ACES JOURNAL, VOL. 24, NO. 1, FEBRUARY 2009 9

Wide-Angle Absorbing Boundary Conditions for Low and
High-Order FDTD Algorithms

Mohammed F. Hadi

Electrical Engineering Dept., Kuwait University, P. O. BB269, Safat 13060, Kuwait

Abstract — Wide-angle performance of the perfectly- and demanded by computational efficiency requirements
matched-layer absorbing boundary conditions forwhen modeling electrically large structures.
the finite-difference time-domain (FDTD) method Several works investigated approaches to optimize
is investigated for efficient modeling of electrically PML parameters for maximum wide-angle absorption
large structures. The original split-field, uniaxial and[22-26]. Most of these works were concerned with
convolutional  perfectly-matched-layer  formulations achieving maximum absorption for the incidence angles
are all optimized to produce near-flat absorption forrange of0 < 6 < 75° (with # = 0 representing normal
incidence angles up to 87 degrees. Optimized wide-angliacidence). While this operating range is reasonably unre-
parameters are derived for both the standard FDTDtrictive when designing PML for electrically small FDTD
method and a high-order finite-volumes-based variantmodels, it is not sufficient for electrically large modeling
The investigated high-order algorithm in particular ispurposes. The moderately large two-dimensional build-
shown to produce improved wide-angle performanceéng model investigated in [2], for example, had to be
over standard FDTD for all three perfectly-matched-layelincreased in size three-fold to insure adherence T6°
variants even when they are optimized for normal wavencidence angle limit on all outgoing waves impinging
incidence. In all cases, optimization is managed througlon the surrounding PML region. Clearly, extending the
appropriate choices of modeling parameters which caPML operating range to near grazing incidence angles
be directly and unobtrusively applied to existing FDTD is critical for efficient electrically large FDTD models.
codes. One effort that pushed PML wide-angle functionality
beyondd = 75° is the work of Kantartzis, Yioultsis,
Keywords: FDTD methods, PML absorbing boundary Kosmanis and Tsiboukis [26] which introduced a non-
conditions, high-order methods, electrically large struc diagonally anisotropic PML where all nine dielectric ten-
tures. sor's elements are nonzero. This approach demonstrated
good wide-angle PML performance at the expense of
I. INTRODUCTION some mathematical complexity and added computational
overhead.

With the recently mounting interest in Giga-Hertzand |t will be demonstrated in this work that the three
Tera-Hertz communications systems and devices, modemajor PML variants— the original split-field PML [15],
ing electrically large structures is fast becoming a pressi the uniaxial PML [17, 18] and the convolutional PML [19,
need for designers and installers of those systems. Thgo]- are all capable of near-flat absorption response for
finite-difference time-domain (FDTD) method, especially the incidence angles range® # < 87°. This very use-
in its high-order forms [1-11], is capable of accuratelyful extended range will be realized through optimization
and efficiently modeling such large structures providedoutines that utilize complete FDTD/PML codes as func-
that the various FDTD modeling tools are updated totional arguments and PML parameters as optimization
match their high accuracy [12-14]. One of those toolsyariables. Furthermore, this wide-angle capability w#l b
is the ability to truncate unbounded spaces with efficienemonstrated for both the standard FDTD method and
absorbing boundary conditions. The current state of the ag recently-developed finite-volumes-based algorithm [11]
in this area is Bérenger's perfectly-matched-layer (PML)as a representative of high-order FDTD methods. Most
which comes in several different implementations [15—critically, this wide-angle functionality does not recgiir
20]. Modeling electrically large problems presents a reathanges to existing FDTD/PML codes or result in added
challenge in this regard due to the large interface areas bgomputational overhead.
tween the modeled structure and its surrounding absorbing
layers. Such extended interfaces cause appreciably large
outgoing energies to impinge on absorbing layers at steep !l FDTD AND PML FORMULATIONS
angles where PML absorbing abilities quickly diminish
[21]. This problem is exacerbated with the relatively The various simulations and optimization analysis in
coarse FDTD grids allowed by the high-order algorithmsthis work will be based on the following FDTD and PML
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implementations, with the¥, field update equations as
representative samples.
A. Split-Field PML Formulation

For this original PML formulation, thév, = E,, +
E,.. update equation is given by [15],

Exy|n+% — o oult/e Ea:y|n7% +
1— efcryAt/e
D,H, (1)
Oy
sz|n+% — e—ozAt/e Elen_% _
1— e—o'zAt/e
——— D.H,, )

Oz

where the PML loss profile is coded by Holland’s ex-

ponential time-stepping formula [27]. For the standard

FDTD method, theD, H. and D, H, difference operators

refer to,
1
DyHZ = E[HZ|J+% Hz|j %} (3)
1
D.H, = h [Hy|k+§ _Hylkfé} ’ (4)

where the non-staggeref] j, k& and n spatial and

temporal indices are omitted for cleaner notation. The
spatial difference operators for the high-order algorithm

are represented by [11],

K,
h
Ky

3h

D,H, = (5)

[Hz|j+% - H2|jf%} +

{Hz|j+% - HZU—%} +

Helip1 s + Helioy g
+H2|j+g,k+1 JrI{z2|j-|-§,k—1
*Hz|i+1,j—g - Hz|i—1,j—g
_Hz|j—%,k+1 - H2|j—%,k—1

K,
12h

Helivr ez per + Helicy jag o
Kq

+Hzli+1,j+%,k71 + Hz|i71,j+g,k71
12h

*H2|i+1,j7%,k+1 - H2|i71,j7%,k+1
*H2|i+1,j7%,k71 - HZ|i71,j7%,k71

and
K,

h
Ky

3h

D.H, [Hy|k+§ _Hy|k—§} + (6)

[Hy|k+% - Hy|k7%} +

Hy|i+1,k+% + Hy|i71,k+%
K. +Hy|j+1,k+g +Hy|j71,k+%

12h

7Hy|j+1,k7% - Hy|j71,k7%

Hylivyjriess + Hylionjianes
FHyli1 163 + Hylionjo1krs
—Hyli 141k
—Hyli 11

Ky

12h | —Hylip1 12

_Hy|i+1,j—1,k— 3

3 3
2

2

ACES JOURNAL, VOL. 24, NO. 1, FEBRUARY 2009

An explanation and derivation procedure for the
K tuning parameters in the above equations, which play
a key role in minimizing numerical dispersion errors, can
be found in [11].

Due to the extended reach of the high-order update
equations (up ta=3h/2 from the updated field node), spe-
cial difference operators are required for the FDTD lay-
ers bordering the PML's perfect-electric-conductor back-
planes [13]. For example, when ttig, node is adjacent
to a planar conducting boundary normal to theaxis, the
difference operators (5) and (6) reduce to,

Kb

DyH. = = [Hz|j+% —Hz\j,%} + ()
Ky
i |Tlies — Heljog] +
K { Heljys pyr + Heljrs e }
6h _Hz‘jfg,kle _Hz|j7§,k—1
Kb

D.H, = Ta [Hy|k+§ _Hy|k7§} + (8)
Ky
Sh [Hy|k+% - Hy‘kfg} +
ﬁ{ Hy|j+1,k+% +Hy|j71,k+% ]
6h _Hy|j+1,kf% - Hy‘jfl,kfg

Readers are referred to [13] for more difference
operators adjustments that deal with other conductor
proximity situations as well as explanation of the above
K-parameters and their relations to those in equations (5)
and (6). Interested readers in the two-dimensional version
of this high-order algorithm [2] can find similar treatments
in [12].

B. Uniaxial and Convolutional PML Formulations
For these PML variants, Roden and Gedney’s update
equations will be used [20],

At

N e LR
€

_DzHy/Hz - 1/12
where the difference operators for both FDTD algorithms
are the same ones given in equations (3) and (6), and,

E, |t

©)

v, = byt +e,D,H, (10)
wz = bzq/)z|n71 +CzDzHy7 (11)
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b, = exp { (ﬂ @)] (12)
El'iy €

b, = exp [ ( 9z 4 a_ﬂ , (13)
€K, €

¢ — (by — 1)oy /Ky (14)

Oy + Kyay
o, = Gzzlos/ks (15)

UZ + Kzaz



HADI: WIDE-ANGLE ABC FOR LOW AND HIGH-ORDER FDTD 11

The above equations fully describe the convolutional
PML formulation, whereas the special case uniaxial PML P 1-51
formulation is realized by setting, . = 1 anda, . =0
[18] \f Radiating Soyrce
A
C. PML Loss Profiles Observation Plane
The three PML parameters,  anda, will be coded 50
with the polynomial profiles, 50 Cells
o(p) = Omax (g)no (16) Fig. 1. PML test domain with the PML regions removed
P\ for clarity. Observed reflections are mainly due to side
k(p) = 1+ (kmax—1) (3) ; (17)  walls, except when the-dimension approaches one cell
d—p\™ where steep reflections off the top and bottom walls
a(p) Amax (T) (18)  dominate. Radiating source and observation points A and

B are located at (25,25), (25,0) and (0,0), respectively,
where p is the incremental PML depth measured fromwithin the observation plane.
its interface with the scatterer region ardds the PML
thickness. PML optimization and performance will now Standard FDTD
be decided based on proper choices of three parameters 2 ‘ ‘ ‘
(omax Mo andd) for the split-field and uniaxial PML and 1t
seven parametersfax Mo, Kmax My Gmax e andd) for
the convolutional PML. For the following analysis, one
deviation from the literature should be mentioned here.
The x > 1 constraint [20, 28] will be relaxed te > 0. 2, 2
This step will prove to be crucial for realizing optimum High-Order FDTD
wide-angle convolutional PML profiles as will become 1 \ \
obvious in Section IV.

E. (mV/m)

[11. PML OPTIMIZATION PROCEDURE

E. (mV/m)

For each of the three PML variants, optimum pro- , ‘ ‘ ‘ ‘ ‘
files were determined using MATLAB’s FMINSEARCH 0 20 4 60 80 100
optimization routine. This routine was set up to minimize Time Steps
an error quantity ¢) which is the maximum difference Fig. 2. Observed field values at locations A (solid) and
of two E. surface plots from two FDTD simulations; B (dashed) which verify sufficient wave interaction with
one incorporating the PML formulation under study while the PML layer for parameter optimization purposes.
the other is a large reference three dimensional space
with matching FDTD parameters. The test domain is aand what is left of it re-enters the test domaimat 95.

50 x 50 x 51-cell vacuum terminated by a 10-layer PML Once each simulation is completed, data are collected
(see Fig. 1). AnE., hard point-source [15] is introduced from the centralzy-plane (observation plane in Fig. 1)
at the center of the vacuum that is non-zero only for theand introduced to the optimization routine.

duration0 < wt < 27, Most PML reflection errors observed from the above
1 experimental setup will be due to reflections correspond-
E. =3 [10 — 15 cos(wt) 4 6 cos(2wt) — cos(3wt)] . ing to incidence angle¥ < fmax = 7/2 within the

(19) observation plane. Thigyax value also holds for the

The chosen first harmonic of this signal is 1 GHznormal plane as all six PML interfaces are equidistant
and the uniform FDTD grid size in all three dimensionsfrom the centrally located point source. When the
is set ash = /20 at this frequency. The time step is dimension of the test vacuum is collapsed, howeigyx
set as the maximum allowed by each algorithm’s stabilitythat corresponds to the top and bottom PML interfaces
criterion. The simulation time is chosen to be long enouglwill start to increase beyond/4, reaching86.6° when
to allow appropriate interaction of the outgoing wavethe test vacuum is collapsed 50 x 50 x 1 FDTD cells.
with the PML interface, inner layers and backplanes;For the rest of this workfnax will refer to this increasing
100 and 110 times steps for standard and high-ordenaximum incidence angle as the vaccuumydimension
FDTD, respectively. For the standard FDTD simulations,is collapsed as illustrated in Fig. 1. This relatively rough
for instance, Fig. 2 shows that the lead propagating peaéxperimental setup is deliberately chosen as it closely
reaches the PML interface at time step= 53. It also  mimics real-world simulation challenges, especially when
reaches the backplane of the 10-layer PMLnat= 74  modeling electrically large structures.
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In the following section, two sets of optimized PML computational burden. We can deduce from tabel 1 that
parameters will be derived for each combination offor standard FDTD, split-field PML performs slightly
FDTD algorithms and PML formulations; one set from better than uniaxial PML (6 dB lower reflection) due to its
a 50 x 50 x 51-cell setup an another from@® x 50 x 1-  more favorablesmax and n, combination. Both however
cell setup that highlights the near-grazing angle waveare vastly outperformed by convolutional PML with a
incidence challenge. To test each set of optimized PMLL7 dB margin over split-field PML. The performance
parameters, it will be inserted back in the test setumf the optimized parameters for the high-order FDTD
and the error function defined earlier will be collectedalgorithm mimicked those of standard FDTD for both
from a series of simulations where thedimension is  split-field and uniaxial PML formulations. Convolutional
collapsed incrementally, sweeping in the process the rangeML, on the other hand, failed to match its excellent

/4 < Omax < 87°. performance with standard FDTD and managed only to
match split-field PML permanence which was the same

IV. OPTIMIZATION RESULTS AND for both FDTD algorithms. It should be noted here that for
COMPARATIVE ANALYSIS all cases in Table 1, the optimization process maintained

. .5 which justifies the slight deviation from
Table 1 summarizes the derived PML parameter03< rimax < 0.5 which justifies the slight deviation fr

f th timizati detailed in th i }revious convolutional PML implementations mentioned
rom the optimization process detailed in the previous,; v ond of Section II.

section for the standard and high-order FDTD algorithms. Fiqure 3 charts the performance of the obtimized
Listing the PML parameters in the table to 4-5 significantPML garameters af 7‘;/4 when the test do%ain’s
digits is necessary for optimum performance. For exam- P max =

ple, the—175 dB reflection error increased by 5 dB when ;zr-/din:gn;(zn gtfr::g? dalIgDC.I(.)gaEE?\%Ssvgﬁg\?vmt%"atfrgg‘ the
the corresponding parameters were implemented witk :

L . . . Incidence angle increases, the clear convolutional PML
only two significant digits. Furthermore, experimenting . S Lo
: o advantage quickly diminishes and it slightly underper-
with several sets of initial guesses was necessary t

) L : : ! %oms both split-field and uniaxial PML for the range
achieve minimal reflection error levels, especially with _. o .
. T 65° < Omax < 85°. The high-order FDTD curves of
convolutional PML optimization runs.

Fig. 3 demonstrate that the three PML variants achieve

Table 1. Optimized Blit-field, Uniaxial and ®nvolu- better wide-angle performances as they stay below, say,
tional PML profiles for conventional and wide - angle —140dB ljp t00max ~= 80°, compared to standard FDTD’s
wave incidence on a 10-layer PML. (Units: S/m for Omax ~ 75°.

and dB for error functionl) o
B. Optimized PML Parameters afimax = 87°

Standard FDTD  High-Order FDTD When the PML parameters were optimized at the
Omax 45° 87° 45° 87° extreme incidence angl,.x = 87° to best accommodate
omax 0.6108 0.8051 0.8466  0.6469 electrically Iz_irge models, both standard and high-order
s o 39849 55968 3.6958 5.4837 FDTD aIgznt?g:s tErOdLIIDCI\ji co_mp:irablehperf(_)rrr_llaglcei
across each of the three variants as shown in Table 1.
v -158 116 157 119 On the other hand, there were clear differences among
omax 0.3532 0.4413 0.4526  0.4836  the PML formulations, as uniaxial and convolutional PML
u Ne 3.1769 3.9540 3.2428  4.1050 afforded roughly 10 dB and 30 dB lower reflection errors,
N -152 -128 -151 -127 respectively, than split-field PML. As the incidence angle
omax 03338 03226 05132 04288 > SWePL (hOughr/d < fnax = 87" (sce Fig. 4), 2l
o 41322 32352 33551  2.9732 ree variants more or less maintained flat response.
The convolutional PML formulation in particular shows
wmax 0.3414  0.3207 0.4196  0.4699 superior extreme angle composure as well as lower overall
C n, 38151 47704 28402 3.6169 |evels than the other two formulations for both FDTD

amax 0 0.0980 0 0.0822 algorithms. While the reflection error levels in this figure
Na 1.0145 1.1934 do not match those of Fig. 3, they do represent reliable
N 175 -148 157 147 wide-angle PML performances. Depending on the prob-

lem under study, these error levels could be controlled by
varying the PML depthl and re-running the optimization

A. Optimized PML Parameters afimay = /4 routine.

These parameters are most suitable for electricall
small problems where the bulk of outgoing energy can b
made to impinge on the surrounding PML regions within To verify that the optimized PML parameters are
the limits of Omax = 7/4 without incurring significant insensitive to small frequency variations, the detailed

236. Frequency Response of Optimized PML Parameters
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Fig. 3. Comparative wide-angle performance of the thred-ig. 5. Reflection errors’ frequency response of convolu-

PML formulations when optimized @nax = 7/4. tional PML with standard FDTD using normal-angle and
wide-angle PML parameters optimizeddatx = 7/4 and
= % ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 87°, respectively.
g 2000 | Ghaial Standard FDTD
o Convolutional PML _
2 120 T
2_1405::,7,7‘:, ‘‘‘‘‘ B A V. CONCLUSION
é -160f . .
g ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ This work demonstrated that the three main PML
4 8055 m‘i‘e’dem:ingm 7°(Degr76583) 80 8 %0 variants, Bérenger’s original split-field PML, the uniaki
. " PML and the convolutional PML, are all capable of
——SplEFEld P _ good outgoing wave absorbing capabilities at near grazing
-100r — — - Uniaxial PML High-Order FDTD q . e . . .
| angles. This capability was tested in three-dimensional

= - HER | simulations up to87° incidence angles. The developed

o - optimization process provided different sets of PML pa-
rameters depending on how wide an incidence angle is
%5 s e e 70 75 80 8 % anticipated. This wide-angle performance comes at the
Incedence Anglefne: (Degrees) expense of reduced absorption capabilities at near normal
Fig. 4. Comparative wide-angle performance of the thredvave incidence. However, the far more critical advantage
PML formulations when optimized @nay = 87°. of this extreme wide-angle capability is the elimination
of the need for prohibitively large scatterer/PML buffer
. ) ) zones when modeling electrically large structures.
gxperlment in Section Il was rep_eated fo.r ponvolu- Both low-order (standard) FDTD and a high-order
tional PML and standard FDTD with a unit impulse FDTD algorithm were tested and optimized for near-

source replacing equation (19). W.ithin a test domain size(}i10rma| and near-grazing PML performances. When both
50 x 50 x 1. Two Osets of optimized PML param_eters, were optimized for near-normal incidence angles, the
at fmax = m/4, 87°, were tested and compared in the ioh orger FDTD algorithm demonstrated wider-angle

power spectral density plots of Fig. 5. (The 100-step im&. 3 pijities than standard FDTD, providing flat absorption
series data were collected at points A and B, marked 'rﬂesponse acros8 < 0 < 80° compared to standard

Fig. 1.) This comparison illustrates maintained minimaIFD-l-D,S 0 < 6 < 75°. Of the three PML variants. the

refle_ction_errors except at the frequency range where th@onvolutioriil PML formulation demonstrated best wide-
spatial grid becomes too coarse to support accurate FDT hgle capabilities. The optimized PML parameters in
simulations. (It should be remembered here that the FDTDhis work though frequency dependent in general, were
grid was designed around 20 cells per wavelength alyqyn to pe insensitive to small frequency variations.

1 GHz) Optimized PML parameters could be easily implemented

In gerneral, however, PML parameters are frequency, existing FDTD codes with no code changes or added
dependent. For example, when the 3-harmonics source %mputational burden.

equation(19) was driven with a 60 GHz fundamental, the

-160
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|
|
|
|
|
|
1
|
\
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optimization routine produceétma.x = 38.6781 S/m and ACKNOWLEDGMENT
n, = 3.7181 at Omax = w/4 for the split-field PML and
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