
Macro-Modeling of Electromagnetic Domains Exhibiting Geometric 
and Material Uncertainty  

 
 

Juan S. Ochoa and Andreas C. Cangellaris  
 

Department of Electrical and Computer Engineering 
University of Illinois, Urbana, IL, 61801, U.S.A.  

jsochoa2@illinois.edu, cangella@illinois.edu 
 

 
Abstract ─ A methodology is presented for the 
development of stochastic electromagnetic macro-
models for domains exhibiting geometric and ma-
terial uncertainty. Focusing on the case of domains 
exhibiting geometric/material invariance along one 
of the axes of the reference coordinate system, the 
methodology makes use of the theory of polyno-
mial chaos expansion and the concept of a global 
impedance/admittance matrix relationship defined 
over a circular surface enclosing the cross-
sectional geometry of the domain of interest. The 
result is a stochastic global impedance/admittance 
matrix, defined on the enclosing circular surface, 
whose elements are truncated polynomial chaos 
expansions over the random space defined by the 
independent random variables that parameterize 
the geometric and material uncertainty inside the 
domain. Use is made of sparse Smolyak grids to 
reduce the computational cost of constructing the 
stochastic macro-model. Numerical examples are 
used to demonstrate some of the attributes of the 
proposed stochastic macro-models to the numeri-
cal solution of electromagnetic scattering prob-
lems by an ensemble of cylindrical targets exhibit-
ing uncertainty in their shape and relative position-
ing.  
  
Index Terms ─ Finite elements, global impedance 
matrix, macro-modeling, polynomial chaos expan-
sion, random geometry, scattering/RCS.  
 

I. INTRODUCTION 
Over the years the term macro-modeling has 

been used in scientific and engineering modeling 
and simulation to describe a variety of things. In 
the context of electromagnetic (EM) modeling and 

simulation, macro-modeling is widely understood 
to mean the process through which a compact 
physical or mathematical model is defined to de-
scribe the EM attributes of a portion of the system, 
the detailed description of which requires a large 
number of degrees of freedom (state variables) for 
its modeling. In this context, low-order, EM mac-
ro-models have been used extensively for a variety 
of applications. These include, expedient calcula-
tion of the broadband response of passive EM de-
vices; use of domain decomposition techniques for 
the EM field modeling of electrically-large struc-
tures of high complexity; and the abstraction of 
distributed portions of composite systems that in-
clude both lumped circuit components and distrib-
uted electromagnetic structures. 

For the purposes of this paper, we are interest-
ed in the macro-modeling of portions of linear, 
passive EM structures that exhibit geometric 
and/or material uncertainty. In particular, we are 
interested in structures formed as an ensemble of 
multiple domains, with the aforementioned mate-
rial and geometric uncertainty occurring in some 
or all of these domains but not in the medium in 
which these domains are immersed.  Figure 1 de-
picts a representative example of such a composite 
structure.  

The problem of electromagnetic modeling of 
structures that exhibit randomness is one of signif-
icant interest to the electromagnetics community 
because of its relevance to several application do-
mains such as remote sensing, EMI/EMC in elec-
tronic systems, and EM wave propagation in ran-
dom media.  For the case of EM wave scattering 
by composite random structures like the one de-
picted in Fig. 1, the complexity of a Monte Carlo 
numerical solution is compounded by the need to 
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generate a discrete numerical model for each one 
of the geometries resulting from the sampling of 
the multi-dimensional random space defining the 
randomness of the structure. For example, in the 
context of the finite element solution of the EM 
boundary value problem (BVP), a new finite ele-
ment grid needs to be generated for each one of 
the realizations of the geometry during the Monte 
Carlo sampling of the random space. An alterna-
tive approach, presented by Miller [1], makes use 
of an adaptive methodology capable of constrain-
ing an estimated radiation or scattering pattern to 
satisfy an uncertainty specification by employing 
appropriate fitting models to minimize the re-
quired number of samples.  

In this paper, a macro-modeling methodology 
is proposed as a means of alleviate the repeated 
discretization of the computational domain in the 
numerical solution of the stochastic EM BVP. The 
proposed methodology makes use of the mathe-
matical framework of polynomial chaos expan-
sions and stochastic collocation [2– 6], which has 
been applied recently to the numerical solution of 
a variety of EM BVPs (see [7–11] for representa-
tive examples). These are combined with the con-
cept of network matrix representation of passive 
EM structures to develop a compact stochastic 
impedance (or admittance) matrix macro-model on 
a fixed boundary enclosing each one of the do-
mains that exhibits randomness. In this manner, 
only a single numerical grid is needed for the 
Monte Carlo solution of the EM scattering by the 
ensemble of the random domains.  

The proposed approach is described in Section 
II. Section III presents examples from the applica-
tion of the method to the two-dimensional scatter-
ing by arrays of conducting cylinders exhibiting 
geometric randomness. The paper concludes with 
some remarks on future extensions of the method. 
 

II. STOCHASTIC MACRO-
MODELING 

As suggested in the introduction, the electro-
magnetic structures of interest to this discussion 
are composite structures comprising several sub-
domains, with a good number of them exhibiting 
uncertainty in their material and/or geometric 
composition. The EM analysis of such a structure 
using, for example, a Monte Carlo (MC) process, 
requires the development of as many FE/FD mod-
els (including the generation of an FE/FD mesh for 

each model) as the samples in the random space 
used in the MC process. One way to reduce the 
associated computational cost is by removing the 
need for the repeated mesh generation. The way 
stochastic macro-modeling makes this possible is 
demonstrated in this section.  

To fix ideas, we will consider the case of elec-
tromagnetic wave scattering by a collection of tar-
gets embedded in an unbounded linear host medi-
um. While the geometric and material attributes of 
each one of the targets exhibit a statistically de-
fined randomness, the host medium does not. Fig-
ure 1 serves as a representative example of such a 
structure. Any randomness in geometric attributes 
or material properties occurs only inside the N re-
gions 1 2, , NV V V bounded by surfaces 1 2, , ,NS S S  
respectively. The exterior medium, including the 
volume bounded by surface 0 ,S is assumed to be 
fixed in terms of its geometric attributes and its 
electromagnetic properties. In view of this, it is 
immediate apparent that, under the assumption 
that the N surfaces 1 2, , NS S S are fixed, the domain

EV bounded by these N surfaces and the surface at 
infinity is a fixed domain free from any geometric 
or material uncertainty. The way the randomness 
of the interiors of the domains , 1, 2, , ,nV n N= 

manifests itself in the solution of the exterior BVP 
in EV is through the boundary conditions on the 
surfaces. This, then, suggests the idea of a stochas-
tic macro-model for each one of the N sub-
domains , 1, 2, , ,nV n N=  in terms of a global sur-
face impedance relationship on , 1, 2, , .nS n N=   
The way this is done is described next. 

 
 
Fig. 1. Reference geometry for the discussion of 
the concept of stochastic macro-modeling.  
 
 

 

 
 

x 
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A. Global impedance matrix 

For the purposes of this discussion, let the ge-
ometry of Fig. 1 be the cross-sectional geometry 
of an infinitely long cylindrical scatterer. Under 
the assumption that both the cross-sectional geom-
etry of the scatterer and the exciting electromag-
netic field are z invariant, the pertinent electro-
magnetic boundary value problem is a two-
dimensional one. Focusing on the case of TEz po-
larization, where the magnetic field is linearly po-
larized in the z direction, we assume, without loss 
of generality, that Sn is a circle. A local reference 
coordinate system is introduced, with origin the 
center of the circular boundary Sn. Fourier series 
expansions in the polar angleφ are used to repre-
sent the tangential electric and tangential magnetic 
fields on Sn. For each Fourier mode in the expan-
sion of the tangential magnetic field on Sn the solu-
tion of the interior BVP in Vn yields a tangential 
electric field on Sn. In this manner, a global im-
pedance condition is established on Sn, defined in 
terms of the matrix relationship, 

( ) , 0, 1,...,
M

n
k km m

m M
Z h k Mξ

=−

= = ± ±∑ ,     (1) 

where ,m mhξ are, respectively, the coefficients in the 
Fourier series expansions of the tangential electric 
field and the tangential magnetic field on Sn, 

 , .
M M

jm jm
m z m

m M m M
E e H h eφ φ

φ ξ
=− =−

≈ ≈∑ ∑  (2)  

The truncation of the expansions in (2) is neces-
sary for the numerical implementation of (1). The 
important observation here is that the global im-
pedance matrix, ( ) ,nZ  defined through (1), (2), 
serves as an electromagnetic macro-model for the 
region Vn. Once the impedance matrices for all 
domains , 1, 2, , ,nV n N=   are available, the solu-
tion to the exterior electromagnetic BVP in VE due 
to an arbitrary excitation at the frequency of inter-
est is computed in a straightforward fashion. In the 
presence of geometric and/or material uncertainty 
in Vn, the elements of the global impedance matrix

( )nZ can be used to account for the impact of the 
randomness of the region to the electromagnetic 
response of the overall structure. By abstracting 
the randomness of the interior region on the global 
impedance matrix defined on a fixed boundary, a 
single numerical grid is necessary for the solution 
of the exterior BVP.  In the next subsection, a pro-
cess is described for abstracting the randomness in 

the geometric and/or material properties of the 
region Vn to the elements of the global impedance 
matrix ( )nZ on the fixed boundary Sn.   
 
B. Stochastic global impedance matrix 

Let ( )1 2, , , Dχ χ χ=χ  denote the set of inde-
pendent random variables necessary for describing 
the uncertainty in Vn. Furthermore, let ( )ρ χ denote 
their joint probability density function. The objec-
tive is to develop a systematic and expedient pro-
cess for obtaining a global impedance matrix ( )nZ  
that serves as an accurate macro-model of the elec-
tromagnetic attributes of Vn for any point in the D-
dimensional probability space Ω defined by

( )1 2, , , Dχ χ χ=χ  .  
Toward this objective, use is made of the ma-

chinery of polynomial chaos expansion of random 
functions in Ω. Following the ideas in [4], a trun-
cated polynomial chaos expansion of ( )n

kmZ is of the 
form  

 ( )( )

0
,

Q
n

km i i
i

Z c
=

≈ Ψ∑ χ  (3) 

where ( )iΨ χ  are multidimensional orthogonal 
polynomials with regard to the inner product, 

 2, ( ) ( ) ( ) .i j i j ij idρ δ
Ω

Ψ Ψ ≡ Ψ Ψ = Ψ∫ χ χ χ χ  (4) 

The type of random variables dictates the family 
of the polynomials to be used [6]. For example, for 
the case of Gaussian random variables, Hermite 
polynomials are used. The number of terms, Q, 
included in the truncated polynomial chaos expan-
sion depends on the dimensionality D of the ran-
dom space and the highest order p of the multi-
dimensional polynomials used, and is given by 

 ( )!
1 .

! !
D p

Q
D p

+
+ =  (5) 

In view of (3), the coefficients in the polynomial 
chaos approximation of ( )n

kmZ  are computed using 
the orthogonality relation (4), 

( )
2

1 ( ) ( ) ( )n
i i km

i

c Z dρ
Ω

= Ψ
Ψ ∫ χ χ χ χ .            (6) 

Clearly, the expedient calculation of the inte-
gral in (6) calls for an efficient multivariate quad-
rature rule on Ω. For example, use of the Smolyak 
algorithm [12] leads to the approximation of (6) 
through the summation,  
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2
1

1 ( ) ( ) ( ) ,i r i r km r r

i

R

r
c Z wρ

=
≈ Ψ

Ψ
∑ χ χ χ          (7) 

where the number of nodes, R, is significantly less 
than the one required by a tensor product rule. The 
selection of the quadrature points, their weights wr, 
and the level of accuracy that dictates the sparsity 
of the Smolyak grid are well documented in the 
literature and will not be repeated here (see [12–
14] for details).  

Equations (3) and (7) define the desired sto-
chastic global impedance matrix macro-model of 
the random domain Vn. The process for its con-
struction is summarized in terms of the following 
algorithm.  

 

C. Algorithm  
The stochastic global impedance matrix macro-

modeling of domain Vn bounded by Sn is summa-
rized next. 

1. Choose the dimension of the global imped-
ance matrix and, hence, the number of Fouri-
er modes used in the expansion of the tangen-
tial electric and magnetic fields on Sn.  

2. Represent geometric/material randomness in 
terms of D independent random variables 

( )1 2, , , .Dχ χ χ=χ   
3. Choose polynomial family and order for 

truncated polynomial chaos expansion. 
4. Generate Smolyak grid on probability space 

Ω defined by ( )1 2, , , .Dχ χ χ=χ   
5. For each point , 1, 2, , ,r r R=χ  on the Smoly-

ak grid, solve the deterministic interior BVP 
to obtain ( ) ( ).n

rZ χ  
6. Using the matrices obtained in Step 5, calcu-

late the coefficients in the polynomial chaos 
expansion of ( )nZ using (7).  
 

D. Solution of the exterior stochastic BVP 
Once the stochastic global impedance matrices 

on the fixed circular boundaries , 1, 2, , ,nS n N=   
have been constructed, the numerical solution of 
the electromagnetic scattering problem by the un-
ion of the N+1 targets, , 0,1, 2, , ,nV n N=  amounts 
to solving an exterior electromagnetic BVP in VE. 
As already stated, since the circular boundaries are 
fixed, the finite element solution of this exterior 
BVP requires a single numerical grid. The ran-
domness of each one of the N regions manifests 
itself in terms of the polynomial chaos expansions 

of the elements of its stochastic impedance matrix. 
With Dn denoting the number of independent ran-
dom variables used to parameterize the uncertainty 
in Vn, the dimension of the random space ΩE for 
the exterior stochastic BVP is 

1
.

N

E n
n

D D
=

= ∑ Irrespec-

tive of the process used for the solution of the ex-
terior stochastic BVP, the global impedance ma-
trix on each one of the circular boundaries is readi-
ly computed ΩE from its polynomial chaos expan-
sion for each sample in the random space.  
 

III. NUMERICAL VALIDATION AND 
DEMONSTRATION STUDIES 

In this section, several numerical examples in-
volving electromagnetic wave scattering by arrays 
of infinitely long cylinders are used to validate the 
proposed methodology and demonstrate its key 
attributes.  

We begin with the problem of TEz time-
harmonic uniform plane wave scattering by a per-
fect electric cylindrical conductor of circular cross 
section and of random radius, a = 0.80 (1+χ) m, 
where χ is a Gaussian random variable with zero 
mean and standard variation of 0.06 m. The cylin-
der is immersed in free space and its axis coin-
cides with the z axis of the reference coordinate 
system. The amplitude of the incident magnetic 
field is 1 A/m and its angular frequency is 9×108 
rad/s. The availability of an analytic solution for 
this problem makes possible the use of a standard 
Monte Carlo analysis to calculate the reference 
solution for the statistics of the scattered magnetic 
field on a circle of radius 1.2 m centered at the 
origin. Use of 104 sampling points in the Monte 
Carlo process yielded an accuracy of 10-5 in the 
calculation of the mean value of the magnitude of 
the scattered magnetic field. 

Next, the problem was solved making use of 
the stochastic global impedance condition defined 
over the circle of radius 1.2 m. The polynomial 
chaos approximation of the elements of the im-
pedance matrix is in terms of Hermite polynomials 
up to third order. The dimension of the impedance 
matrix is 11. Since the dimension of the random 
space is 1, the Smolyak grid reduces to a simple 
Gaussian quadrature rule. For accuracy level of 5, 
a Smolyak involving 5 grid points is required for 
the calculation of the integrals in (7).  Since the 
random space for the exterior stochastic BVP is 
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the same with that for the interior, the same Smol-
yak grid used for the construction of the global 
impedance matrix is used for solving the exterior 
stochastic BVP. The mean and variance of the 
magnitude of the scattered magnetic field thus 
computed are compared with those obtained ana-
lytically in Fig. 2. The error bars represent a ±3σ 
deviation with respect to the mean. Very good 
agreement is observed. More specifically, the av-
erage error in the mean value of the magnitude of 
the scattered magnetic field between the analytical 
and the numerical solution, averaged over all an-
gles, is 1.20%. 

 
 
Fig. 2. Mean value of the magnitude of the scat-
tered magnetic field. Error bars represent ±3σ de-
viation from the mean. 

 
Next, the case of TEz wave scattering by an ar-

ray of four elliptical cylinders is considered. All 
cylinders are perfect electric conductors, and the 
background medium is free space. The angular 
frequency of the excitation is 9×108 rad/s. In the 
absence of any statistical variability, the centers of 
the four cylinders coincide with the vertices of a 
square of side 2.4 m (see Fig. 3). The randomness 
in the cross-sectional geometry is introduced 
through a set of four independent random varia-
bles for each cylinder. Two of them, χ1, χ2, are as-
sociated with the lengths 2a and 2b of the major 
axis (along the x axis) and minor axis (along the y 
axis), respectively, of the elliptical cylinder. More 
specifically, with the two random variables taken 
to be Gaussian of mean value of 0 and standard 
deviation of 0.025, the lengths of the two axes (in 
meters) are given by  

 

        )1(4.1)(2),1(4.1)(2 2211 χχχχ +=+= ba .    (8) 
 

The other two random variables, χx, χy, control the 
random displacement of the center of the cylinder 

from the vertex of the reference square. The posi-
tion of the center is given by 
 

yxoc yxrr χχ ˆˆ ++=


,   (9) 
where or

  denotes the corresponding position of the 
vertex of the square. Variables χx and χy are Gauss-
ian random variables of zero mean value and 
standard deviation of 0.025 m. Even though the 
same four variables are being used to quantify the 
geometric uncertainty for each one of the four cyl-
inders, when considering the four-cylinder array, 
the four sets of random variables are assumed to 
be independent. Thus, the randomness of the 
cross-sectional geometry is parameterized in terms 
of 16 independent random variables.  
 

x

yBoundary 
Impedance 
Condition

2a(χ1)

2b(χ2)

S

PEC

cr


 
 
Fig. 3. Array of four PEC elliptical cylinders with 
random axes lengths and random positions. 
 

Depicted in Fig. 3 are the four fixed circular 
boundaries on which stochastic global impedance 
boundary conditions will be defined, one for each 
one of the four cylinders.  The center for each cir-
cle coincides with corresponding vertex of the ref-
erence square formed by the unperturbed centers 
of the four cylinders in the array. The radius of 
each circle is such that the cylinder associated with 
it remains enclosed by it for all points in the four-
dimensional domain in the random space defined 
by the random variables χ1, χ2, χx, χy. For this spe-
cific example, this radius was taken to be 1 m.  
Given that the random variables are Gaussian dis-
tributions, orthogonal Hermite polynomials are 
used for the polynomial chaos expansion of the 
elements of the stochastic impedance matrix. The 
calculation of the coefficients in the polynomial 
chaos expansion using polynomials of up to se-
cond order is carried out efficiently through the 
use of a Smolyak sparse grid on the four-
dimensional random space. More specifically, for 
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the case considered here, a Kronrod–Patterson rule 
[13], [14] of accuracy level 5 was used, resulting 
in 201 points on the four-dimensional random 
space.  For each point on the Smolyak grid a finite 
element solution of the interior BVP was used to 
calculate a global impedance matrix of dimension 
21. The computed matrices were subsequently 
used for the calculation of the coefficients in the 
polynomial chaos expansion of the stochastic im-
pedance matrix making use of (7).  

With the stochastic global impedance matrix 
available on each one of the four circular bounda-
ries, a finite element model was used for the solu-
tion of the exterior stochastic BVP with excitation 
by a uniform, time-harmonic plane wave propagat-
ing in the +x direction with magnetic field ampli-
tude of 1 A/m. Since the circular stochastic im-
pedance boundaries are fixed, a single finite ele-
ment mesh is needed for the discretization of the 
geometry. The only changes to the finite element 
matrix are those associated with the specific val-
ues of the stochastic impedance matrices on the 
four boundaries for each sample realization in the 
16-dimensional random space. Rather than a 
standard Monte Carlo process, a Smolyak sparse 
grid of accuracy level 3 was used to extract the 
statistics of the scattered fields and the radar cross 
section. The number of points in the sparse Smol-
yak grid is 513. The mean and variance of the out-
put parameters are computed by performing the 
integration over the random space. These integrals 
are approximated by weighted summations of the 
scattered field, computed at each one of the 513 
nodes as previously described,  

 

∑
=

≈
513

1

)(),,(),(
r

rrr
sc
z

sc
z wHH χχ ρϕρϕρ  (10) 

( )
.),(

)(),,(),(var

2

513

1

2

ϕρ

ρϕρϕρ

sc
z

r
rrr

sc
z

sc
z

H

wHH

−

≈ ∑
=

χχ
(11) 

 

The calculated scattered magnetic field, sam-
pled on a circle of radius 3.4 m centered at the 
center of the reference square defined by the un-
perturbed centers of the four cylinders is depicted 
in Fig. 4. More specifically, shown in the figure is 
the mean value of the magnitude of the scattered 
magnetic field along with error bars that indicate a 
±3σ deviation from the mean value. The radar 
cross section (RCS) is depicted in Fig. 5. Again, 

the mean value is plotted, along with error bars 
that denote ±3σ deviation from the mean.  

The final numerical study considers the case 
where the polarization of the excitation is TMz 
with the electric field linearly polarized along the z 
axis. For this case and in view of the fact that for 
the two-dimensional BVP considered the govern-
ing equation is the scalar Helmholtz equation for 
the z component of the magnetic field, a global 
admittance matrix is used instead of a global im-
pedance matrix. The global admittance matrix re-
lates the Fourier coefficients in the expansion of 
the tangential magnetic field on each one of the 
circular boundaries Sn to the Fourier coefficients in 
the expansion of the tangential electric field.  

 

 
 
Fig. 4. Mean value of the magnitude of the scat-
tered magnetic field on a circle of radium 3.8 m 
enclosing the four cylinders. Error bars represent 
±3σ deviation from the mean. 
 

 
 
Fig. 5. Mean value of the radiation cross section 
(RCS) of the magnetic field. Error bars represent 
±3σ deviation from the mean.  

 
For this case, the four-cylinder array depicted 

in Fig. 3 is illuminated by a time-harmonic, line 
current source of current phasor of 1 A, angular 
frequency 9×108 rad/s, and placed at position (3, 
0) m with its axis parallel to the z axis. The devel-
opment of the global stochastic admittance matrix, 
used on each one of the circular boundaries, was 
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carried out following the same choices for Hermite 
polynomial chaos expansion order and Smolyak 
grid accuracy level as in the computation of the 
impedance matrix for the TEz case.  

Using expressions (10) and (11), the mean and 
the variance of the magnitude of the z-component 
of the scattered electric field were computed. De-
picted in Fig. 6 is the mean value of the magnitude 
of the scattered electric field recorded on a circle 
of radius 3.4 m with its center at the center of the 
reference square of the four-cylinder array config-
uration. Also depicted in the figure are error bars 
indicating ±3σ deviation from the mean. The large 
deviation obtained in the forward scattering direc-
tion (on the side of the array where the line source 
is placed) is attributed to the close proximity of the 
source to the cylinders. Also depicted in Fig. 7 is 
the mean value of the magnitude of the total elec-
tric field for a distance in the far-field region. 
Again, the error bars represent ±3σ deviation from 
the mean.   

 

 
 
Fig. 6. Magnitude of the scattered electric field on 
a circle of radius 3.4 m. Error bars represent ±3σ 
deviation from the mean. 
 

 
 

Fig. 7. Mean value of the magnitude of the far 
electric field at ρ = 1000/ko. Error bars represent 
±3σ deviation from the mean. 

 
IV. CONCLUSION 

In conclusion, a methodology was proposed 
and numerically demonstrated for the development 

of stochastic macro-models of sub-domains of a 
complex electromagnetic structure exhibiting ge-
ometric and/or material randomness. Under the 
assumption that the randomness inside the sub-
domain is parameterized in terms of a set of inde-
pendent random variables, the proposed method-
ology abstracts the randomness in the sub-domain 
in terms of a stochastic global impedance or ad-
mittance matrix defined on a fixed surface enclos-
ing the sub-domain. The elements of the matrix 
are given in terms of truncated polynomial chaos 
expansions on the random space defined by the 
independent random variables. 

As demonstrated through the numerical ex-
amples presented, use of such stochastic macro-
models alleviates the computational complexity of 
the solution of the random scattering problem by 
eliminating the need for the repeated numerical 
discretization (e.g., the repeated mesh generation) 
for the entire structure for each sampling point in 
the Monte Carlo process.  

While the proposed methodology was pre-
sented in the context of two-dimensional EM scat-
tering, its extension to three dimensions is rather 
straightforward. For example, for the case of an 
ensemble of multiple three-dimensional objects, 
global stochastic impedance boundary conditions 
can be defined on spherical surfaces enclosing 
each object. This extension is currently under de-
velopment. 

Another extension of the proposed macro-
modeling involves the case where the elements of 
the stochastic global impedance matrix are func-
tions of frequency. As already demonstrated in 
[10, 11], this extension generalizes the concept of 
stochastic global impedance macro-modeling – in 
a manner consistent with the concept of network 
matrix representation of passive EM multi-ports – 
to provide for a broadband stochastic macro-model 
of a portion of a composite structure exhibiting 
material and/or geometric randomness. Results 
from on-going research on these topics will appear 
in forthcoming papers.   
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