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Abstract – When modelling and optimizing antennas by
machine learning (ML) methods, it is the most time-
consuming to obtain the training samples with labels
from full-wave electromagnetic simulation software. To
address the problem, this paper proposes an optimiza-
tion method based on the consensus results of multiple
independently trained Student’s-T Process (STP) with
excellent generalization ability. First, the STP is intro-
duced as a surrogate model to replace the traditional
Gaussian Process (GP), and the hyperparameters of the
STP model are optimized. Afterwards, a consistency
algorithm is used to process the results of multiple
independently trained STPs to improve the reliability
of the results. Furthermore, an aggregation algorithm is
adopted to reduce the error obtained in the consistency
results if it is greater than the consistency flag. The
effectiveness of the proposed model is demonstrated
through experiments with rectangular microstrip anten-
nas (RMSA) and circular microstrip antennas (CMSA).
The experimental results show that the use of multiple
independently trained STPs can accelerate the antenna
design optimization process, and improve modelling
accuracy while maintaining modelling efficiency, which
has high generalization ability.

Index Terms – Antenna optimization, Consensus net-
work, Gaussian Process, Student’s-T Process.

I. INTRODUCTION
In the past research, the optimal design of

electromagnetic (EM) components has often relied
on numerical simulation or full-wave EM simulation
software, such as High-Frequency Structure Simulator
(HFSS), Computer Simulation Technique (CST), and
combined with global optimization algorithms [1, 2] to
perform research experiments with significant results.
Although these numerical simulation tools can provide
high fidelity simulation results, the process of evaluating
the performance of EM components requires multiple
calls to the EM simulation software, and each calculation
is time-consuming and inefficient. As a result, the focus
of current research has shifted to the surrogates of EM
simulation software to assess the suitability of EM
components. The introduction of surrogates offers the
advantage of saving time and resources, especially
for the more complex EM components. Surrogates
are approximate models that allow predictions and
evaluations in a short time by analyzing and modelling
a small amount of EM simulation data, thereby
improving computational efficiency while maintaining
some accuracy. Some modelling methods such as
Artificial Neural Networks (ANN) [3–5], Support
Vector Machines (SVM) [6, 7], Extreme Learning
Machines (ELM) [8–10], Gaussian Processes (GP)
[11–13] and Backpropagation (BP) [14] are currently

Submitted On: July 5, 2023
Accepted On: January 25, 2024

https://doi.org/10.13052/2023.ACES.J.381209
1054-4887 © ACES

https://doi.org/10.13052/2023.ACES.J.381209


REN, TIAN, LI, FU: RESONANT FREQUENCY MODELLING OF MICROSTRIP ANTENNAS BY CONSENSUS NETWORK 988

in use and can effectively solve electromagnetic
problems.

ANN has a powerful self-learning capability to han-
dle complex problems, but it requires a large amount
of simulation data, and determining its structure is very
difficult. SVM has good generalization ability and is
suitable for small samples, which can effectively avoid
”dimensional disaster” due to its final decision function,
but the predicted output is not probabilistic and its kernel
parameters are difficult to determine. As a classical
surrogate, GP can not only face complex mathemat-
ical problems, but also solve mathematical problems
in high-dimensional space, and its mathematical theo-
retical foundation is more rigorous [15]. However, the
posterior distribution of the GP always depends on the
observations, and its outliers are a preferential assump-
tion, leading to extreme outlier observations that cannot
effectively be ignored [16]. The Student’s-T Process
(STP) obeys the Student’s-T distribution rather than the
Gaussian distribution, it has a more flexible posterior
variance and more robust performance compared to the
GP. Shah et al. obtained the closed expressions for the
marginal likelihood and predictive distribution of the
STP by inverting the Wishart integral process over the
covariance kernel of the GP model, and it was shown
that the STP not only retains the properties of the
non-parametric representation of the GP but also has
greater flexibility concerning the predicted covariance
[17]. Sloin and Särkkä added a noise covariance function
to the parametric kernel to construct the STP, and used
it as an alternative to GP, which can make the com-
putation more concise [18]. Tang et al. proposed STP
with the Student’s-T likelihood for dealing with input
and target outliers [19]. Chen et al. constructed a unified
framework to derive a multivariate STP model, which
not only addressed some of the shortcomings of existing
methods in solving multiple output prediction problems
but was also more effective compared to the traditional
GP [20].

As a Machine Learning (ML) technique, STP is easy
to implement with few parameters in the learning pro-
cess, achieves better results in solving non-linear, high-
dimensional problems with small sample sizes, and the
final result has probabilistic significance [21]. STP can
effectively map the non-linear functional dependencies
between the input and output, and become a valuable tool
for the modelling and optimization of complex EM prob-
lems. However, sometimes, the accuracy and reliability
of STP results remain problematic. Even after adequate
training, the predicted results of STP still have errors
that cannot be neglected compared with ones obtained
by full-wave EM simulation software. When STP is
used to optimally design an antenna, these deviations
can temporarily or permanently lead the optimization in

the wrong direction, thereby prolonging the optimization
time or rendering the antenna design infeasible.

This paper proposes a generic method for the opti-
mal design of antennas, reducing the uncertainty of the
results obtained from a single STP. It is based on con-
sensus results from multiple independently trained STPs.
First, STP is introduced as a surrogate to replace the
conventional GP and its hyperparameters are optimized.
Then, a consensus algorithm is used to process the results
of multiple independently trained STPs to improve the
reliability of the results. Moreover, an aggregation algo-
rithm is adopted to reduce the error of the consensus
results if it is greater than the consistency flag.

The rest of this paper is structured as follows.
The second part gives a brief description of GP and
STP. The third part details the basic principles, model
structure and algorithm flowchart and pseudo-code of
the consistency-based STP model. The fourth part is
the experiments, including the resonant frequencies of
rectangular microstrip antennas (RMSA) and circular
microstrip antennas (CMSA), and the modelling results
of different methods show that the proposed consensus
STP network, named C-STP, is more effective. The last
part is the conclusion and outlook.

II. BACKGROUND INFORMATION
A. Gaussian process

GP is a powerful ML method, which can be deter-
mined only by the mean function and covariance func-
tion, as shown in equation (1):{

m(x) = E( f (x))
k(x,x′) = E {[ f (x)−m(x)] [ f (x′)−m(x′)]} . (1)

In the above formula, x,x′ ∈ Rd are any random
variables, m(x) is the mean value function, and k(x,x′)
is the covariance function. GP can be further expressed
by the following equation [22]:

f (x)∼ GP(m(x),k(x,x′)). (2)
If there are n observations in the training set D =

{(xi,yi) |i = 1,2, · · · ,n},Xi = [x1,x2, · · · ,xn]is a d × n-
dimensional input training matrix with n d-dimensional
input training vectors. y = [y1,y2, · · · ,yn]

T is a training
output vector with n training output scalar yi.If there
is noise ε , the regression model can be expressed as
y = f (x) + ε , where ε is a random variable obeying a
normal distribution with a mean of 0 and a variance of
σ2

n , which can be expressed as:
ε ∼ N

(
0,σ2

n
)
. (3)

Then the prior distribution of the observed target
value is as follow:

y∼ N(0,K +σn
2I), (4)

where K = K (X ,X) is a symmetric positive definite
covariance matrix of order n× n, and I is the identity
matrix. Outputs y of n training samples and f ∗ of n∗ test
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samples forms a joint Gaussian prior distribution, which
can be expressed as:[

y
f ∗

]
∼ N(0,

(
K(X ,X)+σn

2I K(X ,X∗)
K(X∗,X) K(X∗,X∗)

)
). (5)

In the above equation, K (X ,X∗) is the n× n∗ order
covariance matrix between n∗ test samples and n training
samples, and K (X∗,X∗) is the n∗× n∗ order covariance
matrix of n∗ test samples.

Typically, the covariance matrix of GP regression
model, also known as kernel function, is chosen from
the Automatic Relevance Determination (ARD) series
of squared exponential kernels, which contain a set of
hyperparameters that determine the nature of the GP
model. In the actual modelling process, the hyperparam-
eters of the GP model are determined through calculating
the maximum likelihood function. First, the conditional
probabilities of the log marginal likelihood functions
of the training samples are constructed, and then the
bias derivatives of the hyperparameters contained therein
are obtained. Finally, the hyperparameters are optimized
using a conjugate gradient optimization method to find
the optimal solution. The expression for the negative log-
likelihood function is given by:

l = logp(y|θ ,X) =− 1
2 yT K−1y− 1

2 log |K− n
2 log2π .

(6)
After the optimal value of the hyperparameter is

obtained, the trained GP is used for predictions.
Given a new set of data input x∗, based on the trained

GP model with the training set (X ,y), the posterior
distribution of the predicted value y∗ of the new input
x∗ can be written:

p(y∗|x∗,X ,y) = N(µ,Σ), (7)
where formula (8) is the predicted mean value matrix,
and formula (9) is the predicted covariance matrix:

m = K(X∗,X)K(X ,X)−1y, (8)
Σ = K(X∗,X∗)−K(X∗,X)K(X ,X)−1K(X ,X∗). (9)

Through the above series of calculations, the GP can
predict the output corresponding to the x∗ .

B. Student’s-T process
STP is a function distribution of an infinite set

of random variables subject to multivariate Student’s-T
distribution, which is an extension of GP. We describe
the Student’s-T distribution in this way [23]:

T(µ,Σ,v) =
Γ((v+n)/2)

Γ(v/2)vn/2πn/2|Σ|1/2

·
(

1+
1
v
(y−µ)T

Σ
−1(y−µ)

)−(v+n)/2

.

(10)

In the above equation, n is the dimension of the
Student’s-T distribution, µ is the mean vector, ∑ is the
correlation matrix, v is the degree of freedom and v > 2 :

E
[
(y−µ)(y−µ)T

]
=

v
v−2 ∑ . (11)

STP includes mean function µ (x), kernel function
k (x,x′) and degree of freedom v, and they also determine
STP properties. If x,x′ ∈ Rd is any random variable, STP
can be given by:

f (x)∼ ST P(m(x),k(x,x′),v). (12)
If the degrees of freedom ν increase infinitely and

finally converge to infinity, the multivariate Student’s-T
distribution will become a multivariate Gaussian dis-
tribution, which has the same mean and correlation
function.

In STP, the prior expected value of each position
x is defined by the mean function µ(x).The covariance
between the values of x and x0 at any two positions is
represented by the kernel function, and then the joint
probability distribution of a finite subset of positions can
be expressed as:

p(y|x) = T (µ,∑,v)(y) = T
(

µ,
v−2

v
K,v
)
(y). (13)

In the above equation, µ represents means vector,
µi = µ(xi) £ν is the degree of freedom, K is the kernel
matrix Ki, j = k(xi,x j).

Given a set of samples D = [(x1,y1),(x2,y2),(x3,
y3), ...], a posteriori of STP is given by:

p(y|x,D) = T
(

µ̂,
v−2

v
K̂, µ̂

)
(y), (14)

where
µ̂ = Kx,xK−1

x̃,x̃ ỹ, (15)

K̂ =
v−2+ ỹT K−1

x̃,x̃ ỹ

v−2+ |D|
(Kx,x−Kx,x̃K−1

x̃,x̃ Kx̃,x), (16)

v̂ = v+ |D|. (17)
Generally, the kernel of the square index is selected

as kernel function [24]and is given by:

KSE(x,x′) = s2
f exp(−∥x− x′∥2

2ℓ2 ), (18)

where s2
f is the signal variance and can also be the output

scale amplitude, and the parameter ℓis the input (length
or time) scale.

The combination of equation (14) and the kernel
function shows that the posterior covariance of STP is
dependent on not only the test observations but also
the training observations [25]. Therefore, as a surrogate
model, STP has more flexible post-verification differ-
ence. In addition, using the same method as the GP,
its hyperparameter can be estimated by the maximum
marginal likelihood. The form of its negative logarithmic
likelihood function can be given by:

L(θ) =− log p(y | x,θ)

=
N
2

log((v−2)π)+
1
2

log |Kθ |

− logΓ

(
v+N

2

)
+ logΓ

( v
2

)
+

v+N
2

log
(

1+
β

v−2

)
. (19)
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III. THE PROPOSED MODEL
The consensus STP, named C-STP, is proposed in

this paper, as shown in Fig. 1, which is constructed by
multiple individual STPs that map the physical parame-
ter X of an antenna to the output parameter Y , such as res-
onant frequency. The nonlinear transform y = fST P(x),
where x = [x1x2 . . .xl ] y = [y1y2 . . .yn] implements the
mapping, where l,n is the length of x,y .

For the STP used in this paper, the ARD series
square index kernel (20) is selected, and the hyperparam-
eter is optimized through nonlinear optimization method.
STP’s degree of freedom v, noise variance σ f

2, signal
variance s2

f , and kernel function hyperparameter ℓ are
all targets that need to be optimized. The optimization
process is shown in Fig. 2. Taking the negative log-
marginal likelihood function of STP as the objective
function, gradient-based numerical optimization tech-
niques including the conjugate gradient method or other
intelligent optimization algorithms are used to calculate
the minimum value of the negative log-marginal likeli-
hood function and obtain the final hyperparameter. When
a new observation is given, the output can be accurately
predicted:

KSEard(x,x′) = s2
f exp

(
− (x− x′)T

Θ−1(x− x′)
2

)
, (20)

where Θ is the element component
{
ℓ2

i
}p

i=1, which
represents the length scale of each corresponding input
dimension.

A. Consensus of STP
Training STP to predict y as accurately as pos-

sible for any input x requires non-linear optimization
method to find the minimum value of the negative log
marginal likelihood function and determines the value of
the hyperparameter. The training process can start with
random values of the hyperparameter or some predefined

Fig. 1. Structure diagram of consistent Student’s-T
Process model.

Fig. 2. STP hyperparameter optimization flow chart.

values. These values, along with the optimization algo-
rithm used to adjust the hyperparameters, determine the
final STP. If a random method is used, the final result
is random, that is, each training will produce a slightly
different STP instance. In theory, training might produce
the same STP, but we don’t observe it in the experiments.

If only one STP is trained for antenna frequency
modelling, even if it is well trained, its output results
may have uncertainties related to the STP training. The
effectiveness of the trained STP result depends on its ker-
nel functions, hyperparameters, training programs and
data set. To improve the effectiveness of independently
trained STP results and make them more accurate, we
use multiple STP instances instead of one STP, as shown
in Fig. 1. This topology is called consensus STP, referred
to as C-STP in this paper, and similar methods have been
used in previous studies in medicine, EM and computer
science [26–28]. The core idea of consensus STP is
to use multiple STPs simultaneously by providing an
identical training task to each STP separately. If the input
is same for all STPs, then the consensus algorithm is
performed for the output of all STPs, i.e. y1,y2, ...,yN ,
where N is the total number of STPs. The consensus
module can give the final output as shown in Fig. 1,
and the threshold determines whether all the results are
consistent. Usually, x and y can be either real set of
data, which is common in antenna design, or discrete set
data, and the C-STP can be used for both types of data.
There are some methods to implement the consensus
algorithm, including majority voting, arithmetic or other
mean algorithms. The decision is mostly influenced by
the tasks specifications and the outputs characteristics.

The training process of multiple STPs can be per-
formed in parallel because all STPs are independent of
each other, and there is no data exchange. Therefore,
the C-STP approach is well suited for applications on
multi-core computing architectures. Typically, the STPs
may have the same or different kernel functions and
hyperparameters, but all STPs must perform the same
training task.

B. Consensus algorithm
In the whole work, we use multiple training sets to

train STP randomly. The training process is repeated for
N times, therefore N different STPs can be generated.
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The consistency algorithm is to calculate the arithmetic
mean yavg from the output of all the STPs.

yavg =
1
N

M

∑
k=1

yk, (21)

we can find the output ykmax that deviates the most from
yavg, i.e.

|yk − yavg
∣∣≤ |ykmax − yavg

∣∣k = 1,2, ...,N. (22)

Then we exclude the output of the kmaxth STP and
calculate the arithmetic mean of all other STPs as:

y =
1

N−1

N

∑
k=1
k ̸=kmax

yk. (23)

In addition, for each pair of STP outputs, yp and
yq , p,q = 1,2, ...,N, p ̸= kmax and q ̸= kmax, if (24) is
satisfied, we believe that the two STPs are consistent.∣∣yp − yq

∣∣≤ ε, (24)

where ε is a pre-defined threshold. In this case, it is the
final output of the C-STP. Otherwise, it is no consensus,
and the C-STP cannot predict the output correctly. In
this case, the output is computed by other methods. In
general, the ε is set according to the problem we are
facing, and it is different depending on the problem.

When it is no consensus, we adopt the aggregation
method proposed by Goel et al. [29] to construct the
final result. This method is simple in operation and has
good usability, especially with high modelling efficiency.
The weight factor solution method of each model is as
follows:

w∗i = (Ei +αEavg)
β ,wi =

w∗i
∑i w∗i

, (25)

Eavg =
∑

N
i=1 Ei

N
,α = 0.05,β =−1. (26)

The parameters α and β are used to measure the
importance of the average model and a single approx-
imate model. Experiments show that α = 0.05,β =
−1 can obtain an accurate consensus model for most
problems. Ei is the global error of the ith approximate
model, and the value can be determined by the specific
error index used.

The consensus algorithm allows a STP to predict the
output inaccurately, while the proposed C-STP can give
a more accurate output because the algorithm eliminates
the worst predictions. On the flip side, if the outputs of all
STPs predictions are within ε , excluding one result does
not affect the final output. Therefore, compared with the
simple arithmetic mean of independent STP output, the
consistency algorithm is more accurate. The proposed
consensus algorithm meets N ≥ 3.

The pseudo-program code for the proposed algo-
rithm is shown in Algorithm 1.

Algorithm 1
Input: Data set,x = [x1,x2 . . .xl ];
Output: Data set,y = [y1,y2 . . .yn]
Process:

1: parfor i = 1,2...,N
2: Numerical optimization technique is used to opti-

mize STP hyperparameter and train individual STP;

3: A posterior prediction mean µi−1 and posterior
difference σi−1

2 of xi are obtained;
4: yN ← ST P← xi;
5: y = [y1,y2 . . .yN ];
6: end parfor
7: yavg ← Calculated arithmetic average from the

outputs of all STPs;
8: Find the output ykmax that deviates from yavg ;
9: |yk − yavg

∣∣≤ |ykmax − yavg
∣∣k = 1,2, ...,N;

10: y← The calculated arithmetic mean of the remain-
ing STP by excluding the kmaxth STPs output;

11: Define a threshold ε in advance,p,q= 1,2, ...,N, p ̸=
kmax and q ̸= kmax;

12: if (
∣∣yp − yq

∣∣≤ ε) then
13: The STPs are considered to be consensus and get

the final result y;
14: else
15: Eavg = ∑

N
i=1 Ei

/
N,α = 0.05,β =−1;

16: w∗i = (Ei +αEavg)
β ,wi = w∗i

/
∑i w∗i ;

17: y = w1yST P1 +w2yST P2 + ...+wNyST PN ;
18: end if

IV. EXPERIMENTS
A. Single STP regression

First, a single STP is trained and tested. Ten regres-
sion data sets are selected from the database [30] of the
University of California, Irvine (UCI). These data sets
have different capacities, which can verify the effective-
ness of STP. Experimental results from STP and related
parameters for these 10 regression problems are shown in
Table 1, Table 2 and Fig. 3. The results obtained by SVM
[31], Least Squares Support Vector Machine (LSSVM)
[32], ELM [33], GP [34] and other classical models are
selected to compare with STP, verifying the effectiveness
of the STP. Root mean square error (RMSE) is adopted
as the performance evaluation index to measure the
prediction error of different models. Table 2 shows the
prediction results of each model, and the best ones for
different problems are shown in bold.

RMSE =

√
1
N

N

∑
i=1

(yi−Yi)
2, (27)

where yi is the real value, Yi is the predicted value, and is
the total number of samples.
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Table 1: Details of data sets
Data Train

Samples
Test

Samples
Input

Feature
Strike 416 209 6
Pyrim 49 25 27

Housing 337 169 13
Weather

Izmir
974 487 9

Abalone 2784 1393 8
Quake 1452 726 3

Cleveland 202 101 13
Mortgage 699 350 15
Bodyfat 168 84 14

Basketball 64 32 4

Fig. 3. Comparison of different models with STP.

It can be seen that the STP used in this paper
outperforms other models in at least 7 out of 10 datasets.
Moreover, it outperforms anyone of the classical models

Table 2: Error of different models
Data Set SVM LSSVM ELM GP STP

Strike 0.1053 0.1007 0.1043 0.1023 0.1020
Pyrim 0.15497 0.1133 0.1376 0.1236 0.0507

Housing 0.0792 0.0780 0.0762 0.0849 0.0663
Weather Izmir 0.0190 0.0191 0.0191 0.0194 0.0193

Abalone 0.0773 0.0756 0.0777 0.0758 0.0756
Quake 0.2029 0.1733 0.1729 0.1728 0.1728

Cleveland 0.1514 0.1256 0.1281 0.1293 0.1227
Mortgage 0.0049 0.0053 0.0057 0.0056 0.0048
Bodyfat 0.0049 0.0038 0.0033 0.0690 0.0020

Basketball 0.0767 0.0744 0.0719 0.0776 0.0772

in at least 9 out of 10 datasets. Therefore, the STP has
good predictive ability.

B. Antennas resonant frequency
To gain insight into the performance of the proposed

C-STP and demonstrate its effectiveness, we generate
10 STPs for the following experiments. Since there
are multiple groups of data in the test set, each STP
prediction output will also have multiple groups. In order
to unify the calculation, we use the average difference
between the predicted result and the true value as output,
so that each STP will only have one predicted result, and
then it is compared in pairs to compute the consistency.
From several experiments, the threshold setting ε =
0.5 for CMSA and ε = 1 for RMSA are considered
reasonable. Of course, the number of STPs in the C-STP
as well as the threshold are determined according to the
problem.

The CMSA [35] selected in this paper is shown in
Fig. 4, and the proposed C-STP is used to predict its
resonant frequency. The input variables of the CMSA
are a, h, εr, where a is the radius of the circular patch,

Fig. 4. Schematic diagram of the CMSA.
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h is the thickness of the dielectric layer, and εr is
the relative dielectric constant, and the output is the
resonant frequency f corresponding to each group of
samples. There are 20 groups of experimental data,
among which 16 groups are selected as the training
set, and the remaining 4 groups labelled with * symbol
are selected as the test set, as shown in Table 3. At
the same time, we also select four different modelling
methods, including BP, SVM, GP and STP, to compare
with the proposed C-STP. The test results are shown in
Table 4 and Fig. 5. The evaluation metric is the average
percentage error (APE), i.e.

APE=
1
N

N

∑
i=1

|Yi− yi|
|yi|

×100, (28)

where yi is the real value, Yi is the predicted value, and is
the total number of samples.

As shown in Table 4 and Fig. 5, the prediction accu-
racy of the proposed C-STP is 84.96% higher than that

Table 3: Samples of the CMSA for the proposed C-STP
method
Number a/cm h/cm εr f/MHz

1* 6.8 0.08 2.32 835
2 6.8 0.159 2.32 829
3 2 0.2350 4.55 2003
4 5 0.159 2.32 1128
5 3.8 0.1524 2.49 1443
6 4.85 0.318 2.52 1099

7* 3.493 0.3175 2.5 1510
8 1.27 0.0794 2.59 4070
9 3.493 0.1588 2.5 1570

10 4.95 0.235 4.55 825
11 3.975 0.235 4.55 1030
12 2.99 0.235 4.55 1360

13* 6.8 0.318 2.32 815
14 1.04 0.235 4.55 3750
15 0.77 0.235 4.55 4945
16 1.15 0.15875 2.65 4425
17 1.07 0.15875 2.65 4723
18 0.96 0.15875 2.65 5524
19 0.74 0.15875 2.65 6634

20* 0.82 0.15875 2.65 6074

Fig. 5. APE of different models for the CMSA.

of BP, 31.51% higher than that of SVM, 15.50% higher
than that of GP, and 7.28% higher than that of STP. The
APE of the proposed C-STP is only 1.5498%, showing
its strong generalization performance and effectiveness.

In the following, the resonant frequency of RMSA
[36, 37], shown in Fig. 6, is selected for testing the
proposed C-STP. The antenna consists of a radiating
element, a dielectric layer and a ground plane, and W , L,

Fig. 6. Schematic diagram of the RMSA.

Table 4: Test results of different methods for the CMSA
f/MHz BP SVM GP STP Proposed

835 618 837.6 825.4 829.7 829
1510 1313 1462.7 1547.2 1553.8 1549
815 831.9 779.9 814.6 829 829
6074 6018 6136.4 6297.9 6297.9 6155.9

APE(%) 10.3012 2.2629 1.8340 1.6718 1.5498
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h, εr represent the corresponding width, length, thickness
of dielectric substrate and relative dielectric constant,
respectively. A total of 33 groups of samples are shown
in Table 5, which is divided into two parts, one as training

Table 5: Samples of the RMSA for the proposed C-STP
method
Number W/cm L/cm h/cm εr f/MHz

1* 0.790 1.185 0.017 2.22 8450
2 0.910 1.000 0.127 10.20 4600
3 2.000 2.500 0.079 2.22 3970
4 0.850 1.290 0.017 2.22 7740
5 1.063 1.183 0.079 2.25 7730

6* 1.810 1.960 0.157 2.33 4805
7 1.720 1.860 0.157 2.33 5060
8 1.170 1.280 0.300 2.50 6570
9 0.987 1.450 0.450 2.55 6070

10 0.776 1.080 0.330 2.55 8000
11 0.790 1.620 0.550 2.55 5990

12* 1.337 1.412 0.200 2.55 5800
13 0.905 1.018 0.300 2.50 7990
14 1.500 1.621 0.163 2.55 5600
15 1.120 1.200 0.242 2.55 7050
16 1.530 1.630 0.300 2.50 5270
17 1.270 1.350 0.163 2.55 6560

18* 1.375 1.580 0.476 2.55 5100
19 0.814 1.440 0.476 2.55 6380
20 1.403 1.485 0.252 2.55 5800
21 0.790 1.255 0.400 2.55 7134
22 0.783 2.300 0.854 2.55 4600

23* 1.000 1.520 0.476 2.55 5820
24 0.883 2.676 1.000 2.55 3980
25 1.265 3.500 1.281 2.55 2980
26 1.200 1.970 0.626 2.55 4660
27 0.974 2.620 0.952 2.55 3980
28 0.920 3.130 1.200 2.55 3470

29* 1.256 2.756 0.952 2.55 3580
30 1.080 3.400 1.281 2.55 3150
31 1.020 2.640 0.952 2.55 3900
32 0.777 2.835 1.100 2.55 3900

33* 1.030 3.380 1.281 2.55 3200

Table 6: Test results of different methods for the RMSA
fME /GHz DBD BP EDBD PTS GP STP Proposed

8450 8226 8233.1 8328.2 8148.6 8041 8289.1 8290.2
4805 4684.8 4703.3 4699.2 4879 4807 4860.3 4861.5
6200 6142.6 6147.2 6176.6 6205.7 6164 6192.3 6191.5
5100 5293.2 5291.4 5311.8 5191.4 5112 5047.2 5076.5
5820 5918 5924.5 5931 5780.3 5876 5865.7 5868.5
3580 3655.7 3644.6 3659.8 3685.2 3590 3578.5 3582.4
3200 3184.7 3178 3230.3 3167 3183 3206.4 3205.7

APE (%) 2.020 1.939 1.894 1.663 1.0716 0.7559 0.6778

Fig. 7. APE of different models for the RMSA.

set and the other as a test set. A total of 26 groups of
samples are randomly selected as the training set, and
the remaining 7 groups are marked with * symbol as
the test set. The input are W , L, h, εr, and the resonant
frequency f is used as the output. The evaluation metric
for the experiment is still the APE.

Six modelling methods including Delta-bar-delta
(DBD) [38], BP [38], Extended Delta-bar-delta (EDBD)
[38], Parallel Tabu Search (PTS) [39], GP [34], and
STP are selected as comparison. The test results are
shown in Table 6 and Fig. 7. It can be seen that the
predicted APE of the proposed C-STP is 0.6778% and
less than that of the other six modelling methods, which
is 10.33% higher than STP, 35.24% higher than GP,
and 58.27% higher than PTS. It is 63.36% higher than
the EDBD method, 64.2% higher than the BP method,
and 65.64% higher than the DBD method. Therefore,
the C-STP has excellent generalization performance for
the RMSA.

V. CONCLUSION
This paper proposes an algorithm named Consistent

Student’s-T Process (C-STP), aiming to improve
the accuracy and efficiency of antenna optimization
by exploiting the consistent results of multiple STP
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instances and reducing the uncertainty of independently
trained STP results. The core idea of the proposed
C-STP is to process multiple independently trained
STP results through a consistent algorithm to improve
the possible inaccuracy problem when using only one
STP. The experimental results show that the proposed
C-STP algorithm has a clear advantage over existing
algorithms in modelling and optimizing the resonant
frequencies of two microstrip antennas in accuracy.
In addition, the proposed algorithm can overcome the
limitations of small sample data and achieve more
reliable modelling and optimization results by consistent
results from multiple STP instances. Similarly, the
proposed method can also be easily applied to the
modelling and optimization of other electromagnetic
devices.

In practical applications, the optimization of anten-
nas has to take into account the limited time and avail-
able computer resources. The proposed C-STP model
uses imperfectly trained STPs for the optimization, as
well as the estimation of output uncertainty through a
consistency approach. We also find that the predictive
ability of the model is strongly related to the choice of
kernel function and individual network models, and we
will continue to investigate in the following study. The
proposed method is less suitable for higher dimension-
ality and larger data volume EM models, which require
a large amount of time for training, resulting in low-cost
performance.
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