a-c),
Fig. 3 displays lumped elements in DB-BLC 1, designed
using Table 1 parameters.

While DB-BLC 1 covers a wide frequency range, it
is bulky at (162.58 mm × 161.31 mm). To reduce size,
we fractalize the structure with sharp-edged chamfered
bends to minimize capacitive effects [18].

Table 1: The dimensions based on the theoretical param-
eters

Parameter Z (Ω) Width (mm) Length (mm)
La 61.25 1.77 52.08
Lb 86.60 0.95 54.37
Ls1 91.88 0.90 51.70
Ls2 129.90 0.45 54.30

Fig. 3. The lumped elements representation superim-
posed with the layout of the DB-BLC 1.

B. Proposed miniaturized (DB-BLC 2)
To simplify the structure, we have modified the BLC

series, shunt segments, and their stubs to resemble the
first iteration MFG design. This change maintains device
symmetry for reliable power distribution, strong isola-
tion, consistent frequency response, low return loss, and
phase balance, all vital for proper functionality.

The MFG implementation is based on three key
parameters, as shown in Fig. 4: L for generator length,
L3 for the indentation width, and L2 for the depth of the
fractal or indentation. Figure 4 (a) illustrates the evo-
lution from the generator to the first Minkowski fractal
iteration. We use the one-third ratio, common in creat-
ing famous fractal curves such as the Koch and Cantor
geometries [19], which is crucial.

The dimension D values follow logarithmic func-
tions defined in equation (9). k denotes the number of
segments in the geometry, and r signifies the segments
divided during each iteration after initially dividing the
geometry into k segments.

D =
logk
logr

. (9)

Equation (9) yields a Minkowski fractal dimension
of 1.465, which quantifies a fractal curve’s space-filling
ability. In particular, not all fractal curves are suitable for
use in BLC design, although some have found success
in antenna design [20]. This distinction arises from the
different input-output coupling requirements in the BLC
design.

To enhance the coupling and establish a practical
fractal dimension range, we adopt a first-iteration geom-
etry. We replace the standard 1/3 ratio for generating
diverse fractal curves with an arbitrary ratio. Figure 4 (a)
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(a)

(b)

Fig. 4. The layout representations of (a) initiator and
fractalized main line and (b) stub.

shows the initial iteration with five segments, two hori-
zontal sections (2× (L1)) considerably longer, and three
segments approximately 2× (L2) and L3 in length.

The characteristic impedances for main-series and
shunt TLs remain unchanged to maintain desired dimen-
sions. However, equations (7a) and (7b) undergo adjust-
ments. Electrical lengths for main lines (θ1-θ3) and stubs
(θ ′

1-θ ′
6) in Fig. 4 (b) are calculated based on the cho-

sen arbitrary ratio, and the total length is given in equa-
tion (10).

The optimized dimensions for the proposed horizon-
tal and vertical line sections are summarized in Table 2:

θx f1(a,b) = θT = 2θ1 +2θ2 +θ3. (10)
Figures 5 (a) and (b) display a compact 35.35 Ω hori-

zontal TL for efficient signal transmission at 0.7 GHz and
3.5 GHz. Our aim is minimal signal loss (low S21) and min-
imal reflection (S11<-10 dB) to optimize power transfer.

Figures 5 (c) and (d) show the TL’s magnitude and
phase responses at 0.7 GHz and 3.5 GHz, providing a

Table 2: The optimized geometrical dimensions
Section Series Line Shunt Line Elect., Length Series Stub Shunt Stub
L1(mm) 15.51 16.64 θ1 19.20◦ 17.50◦

L2(mm) 3.87 4.20 θ2 5.20◦ 6.40◦

L3(mm) 7.80 8.32 θ3 9.60◦ 6.70◦

T1(mm) 3.66 4.50 θ ′
1 4.10◦ 4.95◦

T2(mm) 7.25 6.00 θ ′
2 8.11◦ 6.60◦

T3(mm) 6.75 7.00 θ ′
3 7.50◦ 7.70◦

T4(mm) 7.25 9.00 θ ′
4 8.11◦ 9.90◦

T5(mm) 9.55 9.00 θ ′
5 10.7◦ 9.90◦

T6(mm) 17.25 18.00 θ ′
6 19.3◦ 19.8◦

W1(mm) 1.77 0.95 − − −
W2(mm) 0.85 0.55 − − −

(a)

(b)

(c)

(d)

Fig. 5. The representations of (a) 35.35 Ω horizontal
section, (b) equivalent circuit, (c) S-parameter response,
and (d) phase response of the line.

comprehensive view of signal behavior. In particular,
Fig. 5 (d) achieves phase control with -90◦ and +90◦ at
0.7 GHz, and 3.5 GHz.

Figures 6 (a) and (b) detail the 50 Ω vertical TL
design and structure, revealing its physical arrangement.
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On the contrary, Figs. 6 (c) and (d) analyze the vertical
TL’s S parameters and phase response, offering insights
into system performance.

These figures highlight the vertical TL’s impres-
sive capabilities, ensuring effective signal transmission

(a) (b)

(c)

(d)

Fig. 6. Representations of (a) 50 Ω vertical section,
(b) equivalent circuit, (c) S-parameter response, and (d)
phase response of the line.

at 0.7 GHz and 3.5 GHz and precise phase shifts of −90◦

and +90◦ at these frequencies. These results affirm the
vertical TL’s reliability and significance in the system.

III. SIMULATIONS, FABRICATION, AND
MEASUREMENTS

DB-BLC 1 and DB-BLC 2 were created for 5G
below 6 GHz frequencies (specifically, 0.7 GHz and 3.5
GHz) using CST Microwave Studio software. DB-BLC
2, shown in Fig. 7, has a unique symmetrical design
achieved by combining the TLs from Figs. 5 and 6. The
gaps shown from the diagram are only for the purpose
of demonstrating integration and do not reflect the actual
configuration. It was developed on an RT/Duroid 5880
substrate, 0.787 mm thick, with a permittivity of 2.2 and
a loss tangent of 0.0009.

To realize the prototype shown in Fig. 8 (a), the
photoetching technique was used and SMA connectors
were used for measurements. The S parameters of the
prototype were measured using a Rohde & Schwarz

Fig. 7. The diagram showing the assembly process of the
Minkowski-shaped DB-BLC 2.

(a)

Fig. 8. Continued
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(b)

Fig. 8. The structure of the fabricated prototype for BLC-
2 (a) with SMA connectors and (b) with VNA during S-
parameter measurement.

ZNB 40 vector network analyzer (VNA), as illustrated
in Fig. 8 (b).

IV. RESULTS AND DISCUSSION
Figures 9 (a) and (b) visually depict the current den-

sity distribution in the DB-BLC 2 structure at two crit-
ical frequencies, 0.7 GHz and 3.5 GHz. Figure 9 illus-
trates the equal division of the input signal between Port-
2 and Port-3, with Port-1 as an input port, ensuring sym-
metric power distribution. This balance enhances device
efficiency. Additionally, Port-4 remains isolated from the
input signal, as evident in the figures, preventing unwanted
signal leakage or interference at specified frequencies.

Figure 10 provides the (S− parameters), providing
information on the interaction and transmission of the

(a)

Fig. 9. Continued

(b)

Fig. 9. The current density distribution of the proposed
DB-BLC 2 with Port-1 as an input port (a) at 0.7 GHz
and (b) at 3.5 GHz.

(a)

(b)

Fig. 10. The S-parameters results analysis of DB-BLC 2
(a) S11 and S41 simulated and measured and (b) S21 and
S31 simulated and measured.
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Fig. 11. The overlapped phase response of the proposed
DB-BLC 2.

signal. Meanwhile, Fig. 11 presents the phase response
across coupled and through ports, crucial for understand-
ing phase shift characteristics in various applications.

Notably, miniaturization via MFG caused slight res-
onance frequency shifts and reduced return loss values,
optimizing the design for desired frequency bands and
improved performance. Figures 10 and 11 display S-
parameter and phase responses, confirming the function-
ality of the BLC within the sub-6 GHz 5G dual fre-
quency bands (0.7 GHz and 3.5 GHz). In particular,
both S11 and S41 in Fig. 10 (a) exhibit values below -
25 dB in these frequency bands. To ensure a balanced
power distribution between the Port-2 and Port-3 out-

Table 3: Performance comparison between simulated
DB-BLC 1, DB-BLC 2, and measured DB-BLC 2

Parameter DB-BLC 1 (Sim) DB-BLC 2 (Sim) DB-BLC 2 (Mea)
Freq., (GHz) 0.7/3.5 0.7/3.5 0.7/3.5

S11 (dB) -29.7/33.4 -30.4/-31.2 -29.0/-26.1
S21 (dB) -3.31/-3.23 -3.10/-2.98 -3.61/-2.89
S31 (dB) -2.86/-3.11 -3.09/-3.21 -2.65/-3.34
S41 (dB) -31.4/-29.7 -31.8/-28.9 -29.1/-26.4

Phase diff., (◦) -91.4/89.1 -89.8/90.6 -88.9/91.2

Table 4: Performance comparison with other related published works from the literature
Ref./Date f1/ f2 (GHz) Ratio (K) Size (mm) |S11| (dB) |S21| (dB) |S31| (dB) |S41| (dB) Phase Error (◦) Ampl. Error (dB)
[17]/2016 1/4 4 65×51 -/- -3.28/-3.2 -3.43/ -3.37 -/- -/- -/-
[21]/2016 0.87/1.79 2.05 31×31 -26/-21.6 -3.3/-3.09 -3.67/-3.9 -34/-19.9 ±5 ±1
[22]/2018 0.82/2 2.43 55×32 -21/-13 −/− −/− -24/-14 - 1.4
[23]/2018 0.9/2.4 2.67 64×83 -27/-26 -3.47/ -3.56 -3.41/ -3.78 -24.5/ -23.3 ±5 ± 0.5
[24]/2019 0.75/1.32 1.76 - >-14 -3.35/ -4.0 -3.74/ -4.1 >-14 ± 4 ± 0.65
[25]/2021 0.9/1.8 2 124 ×60.4 - -/- -/- - - -
[26]/2022 0.9/2.45 2.72 99×46 -20 -3.66/ -3.72 -3.42/ -3.53 -20 ± 5 1
[27]/2022 1/2.5 2.5 68×65 -15 -2.9/-2.8 -3/-3.5 -20 ± 2.7 -
[28]/2023 0.9/2.0 2.22 99.06 ×12.96 -26.8/ -35.6 -3.5/-3.4 -3.1/-3.3 -23.4/ -27.2 - -

This work 0.7/3.5 5 54×48 -29.0/ -26.1 -3.61/ -2.89 -2.65/ -3.34 -29.1/ -26.4 1.2 0.61

puts, both S21 and S31 should be around -3 dB. Conse-
quently, the proposed design in Fig. 10 (b) shows values
of -3.1 dB and -3.09 dB at 0.7 GHz and -2.98 dB and
-3.21 dB at 3.5 GHz. Additionally, optimal power dis-
tribution requires a 90◦ phase difference between output
ports Port-2 and Port-3. Figure 11 reveals phase differ-
ences (∠S31 −∠S21) of -89.8◦ at 0.7 GHz and 90.6◦ at
3.5 GHz, translating to phase errors of 0.2◦ and 0.6◦,
respectively.

Table 3 provides a performance comparison
between simulated DB-BLC 1, DB-BLC 2, and mea-
sured DB-BLC 2.

In the frequency range of 0.7 GHz to 3.5 GHz,
DB-BLC 2 performed exceptionally well. The measured
return loss (S11) and the isolation loss (S41) were bet-
ter than -10 dB. Figure 10 illustrates that, at 0.7 GHz,
the measured insertion loss (S21) and coupling loss (S31)
were -3.61 dB and -2.65 dB, respectively, while at 3.5
GHz, they were -2.89 dB and -3.34 dB. The maximum
insertion loss and coupling loss were 0.61 dB and 0.36
dB, respectively, closely approaching the standard -3 dB
value.

The phase differences between the output Port-2 and
Port-3 for DB-BLC 2 were measured at -88.9◦ and 91.2◦,
respectively, with a maximum measured phase error of
1.2◦ compared to the simulated 0.8◦. It’s worth noting
that fabrication errors and dielectric losses may influence
the measured phase error and other performance parame-
ters. However, the proposed design exhibited good agree-
ment with the overall simulated and measured results.

Table 4 provides a comparative assessment of DB-
BLC 2 in the same frequency range as previous designs.
Analysis shows that our design excels in simplicity, com-
pactness, and a wider frequency band ratio. On the con-
trary, the closest predecessor achieves only a ratio of 4,
while other designs require larger sizes, lower K val-
ues, or more complex structures. Notably, [29] and [21]
achieve smaller dimensions but with a limited band ratio.
In summary, these findings shows the suitability of the
proposed BLC design for sub-6 GHz 5G applications.
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V. CONCLUSIONS
In this paper, a miniaturized DB-BLC with an

improved frequency band ratio is reported. The BLC’s
traditional transmission line (TL) is transformed into a T-
shaped TL on both arms using ABCD-matrix analysis to
attain dual-band properties. Symmetry is a fundamental
design parameter that contributes to the effectiveness and
efficiency of these components in communication, radar,
and other high-frequency systems. By utilizing this frac-
tal geometry, the designed branch-line coupler is further
miniaturized achieving a 90% size reduction while main-
taining its functionality.

This design is believed to be the first compact and
low-profile DB-BLC with a large frequency ratio for
lower frequency bands of 0.7 GHz and 3.5 GHz. The
simulated and verified results show good agreement.
Importantly, this proposed structure holds promise appli-
cations in sub-6 GHz 5G applications, where its com-
pactness and dual-band capabilities can offer valuable
advantages.
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