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Abstract ─ The method of moments (MoM), 
applied to surface integral equations (SIEs) in the 
frequency domain, enables very accurate analysis 
of composite metallic and dielectric structures. 
Particularly, on a desktop PC, the electrical size of 
solvable problems is very limited by memory and 
time resources. This limit can be significantly 
extended by using advanced techniques, which are 
shortly revealed. The focus of the paper is to 
present results that illustrate current possibilities of 
MoM/SIEs solution on a desktop PC: (1) 
monostatic RCS of a cube of side 80 λ, (2) beam 
steering of an array of 30 by 30 microstrip patch 
antennas at 9.2 GHz, and (3) beam steering of 4 by 
4 patch antennas at 5 GHz, placed on a 19 m long 
helicopter.  
 
Index Terms ─ Higher order basis functions, 
method of moments, surface integral equations.  
 

I. INTRODUCTION 
Electromagnetic modelling of composite 

metallic and dielectric structures in the frequency 
domain can be performed very accurately by 
solving surface integral equations (SIEs) using the 
method of moments (MoM). Using the MoM 
theory [1, 2], induced currents over metallic 
surfaces and equivalent currents over material 
boundary surfaces are approximated by a series of 
known basis functions multiplied by unknown 
coefficients. The SIE is transformed into a system 
of linear equations, which is solved for the 

unknown coefficients. However, the size of the 
solvable problem in terms of the number of 
unknowns, N, is limited by memory and time 
resources of the computer used for the simulation. 
By increasing N, the memory occupation and 
matrix-fill time increase as N2 and the matrix-
solution time (in case of direct methods as 
Gaussian elimination or LU decomposition) 
increases as N3. Typical size of operative memory 
(RAM) of modern PCs used for number crunching 
is 8 GB. In that case, systems of linear equations 
in the complex domain of up to about 
Nmax = 30,000 unknowns can be solved "incore", 
which means keeping the whole matrix of the 
system in RAM during solving. On the other hand, 
the electrical size of the solvable problem (in λ2 of 
surface area) is dependent on the choice of basis 
functions. For the Rao-Wilton-Glisson (RWG) 
basis functions defined over triangles, typical edge 
length of triangles is λ/10, resulting in about 300 
unknowns per λ2 for metallic surfaces [3]. 
Particularly, for Nmax = 30,000, the electrical size 
of the surface area of a structure is limited to about 
100 λ2. 

Many techniques have been developed to 
increase the electrical size of the solvable structure 
within the limits of PC computer resources. In 
what follows, we shall focus on techniques 
implemented in the commercial software package 
WIPL-D Pro v9.0 [4]. Generally, these techniques 
can be grouped into three classes. 
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In the first class, there are techniques that 
decrease the number of unknowns:  

(a) application of higher order basis functions 
[5, 6],  

(b) exploiting symmetry of the problem [4],  
(c) "smart reduction" of expansion order [7], 
(d) construction of macro-basis functions by 

physical optics (PO) driven MoM [8], and 
(e) hybrid MoM-PO methods [9].  

In the second class, there are techniques that 
decrease the memory resources and matrix-
fill/solution time for given number of unknowns:  

(a) iterative techniques [10-13], 
(b) fast multipole method (FMM), and 
(c) multilevel fast multipole algorithm 

(MLFMA) [14-18]. 
 Finally, in the third class, there are techniques 

that enable efficient usage of modern hardware 
resources:  

(a) out-of-core solution of matrix equation [19], 
(b) parallelization on CPU based on OpenMP 

[20], and  
(c) parallelization on GPU based on CUDA 

[21-23]. 
The goals of the paper are: (1) to reveal 

various techniques for increasing the electrical size 
of the solvable structure within the limits of PC 
computer resources, (2) to compare these 
techniques and discuss optimal usage of these 
techniques, and (3) to show numerical results for 
some typical electrically large structures. 
 

II. TECHNIQUES THAT REDUCE 
NUMBER OF UNKNOWNS 

 
A. Higher-order basis functions 

The basic way to decrease the number of 
unknowns is to apply higher-order basis functions 
(HOBFs). For interpolatory HOBFs defined over 
triangles [6], the maximum edge length of triangles 
can be extended to 0.5~1λ, resulting in 40–70 
unknowns per λ2 [15]. In case of polynomial 
HOBFs defined over quadrilaterals [2], [5], the 
maximum edge can be extended to 1~2λ, resulting 
in 20–35 unknowns per λ2 [5]. In both cases, the 
expansion orders are chosen according to the 
electrical size of patches. Thus, the electrical size of 
a solvable structure within the limit of computer 
resources is increased by an order of magnitude 
when compared with RWG basis functions. 

 
B. Exploitation of geometrical symmetry of the 
problem 

If the geometry of a structure is symmetrical 
with respect to one plane, and the excitation is 
either symmetrical or anti-symmetrical with respect 
to this plane, the unknown coefficients on one side 
of the plane are equal to the coefficients from the 
other side of the plane multiplied by ±1, so the 
original number of unknowns is halved. The 
memory requirements are decreased four times and 
the matrix solution time is decreased eight times. In 
some cases, there are two or even three mutually 
orthogonal planes of symmetry, so that the number 
of unknowns can be decreased four or eight times, 
respectively. 

The symmetry of geometry can be exploited to 
decrease the number of unknowns even if the 
excitation is not (anti) symmetrical [4]. In that case, 
the excitation can be decomposed into a set of 
symmetrical and anti-symmetrical excitations. 
Consequently, the problem is decomposed into set 
of sub-problems, for which not only the geometry is 
symmetrical, but also the excitations are 
symmetrical and/or anti-symmetrical. In that case, 
the number of unknowns is halved and the number 
of sub-problems to be solved is doubled for each 
symmetry plane. Once all sub-problems are solved, 
the final results are obtained by superposition. For 
each symmetry plane, the memory requirements are 
reduced four times, the matrix fill time is 
unchanged, while the matrix solution time is 
shortened by a factor of four. 

 

C. Smart reduction of expansion order 
In the case of an antenna placed at some 

platform (e.g., airplane fuselage), the currents, 
which are induced over the fuselage, are of the 
largest magnitude in the vicinity of the antenna, and 
decrease going away from the antenna. Since the 
currents of the lower magnitude have a smaller 
impact on global quantities, such as antenna input 
impedance or gain, their distribution can be 
determined with lower accuracy. With this in mind, 
the expansion orders of currents can be linearly 
reduced going from the antenna to the most distant 
part of the fuselage, for which the maximum 
reduction is specified (e.g., in %). For a maximum 
reduction of 100%, the expansion order is reduced 
to order one along each side of the patch, i.e., 
approximation of currents over relatively large 
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patches (up to 2 by 2 λ) is performed using rooftop 
basis functions. 

In the case of two antennas placed at some 
platform, for mutual coupling between them, the 
most important currents are in the 1st Fresnel 
region. In that sense, the space around two antennas 
can be subdivided into the 1st and higher-order 
Fresnel regions. Then expansion orders for currents 
can be reduced gradually, from the 1st Fresnel 
region to the highest Fresnel region that still 
contains parts of the fuselage. 

Finally, we know that, in the “shadow region” 
of a fuselage (i.e., in the region without optical 
visibility from the antennas), the induced currents 
are also much smaller than those in the lit region. In 
particular, if these currents are farther away from 
the border of the lit region, we consider them to be 
deeper in the shadow. In that sense, different levels 
of reduction in expansion orders can be specified 
for a given depth of the shadow. 

Generally, by increasing the level of reduction 
of expansion orders, the number of unknowns is 
decreased and the solution error is decreased. It is 
shown that, by proper choice of reduction 
techniques and levels, the number of unknowns can 
be significantly reduced with negligible loss of 
accuracy. 

As an example in [7], a half-wavelength dipole 
at 2 GHz is placed above a payload fairing of length 
8.9 m and largest diameter 2.9 m. Basically, with 
one symmetry plane applied, the model requires 
44,614 unknowns. By combining the reduction 
techniques explained above the number of 
unknowns can be reduced almost ten times, down 
to 4,983 unknowns. 

 
D. PO driven MoM 

The main goal of the PO driven MoM method 
is to solve electrically large problems using a small 
numbers of unknowns, and thus, reduce memory 
and time resources [8]. In case of scatterers, the 
method starts from the PO solution and improves it 
iteratively. In each iteration, the structure is excited 
by the solution from the previous iteration and 
correctional PO currents are determined and 
grouped into a small number of macro-basis 
functions (MBFs). Unknown coefficients 
multiplying all macro basis functions are obtained 
by minimizing the residuum of the original MoM 
solution. Thus, the solution after the 1st iteration is 

better than the PO solution, and in each next 
iteration, it approaches the original MoM solution. 
The number of MBFs added per iteration is adopted 
to be comparable with the square root of the 
number of unknowns. An acceptable solution is 
obtained even after the 1st iteration with a reduction 
in the number of unknowns of two orders of 
magnitude. 

In the case of an antenna placement problem, 
the only difference is that the starting solution is 
obtained as the MoM solution of the antenna 
isolated from the fuselage. 

  
III. TECHNIQUES THAT REDUCE 
MEMORY REQUIREMENTS AND 

NUMBER OF OPERATIONS 
 
A. Iterative methods 

The number of operations needed to solve a 
matrix equation can significantly be decreased by 
using iterative methods, generally speaking from 
N3/3 to MN2, where M is number of iterations. The 
number of iterations generally depends on: (a) the 
maximum allowed mean square value of residuum 
of matrix equation (e.g., R = 0.001), (b) the type of 
problem to be solved, (c) the type of MoM/SIE 
method used to obtain the solution, and (d) the type 
of iterative procedure itself [10]. For example, 
scattering problems (distributed excitation) require 
fewer iterations than antenna problems (localised 
excitation), which require fewer iterations than 
closed problems (e.g., resonant cavities). The 
convergence for different types of problems can be 
improved by using various preconditioners, or other 
techniques that decrease the matrix condition 
number [11]. 

In particular, HOBFs cannot be efficiently used 
for iterative solutions if they are not orthogonalized 
in some way [12, 13]. The best results are obtained 
by using maximally orthogonalized HOBFs [13], 
which enable almost the same convergence of the 
matrix solution for higher-order basis functions as 
for the rooftop basis functions. 

Fully developed iterative techniques can solve 
the matrix equation in a relatively small number of 
iterations, which is much smaller than the number 
of unknowns, i.e., M << N, and thus significantly 
reduce the time needed for matrix solution. 
However, in many cases, the iterative solution 
cannot outperform the direct solver (e.g., LU 
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decomposition), not only because of slow 
convergence. Namely, in case of a set of 
independent excitations (e.g., multiple excitation), 
the iterative procedure is performed from the 
beginning for each excitation. On the other hand, in 
case of a direct solver, once the LU decomposition 
is performed, the solution for each excitation is 
obtained by the so-called forward and backward 
substitution in N2 operations, which corresponds to 
a single iteration in an iterative procedure. 

 
B. Multilevel fast multipole algorithm  

Both direct solvers and iterative procedures for 
the solution of matrix equations are limited by the 
memory required to store the matrix. In case of 
iterative solvers, the memory requirements, as well 
as solution time, can significantly be reduced by 
using FMM and MLFMA [14-16]. In both cases, 
the method is based on the acceleration of matrix-
vector multiply operations performed in each 
iteration of an iterative solver, by taking into 
account interactions between widely separated 
groups of basis functions instead of interactions 
between individual basis functions belonging to 
these groups. (Particularly, in case of MLFMA the 
grouping is performed in few levels.) Reduction of 
interaction between individual basis functions to 
interaction between their widely separated groups is 
enabled by the multipole expansion of the free-
space Greens function. The most efficient reduction 
is obtained for groups, which are far enough away 
so that the multipole expansion can be represented 
by a single term, which corresponds to a far-field 
approximation (FFA). 

Generally, the application of FMM and 
MLFMA introduces an additional error in the MoM 
solution. This error can be decreased (e.g., by 
increasing the number of terms in the multipole 
expansion, or by increasing the relative distance at 
which FFA is applied), which results in an increase 
of memory resources and simulation time. 
Particularly, the error issues are critical in the case 
of application of HOBFs [15, 17]. In order to enable 
the efficient application of HOBFs, an improved 
far-field approximation is proposed in [18]. Even 
with this improvement, efficient MLFMA solutions 
are only possible for maximally 2nd and 3rd orders of 
HOBFs. 

As an example in [24], the fighter scatterer, 12 
m long, is analyzed at 4 GHz (160 λ). The problem 
requires 307,170 unknowns and 754 GB of RAM 

for storage of the full matrix. The MLFMA solution 
is obtained in 3.2 hours using a standard quad core 
PC with 8 GB of RAM. In this case, the application 
of MLFMA reduces the memory needs to 7.2 GB. 
 

IV. TECHNIQUES THAT ENABLE 
EFFICIENT USAGE OF HARDWARE 

RESOURCES 
 
A. Out-of-core solver 

In the case when the MoM matrix is too large 
to be stored in RAM, it must be split into blocks, 
which are stored on a hard disk. In particular, if 
there are many excitation columns (multiple 
excitation) they can be also stored in the disk. The 
solution of such stored matrix equation is obtained 
using an appropriate out-of-core solver. 

In the case of out-of-core direct solution, 
Gaussian elimination or LU decomposition is 
performed using two by two blocks from the disk. 
The size of the blocks is limited so that two of them 
can be stored in RAM. Since the total number of 
readings of the full matrix is equal to the half of the 
total number of blocks, it is optimal that these two 
blocks have size slightly smaller than the size of 
RAM. As an example, consider a problem of 
120,000 unknowns that should be solved using 8 
GB of RAM. In that case, the matrix size is about 
107.3 GB and each block can have a size of 3.8 GB, 
so that for the full solution the matrix is read 15 
times. 

In the case of an out-of-core iterative solution, 
the matrix must be read at least once during each 
iteration. The number of iterations needed to obtain 
a sufficiently accurate solution is usually much 
larger than the number of blocks into which the 
matrix is split. Thus, the total time needed for an 
out-of-core iterative solution is much larger than for 
a direct solution. Hence, the out-of-core solver is 
used only for direct solution. 

 

B. Parallelization on CPU based on OpenMP 
Modern CPUs contain more than one core, 

usually 4 cores. Using OpenMP, the calculation can 
be performed in parallel at an arbitrary number of 
threads, but an efficient parallelization uses a 
number of threads approximately equal to the 
number of cores. Since the memory used for 
calculation is shared by all threads, for an efficient 
parallelization, it is very important not to access the 
same variable with more than one thread. Generally, 
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the code that was optimal for serial performance 
should be reorganized to support efficient parallel 
performance. For example, the efficient matrix fill 
in serial mode is organized so that mutual coupling 
between two patches is calculated one at a time. 
However, the basis functions that provide continuity 
between patches (doublets in general case, roof top 
basis functions in special case) belong to both 
patches. So, it can happen that if such couplings are 
calculated in parallel two or more threads approach 
to the same element in the matrix. This can be 
avoided if the couplings are calculated for groups of 
test and basis function patches, such that all patches 
in a group have no common basis functions. Using 
such grouping, the efficiency of parallelization of 
90% (70%) is achieved for matrix fill at 4 (8) cores. 

In the case of the matrix solution, the MKL [25] 
library enables almost 100% efficiency for 4 (8) 
cores. 

 
C. Parallelization on GPU based on CUDA 

In cases when the calculation consists of many 
repetitions of the same operation, graphical 
processing units (GPU) can perform the calculation 
up to 10 times faster than a quad-core CPU. 
However, the code that is executed in parallel mode 
using OpenMP on CPU cannot be simply 
transferred into CUDA on the GPU. Again, the 
algorithms should be reorganized to support parallel 
execution on thousands of threads. In particular, it is 
desirable that tasks performed in parallel at all 
threads use the same sequence of operations the 
same number of times. Since not all parts of the 
MoM code are suitable for GPU parallelization, the 
optimal code is one that combines parallelization on 
the CPU and the GPU. 

For example, in the case of an out-of-core 
solver on a CPU, there are two critical operations: 
(1) storing/reading the matrix to/from disk, and (2) 
calculations performed in LU decomposition. So, 
for significant acceleration, it is not enough to 
parallelize the calculations on the GPU. It is also 
necessary to perform storing and reading of the 
matrix blocks in parallel on the CPU and in parallel 
with the calculations on the GPU [22]. 

 

V. OPTIMAL COMBINATION OF 
TECHNIQUES FOR EFFICIENT AND 

ACCURATE EM MODELING 
The basic combination for efficient and 

accurate modelling on PCs is that based on higher-
order basis functions, incore/out-of-core direct 
solvers and combined CPU/GPU parallelization. In 
particular, the simulation can be accelerated by 
exploiting geometrical symmetry and by using the 
“smart reduction” for antenna placement problems. 
In the case of electrically large structures with a 
single excitation (e.g., bistatic RCS for scatterers or 
radiation pattern for antenna placement), the 
simulation can be further accelerated by using 
iterative methods, e.g., MLFMA or PO driven 
MoM. 

  
VI. NUMERICAL RESULTS 

Figure 1 shows the monostatic RCS of a cube, 
of side 80 λ, illuminated by a vertically polarized 
plane wave in the xOy-plane from 3,552 directions. 
Using expansions of 5th order and one symmetry 
plane, as shown in the left inset, the problem is 
reduced to 655,380 unknowns. The results are 
obtained by using all three symmetry planes, as 
shown in right inset. The problem is decomposed 
into four sub-problems, each containing 163,845 
unknowns. Total simulation time for all 4 sub-
problems and post-processing is 33 hours. 

The second problem considered is a phased 
array consisting of n by n probe-fed microstrip 
patch antennas, where n = 10, 20, 30, and 40. (The 
array for n = 10 is shown in Fig. 2.) The task is to 
determine the gain for a set of directions of the 
main beam, with angle θ going from 20 to 90 
degrees and angle φ going from 0 to 90 degrees, 
both with a step of 5 degrees, so that the total 
number of excitations is 285. 

It is also required that the finite size and finite 
thickness of the substrate, as well as the finite 
thickness of the metallization, are taken into 
account, as shown in Fig. 3. The size of a square 
metallic patch is 10 mm by 10 mm, while the 
distance between antenna centers is 15 mm. The 
thickness and relative permittivity of the teflon 
substrate are 0.5 mm and 2.1, respectively. The 
thickness of the metallization is 34 μm. The 
operating frequency is 9.2 GHz. 

The original problem for n = 30 has about 
450,000 unknowns. Two symmetry planes are used 
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to facilitate the analysis, so that the original 
problem is decomposed into four sub-problems, 
each requiring about 112,500 unknowns. The 
simulation is performed using one generator at 
time, so that for each generator turned on, all others 
are turned off. For each such excitation, the 
radiation pattern of the array is determined. In 
addition, all these excitations are used to determine 
the matrices of mutual admittances and impedances. 

 

 

 
Fig. 1. Monostatic RCS of a cube of side 80 λ in 
xOy-plane versus angle φ. 
 

Once the 3D EM simulation is performed, 
data are imported as an n by n-port device into 
the schematic feature of WIPL-D [26]. The 
current sources are attached to these ports. 
Once this simple circuit is solved for voltages 
at the ports, the total radiation pattern is easily 
obtained by superimposing radiation patterns 
due to each of these voltages. By properly 
adjusting the current sources, the main beam 
of the array can be positioned in a desired 
direction. 

 
Fig. 2. Geometrical model of an array of 10 by 10 
microstrip patch antennas. 

 

 
Fig. 3. Geometrical model of an array of 10 by 10 
microstrip patch antennas. 
 

Figure 4 shows the antenna gain for various 
beam directions in the plane φ = 45°, which is 16 
beam directions in total. Total simulation time 
including post-processing for 285 beam directions 
is 8 hours and 20 minutes. 

The last problem considered is the radiation of 
a 4 by 4 microstrip patch antenna array placed at the 
bottom of a helicopter fuselage, as shown in Fig. 5. 
The array is adjusted to operate at a frequency of 5 
GHz. Total length of helicopter is 19 m, so that its 
electrical length at this frequency is 316.7 λ. The 
original problem having 1,254,034 unknowns is 
solved using a GPU accelerated PO driven MoM 
method in 28.25 hours. The radiation pattern is 
shown in Fig. 6. 
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Fig. 4. Gain of array of 30 by 30 microstrip patch 
antennas for various directions of main beam in 
plane φ = 45°. 
 

 
Fig. 5. Geometrical model of an array of 4 by 4 
microstrip patch antennas placed on helicopter. 
 

 
Fig. 6. Radiation pattern at 5 GHz of array of 4 by 
4 microstrip patch antennas placed at helicopter.  

VII. CONCLUSION 
The basic combination for efficient and 

accurate EM modelling in the frequency domain 
on PCs is based on higher-order basis functions, 
incore/out-of-core direct solvers, and combined 
CPU/GPU parallelization. Where possible, the 
simulation can be accelerated by exploiting 
geometrical symmetry and the “smart reduction” 
of expansion orders. In particular, for single 
excitation problems (e.g., bistatic RCS and 
antenna placement), the analysis can be further 
accelerated using MLFMA and PO driven MoM.   
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