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Abstract — In this paper, we present a radar
backscattering simulator based on the method of
physical optics (PO). Our simulation tool closely
intertwines the tessellation of the simulation geom-
etry with the physical optics method kernel, which
enables on-the-fly refinement of input model data
while still yielding high precision and computa-
tional performance. The algorithms for the physical
optics method as well as the parallelization scheme
will be presented. Also, performance comparisons
will be shown and explained, both in regard to
accuracy of the results and computation time.

Index Terms — Remote sensing, vector and
parallel computation.

I. INTRODUCTION
Radar clutter is loosely defined as "the part of

the received signal that is undesired." For ground
penetrating radar systems (aboard satellites or other
space craft, for example), this definition applies to
the part of the signal that is backscattered from the
surface of the sounded object. Separating surface
clutter from the received signal is a tremendous aid
for the correct interpretation of radar images.

In order to calculate the backscattered signal
of known terrains, we developed a simulation
tool based on the method of physical optics. The
development of this tool was driven by the need
to simulate huge objects, i.e., entire moons or
planets, and the possibility to choose arbitrary
radiation patterns for the sender and receiver. It
is implemented in C++, using OpenMP[1] for
parallelization.

The following section is dedicated to introduc-
ing the method of physical optics. In Section III,
our simulation tool is presented. Section IV gives a
description of the generation of on-the-fly meshes.
In Section V, results of different simulation scenar-
ios will be compared. The final section is dedicated
to drawing conclusions and outlining further work.

II. METHOD OF PHYSICAL OPTICS

A. Method overview
The method of physical optics is a method to

calculate the electromagnetic field backscattered
from the surface of an object. As this method
neglects electromagnetic coupling, its demands for
computation time and main memory are modest
compared to other methods, for example the method
of moments. Assuming far field conditions further
simplifies the equations; this assumption is justified
for our use cases.

The formulae given in this section describe
the method of physical optics for dielectric bodies,
assuming far field conditions, a homogeneous
dielectric permittivity εr and permeability µr.

B. Surface current densities
Given a far field radiation pattern (as calculated

by antenna simulation tools, for example, or as
an analytical formulation where possible), the
incident electric and magnetic far field for a given
point in free space can be calculated. These are
denoted by Ei and Hi. For a dielectric surface
with a known homogeneous dielectric permittivity
εr and permeability µr, the equivalent magnetic and
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electric surface current densities can be calculated
as follows[2–4]:

JPOs = 2n̂×
[(

1

1 + ζcosϑi
ei‖ ⊗ ei‖

)
·Hi

]
+ 2n̂×

[(
1

1 + ζ
cosϑi

ei⊥ ⊗ ei⊥

)
·Hi

]
,

and

MPO
s =− 2n̂×

[(
ζ

cosϑi

1 + ζ
cosϑi

ei‖ ⊗ ei‖

)
·Ei

]

− 2n̂×
[(

ζcosϑi
1 + ζcosϑi

ei⊥ ⊗ ei⊥

)
·Ei
]
,

where

ζ =
ZF
Z0

=

√
εr
µr√
ε0
µ0

,

n̂ is the surface unit normal, and ϑi is the angle of
incidence. ei⊥ and ei‖ are the perpendicular and
parallel base unit vectors of the plane of incidence,
separating the incident field into perpendicular and
parallel components. Thereby, for both JPOs and
MPO

s polarization is accounted for.

C. Backscattered field
Using dyadic Green’s function in vectorial

form, the electric field based on the equivalent
surface current densities can be calculated[5, 6].
Assuming far field conditions again, the equations
can be simplified. The electric field caused by the
equivalent magnetic surface current, denoted Em,
can be written as follows:

Em(r
′,MPO

s ) = jkβ̂r ×
∫
S

e−jkr

4πr
MPO

s (r) ds,

whereas the magnetic field caused by the equivalent
electric surface current densities, denoted He, is
calculated as follows:

He(r
′,JPOs ) = −jkβ̂r ×

∫
S

e−jkr

4πr
JPOs (r) ds,

where r is the source point and r′ is the target
point. r = ||r′ − r|| is the distance between these

points, and β̂r = r−1(r′ − r) is the unit vector of
the direction. The total field can then be written as:

Etotal = Em − Z0β̂r ×He.

For each surface element, Etotal is weighted
with the correspondent antenna gain before nu-
merical integration is performed. By calculating a
frequency series and transforming it to time domain,
the radar echo backscattered by the given surface
is calculated.

III. PHYSICAL OPTICS SIMULATOR

A. Overview
In its current state, our physical optics simulator

is capable of calculating the backscattered radar
echo of a given input topography in monostatic as
well as in bistatic mode. Antenna radiation patterns
for a Hertzian dipole or a finite length dipole
are provided as analytical formulations. Arbitrary
antenna radiation patterns can be used, by importing
far field ϑ-ϕ maps for E and H. Post processing
is performed to generate radargram images from
the frequency domain simulation output using the
Python programming (scripting) language[7].

B. Software evolution
Starting as a set of MATLAB scripts, the

software was first ported to Fortan90 in order
to build a standalone binary application[8]. This
allowed a much higher degree of parallelism, as the
bottlenecks of MATLAB and its MEX interface,
namely the limitation of parallel constructs to
compiled MEX files and the inability to re-use
memory, could be overcome this way.

For a final re-implementation, C++ was chosen
as programming language, because of its advantages
over the Fortran family of programming languages.
These include, amongst others, a concise integration
of the paradigm of object oriented programming
(while refraining from making its use obligatory),
stricter type-safety enforcement (while offering
well-defined ways to circumvent it where nec-
essary), support for generic programming (using
C++’s keyword template), and complete config-
urability at a low level (by operator overloading),
making the resulting code easier to understand,
maintain and evolve.
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Fig. 1. Sierpinski tessellation of a triangle. Points
S are the edge bisection points of the original
triangle. Points T , also edge bisection points,
illustrate one further step in the refinement process.

Thanks to a change in the internal data struc-
tures and data flow layout, the allocation of memory
for intermediate results could be removed, which
was a limiting factor of the degree of parallelism.
This resulted in a speedup of factor 2.5 (for serial
execution): a test model with 235.623 triangles com-
pletes in 45s, compared to 120s for the Fortran90
version on an Intel Xeon X5365.

Parallel processing is implemented using
OpenMP instructions. This is sufficient, as the
problem resident set can be kept small enough to
fit into the main memory of small compute nodes.
The following section presents how this is achieved.

IV. ON-THE-FLY MESH GENERATION

A. Overview and requirements
A crucial factor for electrically large problem

sets is the generation of a tessellation of the
computational domain. Unfortunately, currently no
tessellation software packages are available which
feature a multi-threaded implementation and/or
the ability to deal with huge datasets. For our
typical use cases, the area to be tessellated is
huge, ranging from 6100 km2 in a basic case, to
1.4 million km2 and beyond, usually consisting of
some 100002 points. Pre-calculating a tessellation
for these areas would consume enormous amounts
of time, and possibly exhaust main memory even
on HPC platforms. For example, for the first
given case, a tessellation occupies 12 GB of hard

disk space, with 5 GB being the data relevant
to the simulation, and the rest being adjacency
information for the tessellation graph; however, this
pre-generated mesh still has a resolution that is
greater than the wavelength, and is therefore not
fine enough to yield precise results.

The original terrain data is provided as a
Digital Elevation Model (DEM), i.e., as a matrix
of values denoting a difference in radius com-
pared to a reference sphere or ellipsoid. Adjacency
relationship is implicitly available as the point’s
neighborhoods. The only preprocessing stage that
is necessary is to convert the implicit coordinates
of the DEM to explicit Cartesian coordinates; the
matrix structure, however, is retained, and therefore
also the neighborhood relationship is. This data
structure can then be used in the simulator to
generate an on-the-fly tessellation of the topography
of interest.

B. Triangle selection strategies
For the on-the-fly meshing procedure, a triangle

selection strategy has to be selected first. As
the selection strategy plays is important to the
performance of the code, it is implemented as a C++
template argument. The neighborhood relationship
of the DEM allows four possible combinations

(0,0)
(0,1)

(0,2)

(1,0)
(1,1)

(1,2)

P0,0

P1,0

P0,1

P1,1
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P0,2

Db,1

Da,2

Db,2

Da,1

Fig. 2. Triangle construction from elevation
map point set. Points P illustrate the heights at a
given matrix coordinate. The diagonals D illustrate
possible diagonals for the triangular tessellation.
Four possible selection strategies can be applied:
left-upper-right-lower (red), left-lower-right-upper
(green), or choosing the diagonal by length (shorter
or longer).
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with two general cases, as illustrated in Figure 2.
The first two cases are static: the same diagonal is
chosen for all points, by either splitting the area
into a triangle residing up left and one below right
(illustrated by the red diagonals Da), or the other
way round (illustrated by the green diagonals Db).
The remaining cases are dynamic, by choosing the
triangles based on the length of the diagonal.

After having chosen a selection strategy S, a
refinement criterion C needs to be defined. The
default setting for C = λmin = c0/fmax, i.e. the
wavelength of the highest frequency of the sweep
that is to be simulated.

C. Parallel iteration
Given the input dataset, the selection strategy

S, and a refinement criterion C, an iterator object,
denoted IS(DEM, C), is generated.

Generating and using an iterator object is
a natural choice when C++ is chosen as the
implementation language. The class describing the
iterator is implemented as a random access iterator,
allowing consistent use within the idiomatics of
C++. Since the iteration over the triangles provided
by the input data set is the outermost loop, this is
where the OpenMP instructions to parallelize the
computation are placed.

This approach has several advantages. Firstly, it
allows a single thread to work on adjacent memory
items, allowing hardware-level pre-fetching to come
into effect, thereby reducing memory latency. Using
OpenMP’s dynamic scheduling with a moderate
chunk size, load imbalance caused by triangles that
are discarded from the calculation can easily be
accounted for. Experience shows that setting the
chunk size to 5000 to 10000 works well, balancing
scheduling overhead versus parallel computation
time. Secondly, as an added benefit, this implemen-
tation is very easy to use as a (header-only) library
function, since the user only has to provide an
iterator class to feed the geometry to the simulator
core. Parallelization and infrastructure is already
taken care of.

D. Mesh refinement
Using the algorithm to calculate the back-

scattered echo for a triangle T from Section II, and

inspired by [9] a tessellation using Sierpinski trian-
gles was implemented in order to increase precision
where the original tessellation does not meet the
necessary numerical criterion C for precise simula-
tion results. The tessellation itself is implemented as
a recursive function. The following piece of pseudo-
code describes the function intertwined with the
PO method. An illustration of the tessellation is
shown in Figure 1.

Given a triangle T : (P1,P2,P3) generated by
IS(DEM, C):

Call decomposition function D(P1,P2,P3):
1) Are all edge lengths (l1, l2, l3) of T < C?

yes: Calculate back-scattered signal of T ,
return

2) Calculate edge bisection points
(S1,2,S2,3,S3,1) from P1, P2 and P3

3) Calculate D(P1,S1,2,S3,1)
4) Calculate D(S1,2,P2,S2,3)
5) Calculate D(S3,1,S2,3,P3)
6) Calculate D(S1,2,S2,3,S3,1)

E. Evaluation
This implementation has several advantages.

Firstly, generation and storage of a surface tessel-
lation can be completely omitted, removing the
primary computational bottleneck of the simulator
tool chain. The resident memory set size of the
simulator is reduced to only the pre-processed input
elevation map plus the memory to store the results,
which is another advantage. Therefore, thirdly, this
allows for a much higher degree of parallelism, as
the simulator now iterates over triangles which are
generated on-the-fly, using only the neighboring
points of the current point. Although this incurs a
small penalty in total computation time, this allows
simulation of very large radar targets.

V. COMPARISON OF RESULTS
This section is dedicated to a comparison of the

simulator in regard to computational performance
and precision. To this end, two very different
scenarios are used. For both cases, the input data
set is provided as a DEM.

Test case A represents a very large area with
generally smooth slopes, where the distance be-
tween points is large. The total number of triangles
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Fig. 3. Frequency domain signal for test case A,
with varying segmentation.

in this dataset can be calculated from the number of
points of the DEM: 120002 points yield 287952002
initial triangles.

Test case B represents a closed body, which is
smaller than the radar foot print of the simulated
antenna system for the given simulation distance.
The Cartesian distance between two points at the
object’s equator is smaller than the average distance
for test case A, while it is in the range of a few
meters at the poles. Given a DEM of 14000 by 7000
points, this results in 195958002 initial triangles.

All computation time measurements were done
with the time(1) utility. The simulations were
run on a 4x4 core Xeon E7430 system using
the Linux operating system. The compiler used
was gcc-4.5[10], compilation flags where chosen
to yield best performance, even when code size
would grow, also using the compiler’s "unsafe"
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Fig. 4. Time domain signal for test case A, with
varying segmentation.
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Fig. 5. Frequency domain signal for test case B,
with varying segmentation.

math optimizations (these optimizations may violate
the IEEE 754[11] standard by changing rounding
behavior and floating point unit error reporting; also
see [12]).

A. Precision of the simulation
As can be seen in Figures 3 and 5, for both

test case A and test case B the curves of the
simulations with segmentation disabled diverge
notably. However, for segmentations using values
smaller or equal to the wavelength, no increase in
precision is gained.

When comparing the time domain signal for
test case A shown in Figure 4, it can be seen that
the segmentation plays only a little role in the
simulation signal results, as the raw data already
yields a good result.
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Fig. 6. Time domain signal for test case B, with
varying segmentation.
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Table 1: Simulation time for test case A, with
varying segmentation

Segmentation λrel tuser [s] Increase of tuser
none n/a 178.22 n/a

λ 66.6 2389.40 13.407
λ/2 33.3 9545.24 3.994
λ/4 16.6 37964.96 3.977
λ/8 8.3 151567.09 3.992
λ/16 4.1 605593.99 3.995

However, for test case B, the distortion intro-
duced by the insufficiently fine discretization causes
phantom echoes, as shown in Figure 6. This can be
explained by the small size of the simulated object:
for a closed surface which fits into the radar foot
print and many triangles with edges that are bigger
than the wavelength, side lobes are introduced with
increasing angle of incidence. This can be seen in
Figure 5. With mesh refinement enabled, the side
lobes disappear, as do, in consequence, the phantom
echoes.

B. Computational performance
The Sierpinski refinement approach described

in Section IV has a clear disadvantage: the increase
of computation time by factor four for each level of
refinement. This can clearly be seen in Table 1. The
increase in computation time for test case A by a
factor of 13.407 between disabled segmentation and
λ refinement indicates that the original triangles are
indeed very large; implying an average of 1.8725
necessary refinement stages.

Test case B shows that for all refinement levels,
except for λ/16, the simulations run in nearly the
same computation time. For λ/16, an increase of
factor 3.3 was measured, indicating that only for
this case, a further segmentation was necessary for
a majority of the first level triangles. The minuscule
decrease of computation time between the first two
lines was probably caused by different loads on the
compute host.

The differences between the initial and refined
computation times for cases A and B can be
explained by the simulated geometries. For case A,
about 80% of the first level triangles are discarded,
since they are not within the radar footprint and
therefore do not contribute to the result. For case
B however, about 50% of the first level triangles

Table 2: Simulation time for test case B, with
varying segmentation

Segmentation λrel tuser [s] Increase of tuser
none n/a 21215.08 n/a

λ 66.6 21212.09 0.999
λ/2 33.3 21222.50 1.000
λ/4 16.6 21249.54 1.001
λ/8 8.3 22705.27 1.068
λ/16 4.1 75746.32 3.336

need to be considered for the simulation, resulting
in a higher total computation time.

VI. CONCLUSIONS AND FURTHER
WORK

A simulation tool to calculate the backscat-
tered radar echo of large dielectric surfaces was
successfully implemented. Switching to C++ as the
implementation language resulted in an immense
gain of computational performance, and also in
degrees of freedom in regard to programming and
further development of the code base. The code base
is now easier to maintain, and extensions are easier
to implement. Core code features are available as
template classes, which allow easy component re-
use and compile-time configuration, without sacri-
ficing computational performance. For example, the
iterator class was adapted for a different geometry
format. The only required changes were the loading
routines for the different format, and the iterator
itself, boiling down to 20 lines of code.

As a task for further investigation, integrating
the method described in [13] as another simulation
kernel is considered, as it may yield considerable
savings in computation time.
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