ACES JOURNAL, VOL. 27, NO. 2, FEBRUARY 2012 152

Exploiting FPGAs and GPUsfor Electromagnetics Applications:
I nterferometric |maging in Random M edia Case Study

E. ElI-Araby, O. Kilic, and V. Dang

Department of Electrical Engineering and Computer Sciences
The Catholic University of America, Washington, DC 20064, U.S.A.
aly@cua.edu, kilic@cua.edu, and 13dang@cardinalmail.cua.edu

Abstract — There is a growing need for reliable integrated package of multiprocessors, multicore
and efficient numerical methods for processors, and specialized hardware enabling
electromagnetic applications. This is important forrapid computations by exploiting the parallelism
addressing the complex designs with fine featuresf these hardware platforms. Various
on electrically large platforms. As designs becomeonfigurations and platforms exist including
more complex, a good prediction of overall systenclusters that utilize multiple CPUs (e.g., Cray),
performance becomes essential for cost reductiofCs supported by GPGPU (e.g., NVIDIA, AMD)
especially in the conceptualization stageand FPGA (e.g., Xilinx, Altera) based systems. In
Researchers have attempted to address this issile current state of the art, both GPGPU and
by developing hybrid methods based onFPGA systems use these hardware as
asymptotic techniques that can avoid thecoprocessors. Such configuration and usage is
numerical inefficiency while maintaining high typically referred to as hardware acceleration.
degrees of accuracy. Another approach is to GPGPUs have been increasingly utilized for
implement fast computational methods that utilizeaccelerated computing in numerous fields as they
parallel computing platforms. This paper focusesre readily integrated in PCs. Their main
on the latter; i.e. by investigating the use of fieldadvantages are the high memory bandwidth as
programmable gate arrays (FPGA) and generalell as the availability of multiple vendors
purpose graphics processing units (GPGPU) adeveloping commercial tools that enable high
coprocessors to parallelize numericallylevel language support. FPGAs, on the other hand,
challenging problems. The weaknesses andre highly customizable and reconfigurable chips
strengths of both platforms will be investigated inwhich can be optimally configured for a specific
the context of their ease of use, efficiency, andpplication.
potential for accelerated computations. This paper investigates these hardware
acceleration platforms for computational
Index Terms—FPGA, GPU, hardware electromagnetics applications, and is an extension
accelerated ~ computing, high performanceof the work reported earlier in [1]. The application
computing, imaging, interferometry, numericalysed for this investigation is the interferometric

methods, random media. imaging of objects behind random media. A
detailed discussion on the different architectures
. INTRODUCTION and programming environments for FPGA and

In the field of electromagnetic modeling, the GPGPU based systems is presented in Section II.
complex designs for engineered materials couplethterferometric imaging of targets behind random
with performance analysis of radio frequencymedia is chosen as the application. The details of
components integrated within their naturalthe interferometric imaging are introduced in
environment drive the need for highly efficient Section Ill. The implementation approaches on
numerical techniques. This cannot be achieved bigoth platforms are given in Section V.
conventional computer systems, but rather througPerformance analysis and metrics for evaluation

using the so-called high performance computingare presented in Section V. The experimental
(HPC) systems. HPC systems often utilize an

Submitted On: Oct. 12, 2011
Accepted On: Jan. 21, 2012

1054-4887 ' 2012 ACES

153

ACES JOURNAL, VOL. 27, NO. 2, FEBRUARY 2012

results are provided in Section VI, followed by the | o~ IN[eg PCRX, MemoryBus,ete) |
ConCIUSIOnS n SeCtlon V” I@ l Host Interface & Work Distribution
FPGA FPGA
II. HARDWARE ACCELERATION S T —

Hardware acceleration is the use of

hardware tceenable parallel processing for higher -] - A |
computation speethan is possible in software L /o) | [sebione] EEET
running on the general purpose CPU Merererseoen | [ToekmwT] |[Telediam
Examples of hardware acceleration are . rumascmon: | EcimeRER - DEETHERER
systems that includéield programmable gate s - Comfgrbie ogesiock d
arrays (FPGA) and/or general purpose graphics™ ~ e roesne FrOA subroystem
processing units (GPGPU) Fig. 1. General architecture of RC systems.

A. FPGA-based systems RC programming models

The evolution of hardware acceleration based Application development on RC systems
on reconfigurable computers (RC), such adypically requires software and hardware
FPGAs, has been progressing along twa@rogramming expertise for which design
orthogonal technology-characterizing pathsparadigms and tools have been traditionally
namely performance and flexibility. RCs evolvedseparate [1]. These products aim to abstract
from originally being discrete components usedinderlying hardware design details and streamline
mainly as glue-logic devices in larger systems tdhe disparate design flows [5]. They often tradeoff
accelerator boards and recently to paralleperformance for programmability [6]. Dataflow
reconfigurable supercomputers often referred to agdesign tools, based on the graphical user interface,
high-performance reconfigurable computerse.g., DSPLogic, seem to offer an interesting
(HPRCs). Examples of such supercomputers areompromise between high-level languages (HLLs)
the SRC-7 and SRC-6 [2], the SGI Altix’RASC and hardware description languages (HDLs), e.g.

[3] and the Cray X T pand Cray XD1 [4]. VHDL and/or Verilog. They allow a tradeoff
between a shorter development time and a
Reconfigur able computing (RC) architectures performance overhead imposed by HLLs [7].

A reconfigurable computer system typically Streamlining hardware description using HLLs
consists of microprocessor and reconfigurabldypically used in software programming, or at least
processor sub-systems closely coupled with eadlising dataflow languages, is a major and
other through a common interface. Thedistinctive feature of high performance RCs that
microprocessor sub-system includes all majopotentially allows domain scientists to develop
components of a traditional computer system SucEntire applications without relying on hardware

as general purpose MICroprocessorsgesigners. However, an HLL compiler for RCs
microprocessor memories, and /O interfaces. ORy st combine the capabilites of tools for

the other hand, a reconfigurable processor sub:, yi : At
o raditional microprocessor compilation and tools
system consists of one or more FPGAS, FPG§ P P

. . ._—for computer-aided design with FPGAs. It must
memories, and an I/O interface. A generalize Iso extend these two separate set of tools with
architecture of a reconfigurable computer is show!? P

in Fig. 1. The functionality of each Componentcapabilities for mutual synchronization and data

within the system is influenced by its transfer between microprocessors and

interconnection topology. Within a reconfigurable "€configurable processor sub-systems [8].
processor sub-system, every FPGA can be

connected to every other FPGA, or FPGAs can bB. GPGPU-based systems

grouped into clusters. FPGA memories can be Due to their powerful floating-point
shared by a group of FPGAs or each can beomputational capabilities and massively parallel
dedicated to a single FPGA. Additional hardwareprocessor architecture, GPUs are increasingly
such as a cross-bar switch, might be necessary being used as application accelerators in the high-
make connections as flexible as possible. performance computing arena. Thus, a wide range

EL-ARABY, KILIC, DANG: EXPLOITING FPGAS AND GPUS FOR EM APPLICATIONS: INTERFEROMETRIC IMAGING IN RANDOM MEDIA 154

of HPC systems now incorporate GPUs asimultaneously operating on different data sets in
hardware accelerators including systems ranginparallel. By allowing autonomous execution of
from clusters of compute nodes to parallelprocesses at independent points of the same
supercomputer systems. Several examples grogram, SPMD serves as a convenient yet
GPU-based computer clusters may be found ipowerful approach for efficiently making use of
academia, such as [9]. Latest offerings fronthe available hardware parallelism.
supercomputer vendors have begun to include Two widely used GPU programming models,
GPUs in the compute blades of their parallei.e., CUDA (by NVIDIA) and OpenCL (by Khronos
machines; examples include the SGI Altix UV andWorking Group) are similar and follow SPMD flow
the recently announced plans from Cray to includéy executing data-parallel kernel functions within
NVIDIA GPUs into the Cray XE6 supercomputer. the GPU. Both models also provide abstractions of
thread (basic unit for parallel execution) group
GPGPU architecture hierarchy and shared memory hierarchy. In terms of
Similar to an RC system, a GPGPU computethread group hierarchy, both provide three hierarchy
system typically consists of a traditional levels: grid, block, and thread. GPU kernels are
microprocessor sub-system and a GPU sub-systelaunched per grid and a grid is composed of a
closely coupled with each other through a commomumber of blocks, which have the access to the
interface. A GPU sub-system consists of a multitudglobal device memory. Each block consists of a
(texture/cluster) of processors often referred to agroup of threads, which are executed concurrently
streaming multiprocessor (SM) and GPU localand share the accesses to the on-chip shared
memory. Each SM contains a number of processanemory. Each thread is a very lightweight
cores usually called streaming processors (SP). éxecution of the kernel function. From
generalized architecture of a GPGPU computer iprogramming perspective, the programmer needs to
shown in Fig. 2. For example, the Fermiwrite the kernel program for one thread and decides
architecture, which is one of the most recent GPUhe total number of threads to be executed on the
products by NVIDIA, is composed of 16 streamingGPU device while dividing the threads into blocks
multiprocessors (SMs) each of which consists of 3based on the data-sharing pattern, memory sharing,

streaming processor (SP) cores. and architectural considerations.
\ - e —— I [11. INTERFEROMETRIC IMAGING IN
Il@, l Hostlnterface&VVork Distribution RANDOM M EDIA . .
o ® Texture/processor cluster Texture/processor cluster The earIIeSt appllcatlons Of Interferometrlc
. . = B measurements have been reported in the field of

radio astronomy [11,12]. The main advantage of
interferometry is the higher resolution achieved by

nP
memory

uP
memory

w0 1 the use of multiple antennas instead of using an
L“:‘“’AP"V““ equivalent larger antenna.
I =Interconnecton Networ An interferometric image is created using the
-X= Peripheral Component
interconnect oxtended o complex correlations of intensities obtained from
SM = Streaming Multiprocessor -
S = Streaming Processor GPU sub-system (e.g. NVIDIA) all possible pair combinations in a detector array
: : 13,14]. This is expressed as follows:
Fig. 2. General architecture of GPGPU-base(B] N(N_l)?z
systems. o.(.m= > Acospg+kul+vn)), (1)
i=1
GPGPU programming models where g: denotes the time average intensity of the

Among the different parallel programming source,{ ands correspond to the coordinates of
approaches for GPGPU platforms, the most comeach pixel in the imaggs = X,- xnand v =y, -
monly followed programming style is the single yn are thex andy baselines provided by detector
program multiple data (SPMD) model [10]. Underpairs &m,Ym) and K,,y»), Kk is the wave number,
the SPMD scenario, multiple processes executand N is the number of detectors in the array. The
the same program on different CPU coressummation is evaluated over all possible

155 ACES JOURNAL, VOL. 27, NO. 2, FEBRUARY 2012

combinations of detector pairsA and A4g each pixel can be calculated independently, this
correspond to the amplitude and phase terms of thgart of the algorithm can benefit from parallel

correlated fields for thenri" pair such thatA = implementation. Therefore, the image construction
|En E-*| and A@ = @ @. was selected as the candidate for hardware

implementation, while the rest of the algorithm is
A. Target behind random media carried out on the CPU.

Interferometric imaging has recently been
applied to targets behind random media [15], and V. HARDWARE IMPLEMENTATION
implemented on GPGPU platform [16]. A For comparison purposes, we start with a
summary of these research outcomes are presentaighly productive programming environment for
in this section. Furthermore, the same algorithm ifoth GPGPU and FPGA implementations to
implemented on an FPGA platform to gain insightbenefit from a fast learning curve. For the FPGA
into the differences in implementation on GPGPUmplementation, we employed the SRC-6 system
versus FPGA platforms. We report on how theand its proprietary Carte programming
different computer architectures are utilized in theenvironment. For the GPGPU implementation, we
implementation, and their performance levels irutilized Jacket version 1.5.0 by AccelerEyes on an
terms of speed and efficiency. NVIDIA C1060 based system. All field

Our model for interferometric imaging of calculations and image plotting are performed on
targets behind random media consists of threthe CPU. The image construction stage, which is
major building blocks: (i) field calculation at the implemented on hardware, is divided into four
detector array (includes scattered field from thestages: (i) setup of the hardware, (ii) transfer of
target and random medium), (i) imageinput parameters to the hardware, (iii) parallelized
construction, and (iii) image plotting. The field calculations, and (iv) transfer of results back to the
calculations include a direct scattering term fromCPU. The specifics of the implementation on these
the target, a direct scattering term from the medi&wo systems are discussed in the following sub-
as well as an indirect term scattered from thesections.
target to the medium before arriving at the detector
array, see Fig. 3. The scattering field calculationg\. |mplementation on FPGA
from the random media uses the distorted Born The FPGA platform employed for the
approximation following the work reported earlier,implementation is the SRC-6 scalable system
[17]. Attenuation effects are accounted for as thevhich is a cluster-based system. The SRC-6
fields travel through the random medium. system includes two MAP (multi-adaptive
processor) reconfigurable boards and each consists
of two FPGAs, which can all be programmed
simultaneously in one application. Each MAP has
24 MB of memory and the processing speed of
FPGAs is 100 MHz. SRC's proprietary Carte-C
"~ programming environment is used in the code
scattering|_® %o T~ Target(s) development [2].
..‘7%. o @ In the FPGA implementation, the image is

® o Dn’ect. L. . . '
. y/ divided into two regions and run in parallel on a

Indirect

r' Correlator
Detector Array
L
L J
/)
]
(4]
€]
°

e € single FPGA. The computations and the

e °s . | Difiuseboundaries summation given in (1) are pipelined such that the

- accumulation pipeline can start before all terms

Fig. 3. Computational steps of the model. are computed. SRC's Carte development
environment provides a relatively easy interface to

B. Paralldlization implement code on the FPGA, while allowing the

The most time consuming computation in theprogrammer some control over the data streaming
model is the image construction, which consists oéind parallelization.
the summation of correlated fields for each pair of
detectors as given in (1). Since the intensity foB.|mplementation on GPGPU

EL-ARABY, KILIC, DANG: EXPLOITING FPGAS AND GPUS FOR EM APPLICATIONS: INTERFEROMETRIC IMAGING IN RANDOM MEDIA 156

The GPGPU platform used in the Execution scenarios
implementation is a single workstation which Two scenarios were considered for hardware
consists of a 16-core 2.67 GHz Intel Xeon CPUmplementation, namely no-streaming and
with four NVIDIA Tesla C1060 graphics streaming scenarios. In the no-streaming scenario,
processors with a total 16 GB of memory and runsperations are performed in a non-overlapped
at 1.3 GHz. The workstation operates on Microsofexecution while in the streaming scenario
Windows 7 Professional, and MATLAB version operations are allowed to overlap, as shown in
7.7.0.471 (R2008b) is utilized along with JacketFigs. 5 and 6, respectively. These scenarios affect
version 1.5.0 by AccelerEyes. This version ofthe total execution time as given in (2) and (3).
Jack_et uses NVIDIA's CUDA version 3.1. The oo M= T+ Tt Torocestt Toit Tretens (2)
architecture of the system is similar to the general

architecture shown earlier in Fig. 2. o= Toeupt Tint MAX(Tyrogess Tou) + Tretease (3)
Jacket programming environment from

Accelereyes is used in the implementation. This T T T

package can be easily integrated with MATLAB T i o {de

and provides a MATLAB-like environment to

enable a fairly easy learning curve. However, this L——

comes at the expense of limited control over how T

. . . total
the data streaming and parallelization are

implemented, resulting in reduced efficiency adi9- 5. No-streaming (non-overlapped execution).
compared to that of FPGAs.
L, T T

V. PERFORMANCE ANALYSISAND ; |

METRICSFOR EVALUATION — Tou .

In our analysis, we assumed the fixed-time T
model (Gustafson’s Law) [18] and used larger accelerator
computational workloads (larger data/image size) T
while maintaining the same performance on large
configurations. Larger configurations utilize more
processing units (FPGAs or GPUs) which resu'ﬁ/letrics
in increasing the overall system utilization. Three metrics were investigated for

The image_ cons_truc_tion s composgd Of. Sperformance comparison between the two
stages as depicted in Flg. 4. The algorithm f'rsglatforms: () speedup, (i) efficiency, and (i)
sets up the parallel environment, then transfer

calability.
data from CPU memory space to accelerator The speedup is defined as the performance

memory space, processes data using accelerator)a(in by using multiple hardware processing units

]E_ran”sfersl the |mtz;]lge I(Iiatat %achk tdo the CPU an .e. GPU, FPGA) in reference to a single CPU.
inally releases the allocated hardware resourcesy.c .an pe expressed as follows:

The associated execution times for each of these TP

Ty

ease

f:ig. 6. Streaming (overlapped execution).

stages are defined as shown in Fig. 4. S(Noy) =228 (LNeu, By) , (4)
Ttotal (NPU 'NPU I%)
T,
tosa ! whereDy is the image size for a single processing

setup | Taccelerator . ITreIease

VT T, Tout !

in process

unit, and Npy is the number of processing
units. TG (LN D) is the total execution time

total

of a single CPU with image size dfyDo, and
T (Noy \Npy) is the total execution time of

total

Processing

1
1
1
1
(Accelerator #1) :
'

Image
Plotting

a1 o | { st | e [
multiple processing units with image size of
(Accelerator #n)

NpuDo.

Fig. 4. Execution model and performance metrics. 'he¢ hardware efficiency compares the
execution time measured through experiments to

157 ACES JOURNAL, VOL. 27, NO. 2, FEBRUARY 2012

the expected/theoretical performance. This isvhereNyesiS the number of pixels in the image,

expressed as: Duytes IS the number of precision bytes as before,
Th @,D,) and the bandwidthB,,; is given in Table 1.
E(Npy . Npy D))szeast(;\ll NO Q))(O")' (®) Finally, the scalability factorQ, is defined as
total PU " YPU

")) _ the normalized speedup. In other words, it is the
whereT;, (1,0,) is the theoretical total execution nerformance achieved by multiple processing units
time of a single processing unit with image sizeas compared to the performance achieved by a

Do, and T.7*(Np, ,Ns, D) is the measured total Single processing unit as given by equation (9).

otal
execution time of multiple processing units with Q(N)= S(N) (9)
image size ofNpyDy. The theoretical execution PU S(1)
time, 'I'tg:al(l,DO) is calculated using (2) or (3)
depending on the implemented execution scenario. VI. EXPERIMENTAL RESULTS
Each term in (2) and (3) is calculated as discussed The image size for a single processing unit
below. (i.,e. GPU or FPGA) is chosen & = 250,000
The setup and release times represent theixels for comparison purposes. The
system overhead associated with setting up anéhplementation for both GPU and FPGA were
releasing multiple processing units and thereforg@arallelized using up to four processing units in
they are both equal to zero for a single GPUeach system. Therefore, as the number of
However, the setup time for a single FPGA is nonprocessors was increased, proportionally more
zero, i.e. 65 ms, due to configuring the FPGA. pixels were created in the image (following
The input transfer time is the ratio of the totalGustafson’s model). A comparison is provided in
amount of input transfer dataDi, to the Fig. 7 in terms of the end-to-end computation time
bandwidth,B;,, for the input data transfer from the for each system, as well as the hardware-only
CPU’'s memory to accelerator's memory. Thetime. Figure 7 also shows the speedup of total
input data sizeD,, is calculated as: execution time of GPUs/FPGAs over the total
D,, = Nyor pairs'Ndpitri{(ﬁqor'Dbyte’ (6) execution time of a single CPU which are put in
s, parentheses next to their corresponding execution
Duytes IS the number of precision bytes, andf“mes' It is observgd for the u_nlt dat_a size
detetor - implemented on a single processing unit, GPU
Nparam 1S the number of detector parameters. The,inerforms the FPGA (speedup of 71 versus 12).
input bandwidth values are as shown in Table 1. As the image size increases, increasing the number
of FPGAs compensates for added computational

where Nyetpais 1S the number of detector pair

Table 1: Bandwidth parameters workload, and the total time remains constant.
(MB/s) B, B - ocese B However, the GPU system shows signs of
GPU 2169 61,360 1,151 decreased efficiency with increased workload
FPGA 1,415 4,800 1,260 (image size). This can be better observed if one

considers the ratio of the time it took to construct
The processing time is the ratio of the totallN® IMage on the FPGA system versus the GPU

system. It is observed that for the single
accelerator case, the GPU system is approximately
six times faster than the FPGA. As the number of
accelerators is increased (proportionally with the
pixels generated), the ratio drops to roughly two.
The output transfer time is the ratio of the totalThis is due to the higher efficiency achieved by
amount of output transfer datedo. to the the FPGA implementation as well as the faster
bandwidth for the output data transf@., from decreasing efficiency of the GPU implementation.
the accelerator's memory to the CPU’s memoryThe decreasing efficiency of the GPU is due to the
The output transfer data size is calculated by ~ overhead associated with the setup and merging of
Dout = N pixets:Diytes (8) the results before transferring the output back to

the CPU . The GPU requires more resources to be

amount of data for processin@process t0 the
processing throughpuByrocess Bprocess IS given in
Table 1 and,ocessiS calculated by equation (7):

Dprocess= N piersN det pairg Ndetector+ Npixee‘lerD byt (7)

param p

out

EL-ARABY, KILIC, DANG: EXPLOITING FPGAS AND GPUS FOR EM APPLICATIONS: INTERFEROMETRIC IMAGING IN RANDOM MEDIA

In order to investigate the scalability, we
1(33) 1,625 (43)

1,499 (23) b6 compare the speedup scale with increasing image
36311363 {1,363 size as depicted in Fig. 9. It is observed that the
{ FPGA computations when compared to GPU

1800

1600 +
1,428 (12
136Ca()1

1400
1200 +
1000

= T_GPU computations scaled more closely to the
800 |~ [mT_total (GPU) theoretical linear expectations.
600 1 | | la777h)l 2233 — mIfReA
) | = T_total (FPGA)
400 753237/7) >3 23 23 VII. CONCLUSIONS
201 While the comparison of performance in terms
0 ”(1DO,1PU) (200,26Us) (300,39Us) (400.47U5] _of executior_w time shows that the GPU base_d
implementation performs better than the FPGA, it
should be noted that the FPGA system has
Fig. 7. Total execution time. significantly more limited resources in terms of
clock speed (100 MHz vs. 1.3 GHz) and on board
memory (48 MB total vs. 16 GB total). From that
erspective, the FPGA implementation proves to

Execution time (ms)

(Image size in Pixels, Number of Processing Units (PUs))

allocated and becomes less efficient.
The system efficiency was calculated by
taking the ratio of the measured time to th

theoretically expected time for each system t € IS|gn|f|tca;_ntIy Trr;}pre_ e?ment_ t?ﬁn the G.PU
complete the calculations. The theoretical timgMpPiementation. [11is IS Shown in the comparison
(Pg the system efficiencies, where the FPGA

calculations are based on the system paramete plementation achieved about 90% efficiency as
h as the bandwidth, [d,etc. T 0
sueh as e bandwi processing speed, et pposed to the 40% observed for the GPU

efficiencies for both implementations are depicteo0 I tati it thwhil ting that th

in Fig. 8, demonstrating that despite being slowe I_\E)Cergenta lon. 1t 1S worthwhile no |rl[g I a tﬁ

than the GPUs, FPGA implementations sho arte programming environment aflows the
user flexibility in controlling the data utilization in

higher efficiency. terms of pipelining and parallelization, whereas
™ with Jacket env_ironment the user is oblivious to
o0 [87 83 a0 how the GPU is controlled. This comes at the
80 3 = expense of ease of use, as Jacket is very much like

g ég C— — MATLAB and very easy to use, while the learning
g 50 + a1 - curve ir_1 _Carte is steeper. Th_e tradeoff between

S a0 | | rrea productivity versus efficiency is one of the key
= 30 20 - - features for hardware accelerated computing on

jg 7' j 1 — these platforms. While FPGAs can be

0 - ‘ S 7 programmed to perform a specific task in a highly

(1D0,1PU) (2D0,2PUs) (3D0,3PUs) (4D0,4PUs) efficient way, they currently lack the wide

(Image size in Pixels, Number of Processing Units (PUs)) CommerCiaI Support enjoyed by GPGPUS

Fig. 8. Efficiency of FPGA vs. GPU Consequently, they require a good knowledge of
S ' ' hardware and ability to program in hardware
5 languages such as VHDL and/or Verilog to

program them most efficiently.
4

., s ACKNOWLEDGMENT
3 Pty _ The authors would like to thank Prof. Tarek
LR o oo El-Ghazawi, the founding director of the George
1.4./131/.1'56 ~+-FPGA Washington University (GWU) High Performance
1 oo .00 ' Computing Laboratory (HPCL), for making

available to us the SRC-6 system to conduct the
experimental work of this research. We would also
like to thank the HPCL team, in particular Olivier
Serres, for their help and technical support.

(1D0,1PU) (2D0,2PUs) (3D0,3PUs) (4D0,4PUs)
(Image size in Pixels, Number of Processing Units (PUs))

Fig. 9. Scalability of algorithm on FPGA vs. GPU.

158

159

[1]

(2]

(3]

[4]
[5]

[6]

[7]

(8]

(9]

[10]

[11]

[12]

ACES JOURNAL, VOL. 27, NO. 2, FEBRUARY 2012

REFERENCES [13] J. F. Frederici, D. Gray, B. Schulkin, F. Huang, H.
O. Kilic, E. El-Araby, and V. Dang, “Hardware Altan, R. Barat, and D. Zimdars, “Terahertz
Accelerated Computing for Electromagnetics Imaging Using an Interferometric ArrayAppl.
Applications,” International Workshop on Phys. Lett., vol. 83, p. 2477, 2004.
Computational Electromagnetics (CEM'11) [14] K. P. Walsh, B. Schulkin, D. Gary, J. F. Federici,
Izmir, Turkey, August 2011. R. Barat, and D. Zimdars, “Terahertz Near-Field
SRC Computers, Inc., “SRC Cadffe C Interferometric and Synthetic Aperture Imaging,”
Programming Environment v2.2(SRC-007-18), Proc. SPIEyol. 5411, p. 9, 2003.
Aug. 2006. [15] O. Kilic and A. Smith, “Imaging Through
Silicon Graphics Inc., “Reconfigurable Random Media,” European Conference on
Application-Specific Computing User's Guide,” Antennas and PropagatidituCAP),Rome, Italy,
(007-4718-005)Jan. 2007. April 2011.
Cray Inc., “Cray XDI™ FPGA Development,” [16] O. Kilic, A. Smith, E. El-Araby, and V. Dang,
(S-6400-14)2006. “Interferometric Imaging Through Random Media
E. El-Araby, M. Taher, M. Abouellail, T. El- using GPU,” The Applied Computational
Ghazawi, and G. B. Newby, “Comparative Electromagnetics SociefACES), Williamsburg,
Analysis of High Level Programming for VA, USA, April 2011.
Reconfigurable Computers: Methodology and[17] O. Kilic and R. H. Lang, “Scattering of a Pulsed
Empirical Study,” Il Southern Conference on Beam by a Random Medium Over Ground,"of
Programmable Logic (SPL20Q7Mar del Plata, Electromagnetic Waves and Applal. 15, no. 4,
Argentina, February, 2007. pp. 481-516, 2001.
O. Kilic, “FPGA Accelerated Phased Array [18] K. Hwang, and Z. Xu, “Scalable Parallel
Design using the Ant Colony Optimization,” Computing: Technology, Architecture,

Applied Comp. Electromag. Soc. Journal, Vol. 20, Programming,” McGraw-Hill, 1998.
No. 1, pp. 23-30, February 2010.

E. El-Araby, P. Nosum, and T. El-Ghazawi,
“Productivity of High-Level Languages on
Reconfigurable Computers: An HPC
Perspective,”IEEE International Conference on
Field-Programmable Technology (FPT 2007)
Japan, December, 2007.

El-Araby, S. G. Merchant, and T. EI-Ghazawi, “A) .
Framework for Evaluating High-Level Design and_Compqter E_nglneerlng frpm
Methodologies for High-Performance Re- Assiut University, Egypt, in
configurable Computers,JEEE Trans. Parallel 1991 and 1997, respectively. He
Distrib. Syst.yol. 22, pp. 33-45, Jan. 2011. received his M.Sc. and Ph.D. degrees in Computer
V. V. Kindratenko, J. J. Enos, G. Shi, M. T. Engineering from the George Washington
Showerman, G. W. Arnold, J. E. Stone, J. C.University (GWU), USA, in 2005 and 2010,
Phillips, and W. Hwu, “GPU Clusters for High- respectively. Dr. El-Araby joined the Catholic
Performance Computing,Proc. Workshop on ynjversity of America (CUA) as an Assistant
Parallel Programming on Accelerator Clusters Professor in the Department of Electrical
2009 ngineering and Computer Science in 2010. He is

F. Darema, “The SPMD Model: Past, Present an he f d d direct f the Het d
Future,” Proc. 8th European PVM/MPI Users' € founaer and diréctor of thé Relerogeneous an

Group Meeting on Recent Advances in ParallelBiologically-inspired Architectures (HEBA)
Virtual Machine and Message Passing interface,laboratory at CUA. Prior to that, he worked at the
Lecture Notes In Computer Science, vol. High Performance Computing Laboratory (HPCL)
2131/2001, pp. 1, Sept. 2001. at GWU as well as the NSF Center for High-
M. Ryle, “A New Radio Interferometer and Its Performance Reconfigurable Computing (NSF-
Applications to the Observation of Weak Radio CHREC). His research interests include computer
Stars,”Proc. Roy. Soc. London Ser. Vol. 211, architecture, hybrid/heterogeneous architectures,
Pp. 351-375, 1952. oo hardware acceleration, reconfigurable computing,
R.N. Bracewell, “Radio Interferometry of embedded systems, evolvable hardware,
Discrete SourcesProc. IRE,vol. 46, pp. 97-105,
1958. performance evaluation, and digital signal/image
processing and remote sensing.

Dr. Esam El-Araby received

his B.Sc. degree in Electronics
and Telecommunications
Engineering and his M.Sc.
degree in Automatic Control

EL-ARABY, KILIC, DANG: EXPLOITING FPGAS AND GPUS FOR EM APPLICATIONS: INTERFEROMETRIC IMAGING IN RANDOM MEDIA 160

Dr. Ozlem Kilic joined the communications systems, and microwave remote
Caholic University of America sensing.
as an Assistant Professor in the
Department of Electrical
Engineering and Computer
Science in 2005. Prior to that, Telecommunications
she was an Electronics Engineer & Engineering from the Posts and
at the U.S. Army Research Laboratory, Adelphi as‘ Telecommunications Institute
!

Vinh Dang received his B.Sc.
degree in Electronics and

MD where she managed Small Business of Technology, Vietnam, in
Innovative Research (SBIR) Programs for the 2003. He received his M.Eng.
development of hybrid numerical electromagnetic degree in Electrical
tools to analyze and design electrically largeEngineering from the University of Technology,
structures, such as the Rotman lens. She has algeéetnam, in 2006. He is currently a Ph.D.
designed, fabricated and tested various prototypesandidate at the Department of Electrical
Dr. Kilic has over five years of industry Engineering and Computer Science, the Catholic
experience at COMSAT Laboratories as a Seniotniversity of America (CUA), USA. During the
Engineer and Program Manager withperiod from 2008 to 2010, he was a Lecturer at the
specialization in satellite communications, linkSchool of Electrical Engineering, International
modeling and analysis, and modeling, design antdniversity, Vietnam. Since 2010, he has been a
test of phased arrays and reflector antennas f@esearch Assistant in the Department of Electrical
satellite communications system. Her researclkngineering and Computer Science at CUA. His
interests include numerical electromagneticsgurrent research interests include high
antennas, wave propagation, satelliteperformance computing, embedded systems,
biomedical image processing, and remote sensing.

