
Rigorous Analysis of Double-Negative Materials with the Multilevel
Fast Multipole Algorithm
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Abstract — We present rigorous analysis
of double-negative materials (DNMs) with
surface integral equations and the multilevel fast
multipole algorithm (MLFMA). Accuracy and
efficiency of numerical solutions are investigated
when DNMs are formulated with two recently
developed formulations, i.e., the combined
tangential formulation (CTF) and the electric
and magnetic current combined-field integral
equation (JMCFIE). Simulation results on
canonical objects are consistent with previous
results in the literature on ordinary objects.
MLFMA is also parallelized to solve extremely
large electromagnetics problems involving DNMs.

Index Terms — Double-negative materials,
metamaterials, multilevel fast multipole algorithm,
surface integral equations.

I. INTRODUCTION

Double-negative materials (DNMs) are com-
monly used as simplified models of metamate-
rials at resonance frequencies [1]. Specifically, a
metamaterial structure at a resonance frequency
can be modeled (homogenized [2]) as a homo-
geneous object with negative permittivity and
permeability. Using the equivalence principle, a
DNM can be formulated with surface integral
equations, which can be discretized and solved nu-
merically. Recently, various surface formulations,

such as the Poggio-Miller-Chang-Harrington-Wu-
Tsai (PMCHWT) formulation [3], the Müller for-
mulation [4], and the electric and magnetic current
combined-field integral equation (JMCFIE) [5],
have been used to analyze DNMs [6],[7]. It has
been shown that homogenization can provide fast
analysis of metamaterial structures before their
detailed analysis via full-wave solvers [8].

Although electromagnetics problems obtained
via homogenization are relatively easy compared
to the original problems, their efficient solutions
may not be trivial. Surface integral equations re-
quire only the discretization of boundaries, but the
resulting matrix equations can be very large be-
cause realistic metamaterials are usually large with
respect to wavelength. Hence, fast and efficient
methods, such as the multilevel fast multipole
algorithm (MLFMA) [9]–[13], are required for
the solution of large metamaterial problems, even
when they are homogenized. Applying MLFMA
to homogeneous materials, including DNMs, is
straightforward, but the number of iterations must
be small for efficient solutions, and thus the choice
of the surface formulation is critical for efficient
solutions.

In this paper, we present iterative solutions of
DNMs using MLFMA. Problems are formulated
with two recently developed formulations, namely,
the combined tangential formulation (CTF) [14]
and JMCFIE [5], and discretized with the Rao-
Wilton-Glisson (RWG) functions [15]. Accuracy
and efficiency of numerical solutions are investi-
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gated on canonical problems involving the sphere
geometry. We show that the conventional JMC-
FIE (with α = 0.5 combination parameter) pro-
vides efficient solutions but relatively inaccurate
results. In addition, accuracy of simulations can
significantly be improved using CTF, instead of
JMCFIE. These observations are consistent with
earlier results obtained for ordinary materials [16].
We also show that the combination parameter of
JMCFIE can be increased towards unity to im-
prove the accuracy of JMCFIE, without sacrificing
the efficiency. Finally, MLFMA is parallelized
using the hierarchical partitioning strategy [17]
to solve very large problems involving DNMs.
The resulting implementation based on JMCFIE
(with high combination parameter) and parallel
MLFMA seems to be a suitable solver for the fast
and accurate analysis of DNMs.

II. NUMERICAL SOLUTIONS OF
SURFACE FORMULATIONS

For homogeneous penetrable objects, discretiza-
tions of surface formulations lead to 2N × 2N
dense matrix equations in the form of[

Z̄
(11)

Z̄
(12)

Z̄
(21)

Z̄
(22)

]
·
[
x
y

]
=

[
v(1)

v(2)

]
. (1)

Using JMCFIE and a Galerkin discretization,

Z̄
(ab)

[m,n] =

∫
Sm

drtm(r) · Z(ab){bn}(r) (2)

for a = 1, 2 and b = 1, 2, where tm and bn
represent the testing and basis functions with
spatial supports of Sm and Sn, respectively, for
m,n = 1, 2, . . . , N . The combined operators are
defined as

Z(11) = Z(22) = −αn̂× n̂× (To + Ti)
+ (1− α)n̂× (Ko −Ki)− (1− α)I (3)

Z(12) = (1− α)n̂× (η−1o To − η−1i Ti)
+ αn̂× n̂× (η−1o Ko + η−1i Ki)

− 1

2
α(η−1o − η−1i )n̂× I (4)

Z(21) = −(1− α)n̂× (ηoTo − ηiTi)
− αn̂× n̂× (ηoKo + ηiKi)

+
1

2
α(ηo − ηi)n̂× I, (5)

where α ∈ [0, 1] is the combination parameter, n̂
is the unit normal vector at the observation point
r, and ηu =

√
µu/
√
εu is the wave impedance in

the outer (u = o) and inner (u = i) media. The
integro-differential operators are defined as

Tu{bn}(r) =
i

ku

∫
Sn

dr′∇′ · bn(r′)∇gu(r, r′)

+ iku

∫
Sn

dr′bn(r′)gu(r, r′) (6)

Ku{bn}(r) =

∫
PV,Sn

dr′bn(r′)×∇′gu(r, r′), (7)

where PV indicates the principal value of the
integral, ku = ω

√
εu
√
µu is the wavenumber, and

gu(r, r′) =
exp(iku|r − r′|)

4π|r − r′|
(8)

denotes the homogeneous-space Green’s function
in the phasor domain using the e−iωt time depen-
dence. The elements of the right-hand-side vectors
in (1) are derived similarly as

v(a)m =

∫
Sm

drtm(r) ·ψ(a)(r) (9)

for a = 1, 2, where

ψ(1)(r) = −(1− α)n̂×H inc(r)

+ αη−1o n̂× n̂×Einc(r) (10)

ψ(2)(r) = (1− α)n̂×Einc(r)

+ αηon̂× n̂×H inc(r). (11)

In (10) and (11), Einc and H inc represent the
incident electric and magnetic fields created by
external sources located in the outer medium.

JMCFIE is a mixed formulation involving
directly and rotationally tested electromagnetic
fields. Using a Galerkin discretization (using the
same set of the RWG functions as the basis and
testing functions), JMCFIE involves a well-tested
identity operator, i.e.,

Īmn =

∫
Sm

drtm(r) · bn(r)

=

∫
Sm

drtm(r) ·
∫
Sn

δ(r, r′)bn(r′), (12)

which is a major error source for low-order dis-
cretizations [18]. CTF can be seen as a special
case of JMCFIE and it is obtained by setting
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α = 1 in (3)–(5), (10), and (11). Note that well-
tested identity operators disappear in CTF; this
explains why it is more accurate than JMCFIE.

Employing the conventional formulations, such
as PMCHWT and JMCFIE, for DNMs is exten-
sively discussed in [6],[7]. Using ku = ω

√
εu
√
µu

and ηu =
√
µu/
√
εu leads to negative wavenum-

ber and positive wave impedance when the per-
mittivity (εu) and permeability (µu) are negative.
In order to construct a tree structure for a DNM,
we use the absolute value of ku in the excess
bandwidth formula, i.e.,

τl,u ≈ 1.73|ku|al + 2.16(d0)
2/3(|ku|al)1/3, (13)

to determine truncation numbers τl,u and samples
on the unit sphere. In (13), al is the box size at
level l and d0 is the number of accurate digits for
the far-field interactions.

III. NUMERICAL RESULTS
In order to test the accuracy and efficiency

of solutions of DNMs with MLFMA, we con-
sider increasingly large scattering problems in-
volving a sphere of radius 0.3 m. The object is
located in free space and illuminated by plane
waves at various frequencies. Problems are for-
mulated with CTF and JMCFIE and discretized
with the RWG functions on λo/10 triangles, where
λo is the wavelength in the host medium (free
space). Both near-field and far-field interactions
are calculated with maximum 1% error. Solutions
are performed using the biconjugate-gradient-
stabilized (BiCGStab) algorithm [19] accelerated
with MLFMA. Iterative convergences are also
accelerated with the four-partition block-diagonal
preconditioner (4PBDP) [16] for the conventional
JMCFIE (α = 0.5).

Fig. 1 presents the solution of a small scattering
problem involving a sphere of radius 0.3 m at
500 MHz. Both the relative permittivity and per-
meability of the sphere are selected as −2.0. The
sphere is illuminated by a plane wave from the top
and the problem is formulated with CTF. For nu-
merical solutions, the problem is discretized with
1860 unknowns. Fig. 1 depicts the total electric
field in the vicinity of the sphere on the E-plane
for the inner and outer problems. The maximum
electric field value is normalized to 0 dB. For
the inner/outer problem, the equivalent currents
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Fig. 1. Solution of a scattering problem involving
a sphere of radius 0.3 m at 500 MHz. Both the
relative permittivity and permeability of the sphere
are −2.0.
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Fig. 2. Solutions of a scattering problem in-
volving a sphere of radius 0.3 m at 3 GHz. The
relative permittivity and permeability of the sphere
are −4.0 and −1.0, respectively.

provided by MLFMA are allowed to radiate into a
homogeneous space with the electrical parameters
of the inner/outer medium assumed everywhere.
Hence, for the inner/outer problem, any radiation
outside/inside the sphere can be interpreted as
numerical error. It can be observed that these
unwanted radiations are below −20 dB, verifying
the high accuracy of the solution. As also depicted
in Fig. 1, the complete plot can be obtained by
superimposing the plots for the inner and outer
problems. It is remarkable that field values become
maximum in the upper part of the sphere as a
result of the negative refractive index of the object.

Fig. 2 presents the solution of a scattering
problem involving a sphere of radius 0.3 m at
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Fig. 3. The relative error and the number
of BiCGStab iterations (for 10−3 residual error)
required in numerical solutions of scattering prob-
lems involving a sphere of radius 0.3 m at 3 GHz.

3 GHz. In this problem, the relative permittiv-
ity and permeability of the sphere are selected
as −4.0 and −1.0, respectively. For numerical
solutions, the problem is discretized with 65,724
unknowns. Fig. 2 depicts the radar cross sec-
tion (RCS) on the E-plane as a function of the
bistatic observation angle from 0◦ to 180◦, where
0◦ and 180◦ correspond to the forward-scattering
and backscattering directions, respectively. Com-
putational values obtained with CTF, the conven-
tional JMCFIE (α = 0.5), and JMCFIE with
a high combination parameter (α = 0.9) are
compared to the analytical Mie-series results. It
can be observed that CTF results agree very well
with the analytical results. However, the same
level of accuracy is not obtained with the con-
ventional JMCFIE. In addition, as also depicted
in Fig. 2, increasing the combination parameter to
0.9 significantly improves the accuracy.

For a more quantitative comparison of the for-
mulations, Fig. 3 presents the results of scattering
problems involving a sphere with different mate-
rial properties. A sphere of radius 0.3 m is again
investigated at 3 GHz and discretized with 65,724
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Fig. 4. Solution of a scattering problem involving
a sphere of 0.3 m at 40 GHz. The relative permit-
tivity and permeability of the sphere are −2.0 and
−1.6, respectively.

unknowns. The first plot of Fig. 3 depicts the
relative error in the far-zone electric field obtained
with different formulations. To find the relative
error, the co-polar electric field in the far-zone on
the E-plane is sampled at π/360 intervals, i.e., we
compute

f [n] = lim
r→∞
{rEϕ(r, ϕ[n])}, (14)

where ϕ[n] = (n−1)π/360 for n = 1, 2, . . . , 361.
Then, the error is defined as

∆ =
‖fC − fA‖
‖fA‖

, (15)

where ‖ · ‖ represents the 2-norm and fC and
fA are vectors of 361 elements containing the
computational and analytical values, respectively.
It can be observed that the relative error for the
conventional JMCFIE (α = 0.5) is generally
higher than 1%, which may not be acceptable. As
also shown in the same plot, the accuracy is signif-
icantly improved by using CTF or increasing the
amount of CTF in JMCFIE, i.e., using JMCFIE
with α = 0.9, instead of the conventional JMC-
FIE. As complementary data, the second plot of
Fig. 3 depicts the number of BiCGStab iterations
for 0.001 residual error. Iterative solutions of the
conventional JMCFIE (α = 0.5) are accelerated
with 4PBDP; but this preconditioner is not useful
for CTF and JMCFIE with α = 0.9. It can be
observed that JMCFIE (both with α = 0.5 and
with α = 0.9) provides very efficient solutions,
compared to CTF. Considering the results in both
plots of Fig. 3, JMCFIE with α = 0.9 seems to be
a good choice for efficient and accurate solutions.

Finally, Fig. 4 presents the solution of a large
scattering problem involving a sphere of radius
0.3 m at 40 GHz. The relative permittivity and per-
meability of the sphere are −2.0 and −1.6, respec-
tively. The problem is formulated with JMCFIE
using α = 0.9 and discretized with 11,702,832 un-
knowns. MLFMA is parallelized into 64 processes
on a cluster of Intel Xeon Nehalem quad-core
processors with 2.80 GHz clock rate. The total
time including the setup and 176 iterations (for
0.005 residual error) is approximately 10 hours.
Fig. 4 depicts the bistatic RCS values on the z-x
plane as a function of the bistatic angle θ from 0◦

to 180◦. RCS values around the forward-scattering
(0◦) and backscattering (180◦) directions are also
focused in separate plots. It can be observed
that the computational values obtained by using
JMCFIE and parallel MLFMA agree very well
with the analytical results. For this large-scale
problem, the relative error in (15) is found to be
0.21%.
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IV. CONCLUSIONS
This paper presents the analysis of DNMs with

surface integral equations and MLFMA. Numer-
ical results obtained with conventional formula-
tions are in agreement with previous results ob-
tained for ordinary materials. Numerical exper-
iments on canonical objects show that JMCFIE
with α = 0.9 is a good choice for efficient and
accurate solutions.
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Levent Gürel (Fellow of
ACES, IEEE, and EMA) is the
Director of the Computational
Electromagnetics Research
Center (BiLCEM) at Bilkent
University, Ankara, Turkey. He
received the B.Sc. degree from
the Middle East Technical
University (METU), Ankara,

Turkey, in 1986, and the M.S. and Ph.D.
degrees from the University of Illinois at
Urbana-Champaign (UIUC) in 1988 and
1991, respectively, in electrical and computer
engineering. He joined the IBM Thomas J.
Watson Research Center, Yorktown Heights, New
York, in 1991, where he worked as a Research
Staff Member. Since 1994, he has been a faculty
member in the Department of Electrical and
Electronics Engineering of the Bilkent University,
Ankara, where he is currently a Professor. He
was a Visiting Associate Professor at the Center
for Computational Electromagnetics (CCEM) of
the UIUC for one semester in 1997. He returned
to the UIUC as a Visiting Professor in 2003–
2005, and as an Adjunct Professor for several
years after 2005. He founded the Computational
Electromagnetics Research Center (BiLCEM)
at Bilkent University in 2005. Prof. Gürel’s
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