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Abstract −−−− A new method, based on the complex images 

technique is presented for solving the electromagnetic 

scattering from the infinite metallic and dielectric 

gratings. The main idea of this method lies in 

representing the infinite summation of the structure 

period Green's functions in terms of finite summations of 

complex images. The method of moments (MoM) is then 

employed to find the current distribution, reflection and 

transmission coefficients of the gratings. The validity of 

the presented method is shown through various examples 

for different grating geometries and incident wave 

polarizations. Fast convergence, simple formulations and 

flexibility of the method in analyzing different structures 

are the main advantages of the proposed method. 

 

Keywords: Integral equation, grating, Green's function, 

complex image. 

 

I. INTRODUCTION 

 

Theoretical studies of electromagnetic scattering 

from periodic metallic or dielectric structures or gratings 

go back to more than a hundred years ago [1, 2]. Since 

then various analytical or numerical techniques have been 

developed to formulate the electromagnetic scattering 

from the periodic scatterers [3, 4]. 

The interesting feature of these structures as 

frequency and polarization selective devices and their 

extra degree of freedom in controlling the scattered fields, 

have made them an important choice in design and 

fabrication of various devices especially at microwave 

and optical frequencies. In fact they have been used 

extensively in the fabrication of devices such as filters, 

waveguides, couplers, sensors, antenna substrates and 

reflectors [5, 6]. 

In recent years the emergence of photonic bandgap 

devices in discrete periodic dielectric and metallic 

structures and their potentials in realizing narrow-band 

filters, high-quality resonators, linear waveguides and 

mirrors have attracted much attention toward the topic of 

periodic structures. Beside photonics, plasmonic 

phenomena dealing with periodic metallic structures in 

optical frequencies further improved this topic. The 

observation of enhanced transmission phenomena in 

subwavelength perforated metallic screens has directed 

lots of studies to the investigation of transmittance and 

reflectance behavior of the metallic gratings in those 

devices [7, 8].  

A one-dimensional periodic array of cylindrical 

objects made of metal or dielectric is a typical geometry 

of periodic structures. The frequency response of the 

array is determined by the scattering characteristics of 

each cylinder and the multiple scattering under the 

presence of the periodic scatterers. A two-dimensional 

photonic bandgap structure can be obtained with 

multilayered one-dimensional arrays. The multiple 

interaction of the scattered space harmonics from these 

layers modifies the electromagnetic properties of the final 

structure  [9]. Various frequency responses can be 

obtained by using different types of scatterers and 

arranging them in different geometries. During the past 

decade, a vast amount of investigation on the 

electromagnetic scattering by layered periodic arrays of 

cylindrical objects has been done.  In these investigations 

various techniques such as mode matching method, 

homogenization method, Fourier modal method, finite 

difference method and time domain techniques have been 

applied to the periodic structures [9-17]. Integral equation 

methods are among the most accurate and flexible semi-

analytical approaches that have been used in analyzing 

such structures  [18]. Efficient computation of the slowly 

convergent series of periodic Green's functions 

encountered in these methods is still the main challenge 

of their applications in this domain.  

  In this paper, we will present an accurate integral 

equation method for dealing with a two-dimensional 

electromagnetic scattering from periodic arrays of 

cylindrical objects based on the complex images Green's 

function, for the first time. The approach is quite general 

with the capability to be applied on various 

configurations of periodic arrays of two-dimensional 

metallic or dielectric cylindrical objects. In the proposed 

method the periodic Green's function has been efficiently 

approximated with a finite series of complex images and 

a closed form can be obtained through this 

approximation. This approximated Green's function has 
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been used afterward in the analysis of the one-

dimensional periodic cylindrical objects. The reflectance 

and transmittance behavior of metallic and dielectric 

gratings with circular and rectangular cross-sectioned 

rods for different polarizations have been computed and 

compared as a representation of the method versatility. 

This paper is organized as follows. In section II, the 

complex images representation of the Green's function 

for one-dimensional periodic structures is developed. 

Section III is devoted to the MoM formulation of the 

problem based on the developed complex images Green’s 

function. As E and H-modes are two independent 

solutions of the 2D case, the formulation has been done 

for these two cases, separately. The diffraction properties 

of a general polarization can be obtained through its 

decomposition to these two fundamental modes.  

In section IV numerical results will be presented. At 

first the validity of the complex images Green's function 

is shown through an example. Then the grating 

simulation results will be presented showing the behavior 

of different gratings against various polarizations. The 

validity of these results has been investigated by checking 

the energy balance and edge conditions. Concluding 

remarks with be given in section V. 

 

II. COMPLEX IMAGES REPRESENTATION OF A 

1-D PERIODIC GREEN'S FUNCTION 

 

According to Floquet-Bloch theorem Eigen modes in a 

periodic lattice can be expressed as ( ) exp( ).G r jk r −
�� �

 where 

G is the distribution in a unit cell and k
�

is the lattice 

wavevector  [19]. This simply means that the propagation 

of a mode in a periodic lattice leads to a phase change 

without any variations in the form of its distribution. 

Using this concept, it is quite straight forward to show 

that the Green's function of a one-dimensional periodic 

structure, as shown in Fig.1 can be expressed as, 

 

( | ') ( | ' , ', ') xjmdkper

m

G r r G r x md y z e
→ → →∞

−

=−∞
= +∑  (1) 

 

where G is the Green's function of a source of the array 

and d is the period of the lattice (Fig. 1). As the gratings 

are composed of two-dimensional cylindrical objects, 

one-dimensional array of line sources should be 

considered here. Therefore G(r,r') can be written as, 

 

(2) 2 2
00

1
( ( ' ) ( ') )

4
G H k x x md y y

j
= − − + −  .        (2) 

 

The series in equation (1) converges very slowly 

especially when the observation point is far from the field 

point. It is also known that applying Poisson's transform 

to that series leads to its corresponding modal series 

which suffers from slow convergence for near fields. In 

order to accelerate the convergence of these kind of series 

different methods such as Kummer's transform, Ewald 

transform and Shank's transform have been proposed in 

the literature [20, 21]. Although these methods can be 

successfully applied to the periodic Green’s functions in 

the form of equation (1), it must be kept in mind that 

these Green's functions are used in the kernel of the 

integral equations. Therefore the employed integral 

equation methods will suffer from numerical deficiency 

as the Green’s functions would have no closed form 

representation. In the complex images representation 

developed below however, the periodic Green’s function 

of equation (1) is given in a closed form which is valid 

for all the sources and field points. This will bring 

numerical efficiency to the relevant integral equation 

techniques. 
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Fig. 1. One-dimensional array of line sources. 

 

 In order to derive the complex images representation 

of equation (1) while G(r,r') has been replaced with 

equation (2), we can use the following identity, 
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where 2 2
0x yk kβ = − . 

By substituting equation (3) in equation (1) and 

changing the order of summation and integration 

operators, a geometric series will be obtained. For field 

points in a unit cell i.e. 0<x<d ( ' 0x =  is assumed) after 

some simple manipulations the following equation can be 

obtained, 
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As the name of complex images technique implies 

the main goal is to preserve the form of the original 

sources and find an approximation that its terms resemble 

the ones in the first series  [22]. Obviously this aim can be 

fulfilled if the fractions in the kernel of inverse Fourier 
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Transform integral of equation (4) can be approximated 

by a finite series of exponential. That is, 
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Prony's method [22], GPOF  [23] or least square 

methods can be used to realize these approximations 

accurately. The approximation path of Fig. 2 in the xβ  

plane has been found to be appropriate to perform the 

above approximations.  In this path T0 is determined 

according to the relative distance between field and 

source points [22]. It may be mentioned that the existence 

of poles which may occur near the approximation path 

(Fig. 2) can deteriorate the above mentioned 

approximation. In that case one can extract the poles from 

the approximating function and include its effects 

manually [22]. 

Substituting the above approximations in equation (4) 

and using the identity equation (3) leads to, 

 

1

2

(2) 2 2
00

(2) 2 2
00

(2) 2 2
00

1

(2) 2 2
00

1

1
( , ') ( )

4

1
( ( ) )

4

1
( ( ) )

4

1
( (| | ) ) .

4

x

x

per

jdk

M

m m
m

M
jdk

m m
m

G r r H k x y
j

e H k x d y
j

a H k x jb y
j

c e H k x d jd y
j

−

=

−

=

           = + +

           − + +

       + + +

− + +

∑

∑

 (6) 

 

This completes the derivation of complex images 

representation of the periodic Green’s function of 

equation (1). It can be seen that the first two terms in 

equation (6) correspond to the two of sources in the array 

that have the most effects on the field points located in a 

unit cell. The presence of these two terms in the final 

representation guarantees satisfactory results for the near 

fields especially in the vicinity of the boundaries. The 

two finite summations in equation (6) correspond to the 

complex images which have the same forms as real 

sources in the array except that they are located in 

complex positions and have complex values. They are 

more important when the field point is located away from 

the boundaries within a unit cell. It is clear that equation 

(6) offers a closed form representation of the Green’s 

functions in terms of two finite summations; so the issue 

of convergence for infinite series does not exist anymore. 

It is clear that the same procedure can be applied to an 

array of point sources. Moreover it can be easily extended 

to 2-D periodic Green’s functions of line sources, and to 

the 2-D and 3-D periodic Green’s functions of point 

sources. 
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Fig. 2. The approximation path in the βx plane. 

   

Examination of the accuracy of the developed complex 

images Green’s function will be deferred until section V. 

 

III. MOM FORMULATION OF THE PROBLEM 

 

Figure 3 shows a grating of typical cylindrical 

objects studied in this paper illuminated by a plane wave 

with wavevector k
��

. Since there is no variation along the 

z-axis, TE and TM polarizations can exist independently.  

In TM polarization (Hx, Hy, Ez) are the only existing 

components of the EM fields. For PEC rods in the array, 

by applying the proper boundary condition on the rod 

located in the unit cell, the following electric field 

integral equation (EFIE) determines the current flowing 

on the rod. 

 

  
Fig. 3. Cross section of a grating of typical cylindrical 

objects. 
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0( ) ( , ') ( ') 'inc per
z z

body

E l j G l l J l dlωµ= ∫� .       (7) 

 

In TE polarization (Ex, Ey, Hz) are the only existing 

components of the EM fields. Considering the same PEC 

rods and formulating the problem for magnetic field after 

applying the proper boundary condition on the rod, the 

following magnetic field integral equation (MFIE) gives 

the current distribution. 

( , ')
( ) ( ) ( ') '

'

per
inc
zl l

body

G l l
J l H l J l dl

n

∂
= +

∂∫�  .   (8) 

In the above integral equations perG is given by 

equation (6) while l represents the transverse coordinate 

on a rod  [24].  

For a grating made of dielectric rods instead of PEC 

(Fig. 3), one can derive the integral equations by using 

the equivalent surface electric and magnetic currents and 

boundary integral equations (BIE). The equivalent 

surface currents are given by, 

 
^

^

( ) ( )

( ) ( )

s t

s t

J l n H l

M l n E l

α

α

→ →

→ →

= ×

= − ×

 .                    (9) 

 

Where subscript t represents the total field on the 

boundary of the rod and α is a factor equal to 1 and -1 for 

exterior and interior problems, respectively. Using these 

equivalent currents the following equations can be written 

for exterior and interior regions in TM polarization, 

respectively, 

( ) ( ) 0    

( ) 0    .

inc sca

sca

E l E l l interior region

E l l exterior region

→ →

→

+ = ∈

= ∈

     (10) 

 

Similarly the above equations can be written for H in 

a TE polarized illumination. 

To solve for the unknown current distribution in the 

above integral equations, the method of moments has 

been employed by using pulse basis functions and 

applying the point matching technique [24]. When the 

current distribution has been determined all the 

diffraction characteristics of the grating can be obtained 

using the scattered fields. 

 Because of the periodic nature of the structure the 

reflected and transmitted electromagnetic waves contain 

infinite diffraction orders. The parallel component of the 

diffraction orders can be obtained from the following 

formula, 

|| 0
2 2

sinx
m m

k k k m
d d

π π
θ= + = + ∈ Ζ .      (11) 

The reflectance and transmittance of a grating order 

have been defined as the ratio of the power carried in that 

order to the incident power. For a diffracted plane wave 

to carry energy away from the grating, the following 

condition must be satisfied, 

0 0
2

| sin |
m

k k
d

π
θ≥ +     .                  (12) 

In the above relation m is an algebraic integer 

representing the order of diffraction. The above formula 

explicitly shows that the number of propagating waves 

that carry energy away from the grating depends on the 

incident angle and the normalized frequency as well. The 

power transmitted to each diffraction order can be 

controlled by the geometry of the grating and the type of 

elements composing the array. Using multilayer gratings 

with various elements one can control the diffraction 

characteristics of the gratings as well.   

Applying different optimization algorithms on the 

structure it can be optimized to carry power in a 

determined diffraction order or to obtain a desired 

frequency response.  

In the next section the simulation results of plane 

wave scattering by different gratings in both polarizations 

will be presented. 

 

IV. NUMERICAL RESULTS 

 

In this section, first the numerical accuracy of the 

developed complex images Green's function is examined 

by using an example. In this example d=4, λ=5 and kx=0 

are assumed in the array of line sources (Fig. 1). Table 1 

gives the values of exponential coefficients in the 

complex images representation (5) for M1=M2=5 found 

through the GPOF algorithm when the path truncation 

parameter T0=15 is assumed (Fig. 2).   

 

Table 1. Exponential coefficients for d=4, λ=5 and kx=0. 
 

am bm 

(-0.1416-j0.2625)×10
-10

 17.7235-j17.9114 

(-0.1226-+j0.9336)×10
-4

 7.6704-j13.2827 

0.0554-0.0106 2.0320-j9.5251 

0.7973-j0.6096 -0.04528-j7.6087 

1.00425+j0.00564 0.00123-j4.0030 

 

Figure 4 shows the magnitude of the error between 

the exact spectral function (5a) and its finite summation 

approximation found through the GPOF technique. The 

error has been computed along the approximation path of 

Fig. 2 for different number of exponentials used in the 

summation. It can be seen that for just 3 terms in the 

exponential summation an accurate approximation of the 

spectral function is achieved almost along the whole path. 
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This demonstrated the efficiency of the proposed 

approximation. 

Figure 5 compares the magnitude and phase of 

G
pre

(r,r’) found by complex images representation of 

equation (6) with the values of the Green’s function in the 

form of infinite images and modal series accelerated with 

the Shanks' transform. It can be seen that the results 

obtained by the complex images method are in excellent 

agreements with those obtained from image and modal 

series. Also it can be observed that the complex images 

results show the singularity of the source near the 

boundary while the modal series has difficulty in showing 

this behavior as its convergence deteriorates in the near 

fields.  

Figure 6 shows the convergence of the approximate 

complex images Green’s function versus number of terms 

in the summation by evaluating the errors between the 

results obtained form the infinite modal series and the 

finite summation of complex images. It is clear that even 

for small number of terms, i.e., for M=6 negligible errors 

occur in the proposed complex images representation. 
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Fig. 6. The magnitude of error at different field points in 

complex images Green’s function for different 

exponential terms. 

 

The proposed approach has been used in the analysis 

of various metallic and dielectric gratings. All gratings 

have been investigated for their reflectance behavior in 

subwavelength regime where d/λ<1. In order to study the 

frequency and polarization selectivity of these structures 

their responses for different normalized frequencies and 

polarizations have been obtained. Since, as a filter, the 

sensitivity of the response to the incident angle is an 

important factor, this factor has been studied by 

considering the arrays in a fixed normalized frequency 

for various incident angles. Finally the effect of the shape 

on the responses has been studied with comparison of the 

results of the circular cross sectioned cylinders with 

square ones. The reflected and transmitted EM fields in 

each order have been evaluated on a constant line above 

and below the grating. 
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Fig. 4. The magnitude of error between the spectral 

function and its corresponding finite summation 

approximation for different number of exponential terms. 
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Fig. 5. (a) Magnitude, (b) phase of the periodic Green's 

function of 1-D line sources with d=4, λ=5 and kx=0 for 

field points on the x-axis. 
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The first example (Fig. 7) compares the zeroth order 

reflection coefficient, R0, of a metallic grating composed 

of PEC rods with 0.15r d= with one of a dielectric 

grating with 0.3r d= and 2rε =  for TM polarization. In 

this case, since the zeroth order is the only propagating 

component that carries power away from the grating, the 

figure contains that diffraction order only. Good 

agreements can be observed between these results and 

those reported in  [25]. In the above figure there is a 

resonance frequency in the dielectric case while PEC 

array does not show this behavior.   
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Fig. 7. R0 versus normalized frequency for gratings 

composed of PEC rods with r=0.15d and dielectric rods 

with r=0.3d. 

 

Figure 8 shows the frequency response of a grating 

composed of PEC rods with r/λ=0.08 located in a 

medium with εr1=2.33 when a TM polarized plane wave 

illuminates the array at θ=45
o
. Variations of the reflection 

coefficients R0, R-1, R-2 are given versus the normalized 

frequency /NF d λ= . 

In this case the metallic grating reflects all the power 

in a wide range of frequencies and behaves as a reflector. 

At NF=0.39 the -1
st
 diffraction order gains the power and 

decreases the power carried by the zeroth order. At 

NF=0.77 the -2
nd

 order carries power as well.  Figure 9 

shows the response of the same array at NF=0.5 when the 

TM polarized incident plane wave illuminates the grating 

at different angles. 

The last example compares the effect of the rods 

geometry on the diffraction characteristics of the grating. 

Figure 10 compares the frequency response of the zeroth 

order reflection coefficient of two metallic gratings, one 

made of rods with circular cross-section (with r/λ=0.08) 

and the other made of rods with square cross-section 

(with a/λ=0.16, where a denotes the square side). Both 

gratings are located in a medium with εr1=2.33 and are 

illuminated with a TE-polarized plane wave at θ=45
o
. 

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

d/λ

R

 

 

R
0

R
-1

R
-2

 
Fig. 8. R0, R-1 and R-2 versus normalized frequency for a 

metallic grating with εr1=2.33, r=0.08λ and θ=45
o
 for TM 

polarization. 
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Fig. 9. R0 and R-1 vs. incident angle for a metallic grating 

with εr1=2.33, r=0.08λ and NF=0.5 for TM polarization. 
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Fig. 10. Comparison of R0 versus incident angle for two 

metallic gratings made of rods with circular cross-section 

with r=0.08λ, and square cross-section with a/λ=0.16 at 

NF=0.5 for TE polarization. 
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Comparing these results with those presented in Fig. 9 

reveals that the response of a metallic grating varies 

drastically as the polarization changes. While most of the 

power is reflected by the grating in TM polarization, in 

the TE case considerable amount of power is transmitted 

except for an anomalous increase observed at θ=18
o
 

angle. Also it can be observed that the rods geometry 

affects the diffraction characteristics of the grating 

significantly.  

 

V. CONCLUSION 

 

In this paper a novel complex images representation 

of the free-space periodic Green's function has been 

presented. Using this closed form representation, fast and 

accurate computation of the Green's function is possible 

for all the field points. Moreover each term in this 

representation has the same form as the sources forming 

the periodic array, i.e. a line source for 2-D sources and a 

point source for 3-D sources. This will facilitate the 

application of integral equation techniques for analyzing 

the periodic structures under study significantly. 

Using the developed complex images Green’s 

functions in the integral equations, 1-D periodic 

structures made of PEC or dielectric rods have been 

investigated and their diffraction characteristics in TE and 

TM polarizations have been studied.  

Although single-row 1-D periodic arrays were 

considered here, the method can be easily applied to 

multi-row gratings with different periods and various 

elements in each row.  
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