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Abstract – Surface integral equation (SIE) 
approaches for the accurate solution of different 
problems in computational electromagnetics are 
addressed. First, an efficient message passing 
interface (MPI)/OpenMP parallel implementation 
of the multilevel fast multipole algorithm-fast 
Fourier transform (MLFMA-FFT) is presented for 
the solution of large-scale conducting bodies. By 
combining the high scalability of the fast 
multipole method-FFT (FMM-FFT) with the high 
efficiency of MLFMA, challenging problems up to 
one billion unknowns are solved using a parallel 
supercomputer. Second, looking for the extension 
of these rigorous approaches to new demanded 
areas, the SIE method is successfully applied to 
the solution of left-handed metamaterials and 
plasmonic nanostructures. Numerical examples are 
presented to confirm the validity and versatility of 
this approach for the accurate resolution of 
problems in the context of leading-edge 
nanoscience and nanotechnology applications.  
  
Index Terms ─ Fast multipole methods, 
metamaterials, method of moments, parallel 
programming, plasmonics, supercomputing, 
surface integral equations.  
 

I. INTRODUCTION 
The rigorous solution of radiation and 

scattering problems using surface-integral-
equation (SIE) formulations has commanded a 
great attention in computational electromagnetics 
for a long time. Integral-equation techniques, such 

as the method of moments (MoM) [1], provide 
accurate results when the surfaces of the problem 
are properly discretized in terms of the 
wavelength. Usually, the well-known Rao-Wilton-
Glisson (RWG) [2] basis functions defined over 
planar triangles are applied to expand the 
unknown surface current density. 

In the case of electromagnetic problems 
involving large-scale conducting bodies, the fast 
multipole method (FMM) [3] and its multilevel 
version, the multilevel fast multipole algorithm 
(MLFMA) [4, 5], are commonly applied in the 
framework of the iterative solution of the MoM 
matrix system. The development of these fast (low 
computational cost) algorithms has gone hand in 
hand with the constant advances in computer 
science and technology. 

Because of this simultaneous growth, the new 
methods must be not only fast, efficient and with 
low complexity, but they also must be able to 
benefit from the computational capabilities of 
current high performance computing (HPC) 
computers and supercomputers. As a consequence, 
a great attention was focused on the parallelization 
of MLFMA over shared, distributed, and mixed 
memory computers. Important advances were 
achieved in this regard; see among others [6-14]. 

Another numerical technique that has gained 
interest in recent years, due to its natural high 
scalability propensity, is the FMM-fast Fourier 
transform (FMM-FFT) [15-17]. Using hybrid 
message passing interface (MPI)/OpenMP parallel 
implementations of this algorithm and other 
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proposed variants (such as nested FMM-FFT and 
MLFMA-FFT), the authors have demonstrated 
that this approach constitutes a good alternative to 
benefit from massively parallel distributed 
computers,  achieving the solution of problems 
with more than 150, 620, and 1000 million 
unknowns [17-19].  

Up to now, we have been able to analyze very 
large electromagnetic problems in high-frequency 
ranges, even reaching the terahertz (THz) region 
[19]. But growing up in frequency is not only a 
matter of increasing the number of unknowns. We 
must reformulate our codes in order to be able to 
extend their scope of application to emerging 
fields and areas, such as nanoscience and 
nanotechnology. In this context, the research in the 
optical plasmonic properties of metallic 
nanoparticles and artificial materials 
(metamaterials) has generated an increasing 
interest, due to their ability to route and 
manipulate light at nanometer length scale 
surpassing the classical diffraction limit. 

The optical response of metals is quite 
different from the metallic conductivity observed 
at low frequencies. At optical frequencies the 
penetration of fields can no longer be neglected 
and the plasmonic optical properties of metals 
make it impossible to directly downscale the 
radio-frequency and microwave solutions. 
Otherwise, by properly engineering the underlying 
subunits, metamaterials can exhibit exotic optical 
properties that are not attainable in naturally 
occurring materials, such as prominent magnetic 
response or negative index of refraction. To date, 
the most common way to rigorously accomplish 
the resolution of such problems has been the use 
of differential-equation formulations. 

Although not yet widespread in optics, the 
MoM integral-equation approach could bring 
important advantages for the analysis of 
homogeneous or piecewise homogeneous 
plasmonic and/or metamaterial bodies. According 
to this research interest, our recent efforts were 
headed to extend the SIE-MoM approach to the 
analysis of composite piecewise homogeneous 
metamaterial and plasmonic objects. So, in [20], 
we successfully applied this formulation to the 
solution of homogenized left-handed 
metamaterials. More recently, we generalized this 
approach to the simulation of arbitrary 
configurations of composite plasmonic 

nanoparticles in [21]. From these previous works, 
it is clear that the SIE-MoM approach can yield 
very efficient and highly accurate representations 
of these new electromagnetic problems, taking 
into account all the physical constraints as 
determined by the shape and the complex 
dielectric constants of the particles. 

In this paper, we first make a review of the 
latter method we have proposed for the 
electromagnetic analysis of large-scale conducting 
bodies using the SIE formulation, namely, 
MLFMA-FFT. Then, we focus on the works we 
are doing presently to extend these techniques to 
the analysis of non-conventional (generalized) 
media, such as the left-handed metamaterials and 
plasmonic nanoparticles at optical frequencies. 
 

II. MLFMA-FFT FOR THE ANALYSIS 
OF LARGE-SCALE CONDUCTING 

BODIES 
The aim of MLFMA-FFT is to combine the 

best of MLFMA and FMM-FFT to obtain a highly 
scalable method with low computational cost, 
which is suitable to take advantage of existing 
HPC computers. Initially, the algorithm requires a 
multilevel octree decomposition of the geometry. 
The far-field interactions are obtained at the 
coarsest level of the geometry partition using a 
global distributed FMM-FFT algorithm [18]. A 
parallelization strategy based on the distribution of 
fields, by distributing the k-space samples among 
nodes, has been considered for this stage. 
Regarding the near-field contributions, they are 
obtained at the finer levels of the octree by using 
one or more local executions of MLFMA defined 
inside each shared-memory computing node. 

For the parallel implementation, we have 
selected a hybrid parallel programming combining 
MPI with the OpenMP standard, which fits 
perfectly with mixed-memory computer systems. 
Thus, the parallel MLFMA-FFT approach 
provides a significant reduction of the 
computational complexity while maintaining a 
high scalability behavior for the solution of 
extremely large problems using supercomputers. 

The main difference of MLFMA-FFT with 
regard to the original FMM-FFT algorithm is 
given by the procedure used for dealing with the 
near couplings. In the MLFMA-FFT method, this 
task is performed by MLFMA. The partition of 
work is based on a distribution by octree groups at 
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the coarsest level. This distribution is propagated 
downward to the finest level. The partial near 
contributions to the matrix-vector product (MVP) 
are then computed by several MLFMAs defined 
over the finer levels (from the finest to one before 
the coarsest) operating strictly inside each shared-
memory computing node. In this way, MLFMA is 
never distributed among nodes, but it is only 
applied in shared-memory computations (so it 
does not suffer from poor parallel scaling). 

 

 
Fig. 1. MLFMA-FFT parallel algorithm. 

 
Figure 1 illustrates the parallel operation of 

MLFMA-FFT. Let us define parameters K, N, M,  
and n as the number of k-space samples, the total 
number of unknowns of the problem, the number 
of non-empty groups, and the number of nodes, 
respectively. The subscripts c and f are added to 
indicate the coarsest and finest levels, respectively. 
It can be observed in the figure that MLFMA work 
in levels comprised between the finest and the 
preceding to the coarsest one. The near coupling 
contributions to the MVP at the coarsest level are 
computed at the finer levels by MLFMA inside 
each node. After the required interpolation of the 
outcoming fields to the coarsest level, each node 
has the complete set of directions, Kc, for its 
assigned Mc/n observation groups. At this point, an 
all-to-all communication is performed in order to 
obtain the partial Kc/n samples assigned to each 
node for all the Mc groups at the coarsest level. 
This switches from the group-driven distribution 
to the field-driven distribution. 

The required inter-node communications are 
efficiently carried out during the MVP in a single 

step by using the asymmetric MPI::Alltoallw 
operation. The Alltoallw high-level command 
makes possible to carry out all the required 
communications without latency periods or 
explicit synchronization because of the efficient 
management provided by the MPI library (we are 
using the 2.3 version of HP-MPI). 

When the 3D-FFT translation is done, the 
complementary all-to-all communication allows 
switching back to the group-driven distribution at 
the lower levels. After that, each node will have 
the complete Kc  directions of the  incoming fields 
for its Mc/n assigned observation boxes at the 
coarsest level. Starting from this level, these fields 
are recursively anterpolated, shifted, and 
combined at the centers of their child groups at the 
next lower level. Then, the collected incoming 
pattern of every observation group at the finest 
level is shifted and evaluated at each belonging 
testing function, hence providing the far 
contribution to the MVP for the set of Mc/n 
observation groups assigned to that node. As for 
the aggregation and interpolation stage, all the 
computations are efficiently performed inside each 
node without inter-node communications. 

 
A. Numerical example 

The NASA Almond is analyzed at a frequency 
of 3 THz with our parallel implementation of the 
MLFMA-FFT algorithm.  

The electric-field integral equation (EFIE), the 
RWG basis functions, and the Galerkin testing 
procedure are used. No preconditioning is applied. 
An incident plane with horizontal polarization 
wave impinging on the back side of the Almond 
target is considered, as shown in the inset of 
Fig. 2. The analysis was done in the Finis Terrae 
supercomputer, consisting of 142 cc-NUMA HP 
Integrity rx7640 with 8 dual core Intel Itanium2 
Montvale processors at 1.6 GHz with 18 MB L3 
cache and 128 GB of memory each one. The nodes 
are interconnected through a high efficiency 
Infiniband network (4xDDR), and the operating 
system is Linux SLES 10. The solution of the 
1,042,977,546 unknowns matrix system required 
the use of 64 nodes (involving a total of 1,024 
processors) and 5 TB of memory. The setup time 
was about 105 minutes, while the iterative solution 
took less than 33 hours to attain a residual error of 
0.023 (a total of 8 external GMRES iterations with 
restart 80 were required). The bistatic radar cross 

191 ACES JOURNAL, VOL. 27, NO. 2, FEBRUARY 2012



section (RCS) of the Almond is shown in Fig. 2. 

 

 
Fig. 2. Bistatic RCS of the NASA Almond target 
at a frequency of 3 THz. 

 
III. SIE-MoM FOR LEFT-HANDED 

PLASMONIC MEDIA 
When dealing with homogeneous dielectric 

materials, it is usual to consider the combination 
of normal (N-EFIE, N-MFIE) and tangential (T-
EFIE, T-MFIE) equations derived from the 
boundary conditions imposed separately to the 
electric and magnetic fields. Among the multiple 
possibilities of combination, the following one is 
proven to be a stable proposal [22, 23]:  
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In equation (1), lη is the intrinsic impedance in 
medium 1R  ( 1R  and 2R  are the exterior and 
interior regions of the material, respectively). 
Different known formulations can be obtained 
depending on the selection of the complex 
combination parameters la , lb , lc  and ld , as 
shown in Table 1. 

To extend the MoM formulation to the 
solution of piecewise homogeneous metamaterial 
and plasmonic penetrable objects we have opted to 
use the same formulation. Concretely, we 
concerned ourselves with the formulations known 
as Poggio-Miller-Chang-Harrington-Wu-Tsai 
(PMCHWT) [24], combined tangential 

formulation (CTF) and combined normal 
formulation (CNF) [22], and the electric and 
magnetic current combined field integral equation 
(JMCFIE) [25]. PMCHWT and CTF combine 
tangential equations, CNF combines normal 
equations, while JMCFIE is the more general 
formulation combining both tangential and normal 
equations. For the discretization of the surface 
electric and magnetic currents, we opted again to 
use the RWG basis functions, as in the case of 
perfectly conducting bodies. Accurate calculation 
of the integrals involved in the evaluation of 
expressions in (1) using the RWG functions is 
crucial for the precision of the method. We have 
applied Gaussian quadrature rules for the 
numerical integration of smooth varying 
integrands, together with the analytical extraction 
procedures of [26-28] for the accurate evaluation 
of singular integrals. 
 
Table 1: Combining parameters for different 
penetrable media formulations 
Formulation al bl cl dl 
PMCHWT ηl 0 0 1/ηl 
CTF 1 0 0 1 
CNF 0 1 1 0 
JMCFIE 1 1 1 1 

 
On the other hand, for the application of the 

above described formulation to the analysis of left-
handed materials (LHM) and plasmonic 
nanoparticles, special care must be taken with the 
definition of the electromagnetic parameters and 
properties of the material. Concretely, if region 
defines a penetrable homogenized left LHM or a 
plasmonic particle, the following definitions 
should be applied for the wavenumber and the 
intrinsic impedance: 

 

 ,l l lk ω µ ε=  (2) 

 .l
l

l

µ
η

ε
=  (3) 

 
A. Numerical examples 

We include in this section some examples to 
provide a verification of the validity and efficiency 
of the SIE-MoM approach for the solution of 
LHM and plasmonic nanostructures. All of them 
have been solved by matrix factorization. The first 

192TABOADA, ET. AL.: SURFACE IE SOLVERS FOR CONDUCTORS, METAMATERIALS AND PLASMONIC NANOSTRUCTURES



one consists of the simulation of the Snell law 
experiment for a LHM to demonstrate the negative 
angle of refraction. A three-dimensional (3-D) 
prism was considered being 10λ0 high, 10λ0 wide, 
and 4λ0 deep in the largest dimension, with λ0 the 
wavelength of the surrounding free-space medium. 
The prism is made of LHM with εr = -1 and µr = -
1 (so it is impedance matched to the surrounding 
space.) The angle of the second surface is 8º. An 
almost flat Gaussian beam, with a total angular 
spread of 25º and the waist at a distance of 5λ0 
away is orthogonally impinging onto the first 
surface of the prism from the right hand side. The 
incident electric field is horizontally polarized. 

 

 
Fig. 3. (a) Incident flat Gaussian beam negatively 
refracted by impedance matched 3D LHM prism. 
(b) Conventional refraction from a prism made of 
Teflon. 

 
Figure 3 (a) shows the computed electric field 

intensity for the experiment described above 
considering a refraction index of n = -1 for the 
LHM comprised prism. The problem was solved 
with the JMCFIE SIE-MoM formulation using 
40,770 unknowns for the equivalent electric and 
magnetic currents induced on the surfaces of the 
prism. For the sake of comparison, Fig. 3 (b) 

shows the same above experiment repeated for a 
prism made up of conventional material (we have 
considered Teflon, with εr  = 2.2). In this case, the 
refraction is obtained in the conventional 
direction. 

 

 
Fig. 4. Directivity of the Yagi-Uda antenna of [30] 
in dBi for a near-field coupled Hertzian dipole 
emitter: (left) H-plane ; (right) E-plane. 

 
Fig. 5. Near-electric-field (V/m) distribution in the 
vertical and horizontal planes crossing the Yagi-
Uda antenna. Dimensions are in hundreds of 
nanometers. 
 

A thorough comparison of the accuracy of the 
usual formulations for problems involving LHMs 
was presented by the authors in [29]. 

In order to show the applicability of the 
method for general 3-D plasmonic nanostructures, 
the Yagi-Uda optical antenna designed in [30] has 
been analyzed with the JMCFIE SIE-MoM  
formulation. The antenna consists of five 
cylindrical elements made of aluminum, with 
radius 20 nm and terminated with hemispherical 
ends. It was optimized for an operating 
wavelength of λ0  = 570 nm (in which the relative 
permittivity constant of aluminum is εr = -38-10.9j 
and the relative permeability is µr = 1). See [20] 

H-plane E-plane 
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and [30] for further details of the geometry. The 
antenna was analyzed using a total of 9,036 basis 
functions to represent the equivalent electric and 
magnetic currents on the surfaces of the 
nanodipoles. The computed directivity in the H- 
and E-planes for a near-field coupled Hertzian 
dipole emitter is depicted in Fig. 4. An excellent 
agreement with the results of [30] can be 
observed. Finally, Fig. 5 shows the near-electric-
field distribution in the vertical and horizontal 
planes crossing the antenna for the Hertzian dipole 
excitation.  

 
IV. CONCLUSION 

In this work, we present some rigorous 
integral-equation solutions for different 
electromagnetic problems. In the case of large-
scale metallic bodies, an efficient MPI/OpenMP 
parallel implementation of the MLFMA-FFT 
algorithm was shown to combine a low 
computational cost with a high scalability 
behavior, which make it an optimal choice to 
benefit from modern HPC computers and 
supercomputers. The MLFMA-FFT algorithm 
exploits the high scalability of FMM-FFT for the 
distributed computations, while the very efficient 
MLFMA is applied to expedite the local shared-
memory computations. Since MLFMA is not 
distributed among nodes, but it is locally applied, 
it does not suffer from poor parallel scaling. In this 
way, we can say that the best of MLFMA and 
FMM-FFT algorithms is put together in MLFMA-
FFT. 

On the other hand, currently our work is 
headed to extend these rigorous integral-equation 
techniques to the electromagnetic simulation of 
problems involving homogenized left-handed 
metamaterials and plasmonic nanoparticles in the 
visible or near visible regimes. Different well-
known SIE-MoM formulations, usually applied for 
dielectric bodies, where successfully applied to 
this kind of media. Numerical examples using the 
JMCFIE formulation were presented that confirm 
the validity and versatility of the integral-equation 
approach to the resolution of LHM and plasmonic 
problems in the context of leading-edge 
nanoscience and nanotechnology applications. 
Besides, it must be noticed that the application of 
MoM will bring the possibility of applying the 
latest breakthrough developments in fast integral-
equation methods, such as MLFMA-FFT, for the 

solution of large-scale problems in metamaterials 
and plasmonics, which will be of great interest for 
the scientific community. 
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