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Abstract − Consider Maxwell’s homogeneous curl
equation ∇ × E = 0 for the electric field vector E
and the inhomogeneous divergence equation ∇ · D =
ρ for the dielectric displacement vector D and the
charge density function ρ in the static limit. As-
sume an (x, y, z)−Cartesian coordinate system. Con-
sider the constitutive equation D = ε E, with the
3 × 3 position-dependent positive-definite permittivity
matrix ε(x, y, z) modeling fully anisotropic and inho-
mogeneous dielectric media. This paper proves that
∇ × E = 0 and ∇ · D = ρ along with D = ε E are
diagonalizable with respect to the arbitrarily chosen
z−axis leading to the Dc−form. The existence of an
associated supplementary equation, the Sc−form, has
also been demonstrated. Finally, it is shown that the
constructed (Dc,Sc)−forms are sharply equivalent with
the originating set of equations ∇× E = 0, ∇ ·D = ρ,
and D = ε E, and, thus, internally consistent. The
proof scheme is relative in the sense that its validity
hinges on the consistency of Maxwell’s equations in the
static limit and the material realizability conditions.

Index Terms − Anisotropic and inhomogeneous
dielectric media, diagonalization, electrostatic field,
supplementation.

I. INTRODUCTION

In the accompanying paper, [1], Maxwell’s electro-
dynamic equations in linear fully bi-anisotropic and
inhomogeneous media were analyzed. It was demon-
strated that the governing (G) and constitutive (C)
equations can be diagonalized (D−form) with refer-
ence to any arbitrary direction in space. Furthermore,
it was shown that there exists a unique supplemen-
tary equation (S−form) associated with the D−form.

The existence of (D,S)−forms was established by con-
struction. In [2], it was rigorously proved that the
constructed (D,S)−forms are sharply equivalent with
the originating set of equations (G, C). Assuming the
consistency of (G, C), it was then concluded that the
(D,S)−forms are internally consistent. The present pa-
per considers Maxwell’s ∇×E = 0 and ∇·D = ρ equa-
tions in the electrostatic limit. Fully anisotropic and
inhomogeneous dielectric media characterized by the
3 × 3 position-dependent positive-definite permittivity
matrix ε(x, y, z) have been assumed. The constitutive
equationD= εE relates the dielectric displacement vec-
tor D to the electric field vector E. Rigorous proofs of
existence and internal consistency of the (D,S)−forms
substantially refine the related discussion in [3]. The
merits of the (D,S)−forms have been alluded to in [1]
and [2], and the references therein, and will not be re-
peated here. Nonetheless one outstanding feature of the
D−form deserves mentioning: the D−form automati-
cally gives rise to the ‘‘interface conditions.’’ This fun-
damental property has been detailed in [3]. Despite the
fact that the paper is self-sufficient, the reader would
most likely benefit from acquainting themselves with
the contents of [1] and [2].

The paper has been organized as follows. The brief
Section II fixes the overall notation. Section III ex-
plains the construction of the (D,S)−forms, by stating
and proving a theorem. Section IV is devoted to the
consistency analysis of the constructed (D,S)−forms.
Thereby, a second theorem will be stated and a relative
proof will be provided. Sections III and IV consider the
z−axis as the direction along which the diagonalization
is performed. The letter ‘‘c,’’ used as a suffix or super-
script, signifies the fact that the chosen direction has
been the z−axis. In the Appendix the formulae cor-
responding to the x−, y−, and the z−axes have been
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summarized. Correspondingly, the formulae have been
equipped with the letters ‘‘a,’’ ‘‘b,’’ and ‘‘c.’’ The ‘‘a-’’
and ‘‘b-’’ related formulae have been obtained from the
formulae derived in Sections III and IV, by cyclic per-
mutations 1 → 2, 2 → 3, 3 → 1, a → b, b → c, c → a.
Section V concludes the paper.

II. MAXWELL’S EQUATIONS IN
THE STATIC LIMIT

Consider the set of equations (G, C),

∇×E = 0, (1a)

∇ ·D = ρ, (1b)

D = ε(x, y, z)E. (1c)

A sufficient condition for ∇×E = 0 to be valid is:

E = −∇ϕ, (2)

with ϕ(x, y, z) being the electric potential function.
Utilizing matrix notation and ‘‘unpacking’’ the Eqs.
(2), (1b) and (1c), respectively,

E1 = −∂xϕ, (3a)

E2 = −∂yϕ, (3b)

E3 = −∂zϕ, (3c)

∂xD1 + ∂yD2 + ∂zD3 = ρ, (4)

D1 = ε11E1 + ε12E2 + ε13E3, (5a)

D2 = ε21E1 + ε22E2 + ε23E3, (5b)

D3 = ε31E1 + ε32E2 + ε33E3. (5c)

III. 3D DIAGONALIZATION AND
SUPPLEMENTATION ALONG

THE Z−AXIS

Consider the governing Eqs. (3) and (4) along with
the constitutive Eqs. (5). Focus on the z−axis. The ob-
jective in this section is to prove, by construction, the
existence of the diagonalized (Dc) and the associated
supplementary (Sc) forms, with (Dc,Sc) being sharply
equivalent with the originating set of equations (G, C).
Recall that the suffix ‘‘c’’ signifies the z−axis. Not sur-
prisingly, the partial derivative ∂z shall play a signifi-
cant role in the presented arguments and derivations.
Diagonalization with respect to the x− and y−axes are
specified by the suffixes ‘‘a’’ and ‘‘b,’’ respectively, with
∂x and ∂y being the main players.

Theorem: The set of equations (G, C) can uniquely
be transformed into the (Dc,Sc)−forms.

Proof: The strategy for proofing the existence of the
Dc− and Sc−forms amounts to constructing them. The
first step in obtaining the Dc− and Sc−forms is to iden-
tify field components which are accompanied by ∂z.
Simple inspection shows that these are ϕ, Eq. ( 3c),
and D3, Eq. (4). The proof requires partitioning the
field variables into certain categories, introduced next.

Essential field variables: Field variables accompa-
nied by ∂z are referred to as the ‘‘essential’’ field vari-
ables. In the current context, these are ϕ and D3.

Nonessential field variables: The remaining two
components of D; i.e., D1, and D2, are referred to as
the ‘‘nonessential’’ field variables.

Auxiliary field variables: Equations (5) do not in-
volve any spatial derivatives. More importantly, the
spatial derivatives of the components of E do not arise
in neither the governing nor the constitutive equations.
Fields of this kind are referred to as the ‘‘auxiliary’’
field variables.

In the (D,S)−framework, auxiliary field variables
must be eliminated at once. This requirement prompts
substituting (3) into (5),

D1 = −ε11∂xϕ− ε12∂yϕ− ε13∂zϕ, (6a)

D2 = −ε21∂xϕ− ε22∂yϕ− ε23∂zϕ, (6b)

D3 = −ε31∂xϕ− ε32∂yϕ− ε33∂zϕ. (6c)

In virtue of the positive-definiteness of ε, εii �= 0
(i = 1, 2, 3). Dividing (6c) by ε33 and rearranging,

(
−ε31
ε33

∂x − ε32
ε33

∂y

)
ϕ− 1

ε33
D3 = ∂zϕ. (7)

Introducing the operators,

Lc
11 = −ε31

ε33
∂x − ε32

ε33
∂y, (8a)

Lc
12 = − 1

ε33
, (8b)

equation (7) can be written compactly,

Lc
11ϕ+ Lc

12D3 = ∂zϕ. (9)

This completes the construction of the first of the two
equations which constitute the Dc−form.
To obtain the missing counterpart, rewrite (4),
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[
−∂x −∂y

] [ D1

D2

]
+ ρ = ∂zD3. (10)

For this equation to qualify as a Dc−form, the non-
essential field variables D1 and D2 must be expressed
in terms of the essential field variables ϕ and D3. To
this end, consider (6a) and (6b) and eliminate the term
∂zϕ from their R.H.S. Fortunately, an expression for
∂zϕ in terms of ϕ and D3 is already available, Eq. (9).
Substituting for ∂zϕ from (9) into (6a) and (6b),

D1 = −ε11∂xϕ− ε12∂yϕ

−ε13 (Lc
11ϕ+ Lc

12D3) , (11a)

D2 = −ε21∂xϕ− ε22∂yϕ

−ε23 (Lc
11ϕ+ Lc

12D3) . (11b)

Or, equivalently,

[
D1

D2

]
=




−ε11∂x − ε12∂y − ε13Lc
11

−ε21∂x − ε22∂y − ε23Lc
11


ϕ

+




−ε13Lc
12

−ε23Lc
12


D3. (12)

Employing the explicit expressions for Lc
11 and Lc

12,
Eqs. (8),

[
D1

D2

]

=




−
(
ε11 − ε13ε31

ε33

)
∂x −

(
ε12 − ε13ε32

ε33

)
∂y

−
(
ε21 − ε23ε31

ε33

)
∂x −

(
ε22 − ε23ε32

ε33

)
∂y


ϕ

+




ε13
ε33

ε23
ε33


D3. (13)

Introducing operators Ac
ij (i, j = 1, 2),

Ac
11 = −

(
ε11 −

ε13ε31
ε33

)
∂x −

(
ε12 −

ε13ε32
ε33

)
∂y,

(14a)

Ac
12 =

ε13
ε33

, (14b)

Ac
21 = −

(
ε21 −

ε23ε31
ε33

)
∂x −

(
ε22 −

ε23ε32
ε33

)
∂y,

(14c)

Ac
22 =

ε23
ε33

, (14d)

equation (13) can be written compactly,

[
D1

D2

]
=




Ac
11 Ac

12

Ac
21 Ac

22



[

ϕ
D3

]
. (15)

This concludes the construction of the supplemen-
tary equations, the Sc−form, expressing the nonessen-
tial components D1 and D2 in terms of the essential
variables ϕ and D3.

Substitute (15) into (10) to eliminate the nonessen-
tial field variables D1 and D2,

[
−∂x −∂y

]



Ac
11 Ac

12

Ac
21 Ac

22



[

ϕ
D3

]

+ ρ = ∂zD3. (16)

Defining the composite operators Lc
21 and Lc

22,

Lc
21 = −∂xAc

11 − ∂yAc
21, (17a)

Lc
22 = −∂xAc

12 − ∂yAc
22, (17b)

(16) leads to the second equation of the Dc−form,

[
Lc
21 Lc

22

] [ ϕ
D3

]
+ ρ = ∂zD3. (18)

Combining (9) with (18),




Lc
11 Lc

12

Lc
21 Lc

22



[

ϕ
D3

]
+

[
0
ρ

]
= ∂z

[
ϕ
D3

]
. (19)

This completes the construction of the Dc−form.

IV. THE INTERNAL
CONSISTENNCY OF THE Dc−

AND Sc−FORMS

Theorem: The constructed Dc− and Sc−forms, Eqs.
(19) and (15), respectively, are internally consistent.

Proof: The proof strategy consists of demonstrating
that (Dc,Sc) is sharply equivalent with (G, C): The
derivation of (Dc,Sc) exclusively requires the entirety
of (G, C). Conversely, (G, C) can exclusively be obtained
from the entirety of (Dc,Sc).

Consider the Sc−form, Eq. (15). Apply the operator
[∂x ∂y] from the L.H.S.,
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[
∂x ∂y

] [ D1

D2

]

=
[
∂x ∂y

] [ Ac
11 Ac

12

Ac
21 Ac

22

] [
ϕ
D3

]
, (20a)

=

[
∂xAc

11 + ∂yAc
21︸ ︷︷ ︸

−Lc
21

∂xAc
12 + ∂yAc

22︸ ︷︷ ︸
−Lc

22

] [
ϕ
D3

]
.

(20b)

In view of definition equations (17), and recogniz-
ing the appearance of the operators −Lc

21 and −Lc
22 in

(20b), as indicated,

[
∂x ∂y

] [ D1

D2

]
= −

[
Lc
21 Lc

22

] [ ϕ
D3

]
. (21)

Considering (18); i.e., the second equation of the
Dc−form, the R.H.S. of (21) equals ρ − ∂zD3. Thus,
(21) results in,

∂xD1 + ∂yD2 = ρ− ∂zD3. (22)

Or, written more compactly,

∇ ·D = ρ. (23)

Fact 1: The second equation of the Dc−form and
both equations of the Sc−form allow reproducing the
Maxwell’s divergence equation for D.

Next consider the first equation of the Dc−form, (9),
which in view of the definition equations of Lc

11 and
Lc
12, given in Eqs. (8), leads to,

(
−ε31
ε33

∂x − ε32
ε33

∂y

)
ϕ− 1

ε33
D3 = ∂zϕ. (24)

Multiply both sides of (24) by ε33, and rearrange,

D3 = −ε31∂xϕ− ε32∂yϕ− ε33∂zϕ. (25)

Define the electric field components Ei (i = 1, 2, 3),

E1 = −∂xϕ, (26a)

E2 = −∂yϕ, (26b)

E3 = −∂zϕ, (26c)

which are sufficient for the validity of ∇×E = 0. Then,
(25) leads to,

D3 = ε31E1 + ε32E2 + ε33E3. (27)

Fact 2: The first equation of the Dc−form to-
gether with the sufficient conditions for the validity of
Maxwell’s curl equation for the electric field (∇×E = 0)
allow reproducing the third constitutive equation.

Comment: Thus far Maxwell’s equations ∇×E = 0
and ∇ ·D = ρ and the third of the constitution equa-
tions have been reconstructed. The reconstruction of
the first- and the second constitutive equations will
complete the proof of the sharp equivalence of the
(Dc,Sc)−forms with the originating governing and con-
stitutive equations (G, C).
Consider the Sc−form, Eq. (15). Consider the ex-

plicit expressions for the operators Ac
ij (i, j = 1, 2),

(14). ‘‘Unpacking’’ Ac
ij , leads to,

D1 = −
(
ε11 −

ε13ε31
ε33

)
∂xϕ

−
(
ε12 −

ε13ε32
ε33

)
∂yϕ+

ε13
ε33

D3, (28)

D2 = −
(
ε21 −

ε23ε31
ε33

)
∂xϕ

−
(
ε22 −

ε23ε32
ε33

)
∂yϕ+

ε23
ε33

D3. (29)

Rearranging (28) and (29),

D1 = −ε11∂xϕ− ε12∂yϕ

+ ε13




[
ε31
ε33

∂x +
ε32
ε33

∂y

]

︸ ︷︷ ︸
=−Lc

11

ϕ+

[
1

ε33

]

︸ ︷︷ ︸
=−Lc

12

D3




, (30)

D2 = −ε21∂xϕ− ε22∂yϕ

+ ε23




[
ε31
ε33

∂x +
ε32
ε33

∂y

]

︸ ︷︷ ︸
=−Lc

11

ϕ+

[
1

ε33

]

︸ ︷︷ ︸
=−Lc

12

D3




, (31)

where the operators −Lc
11 and −Lc

12 have been identi-
fied, as indicated. Simplifying,

D1 = −ε11∂xϕ− ε12∂yϕ

− ε13[Lc
11ϕ+ Lc

12D3]︸ ︷︷ ︸
=∂zϕ

, (32)

D2 = −ε21∂xϕ− ε22∂yϕ

− ε23[Lc
11ϕ+ Lc

12D3]︸ ︷︷ ︸
=∂zϕ

. (33)
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Recognizing the first equation of the Dc−form, Eq.
(9), as indicated in (32) and (33),

D1 = −ε11∂xϕ− ε12∂yϕ− ε13∂zϕ, (34a)

D2 = −ε21∂xϕ− ε22∂yϕ− ε23∂zϕ. (34b)

Together with the stipulated conditions (26),

D1 = ε11E1 + ε12E2 + ε13E3, (35a)

D2 = ε21E1 + ε22E2 + ε23E3. (35b)

Fact 3: The two equations of the Sc−form, the first
equation of the Dc−form, and the sufficient conditions
for the validity of ∇ × E = 0; i.e., E1 = −∂xϕ, E2 =
−∂yϕ, and E3 = −∂zϕ, were used to reconstruct the
second- and the third constitutive equations.

Consequently, in virtue of (35) and (27) the complete
set of constitutive equations has been reconstructed,

D = εE. (36)

The analyses in Sections III and IV complete the
proof of the sharp equivalence of the constructed
(Dc,Sc)−forms with the Maxwell’s electrostatic equa-
tions and the constitutive equations in fully anisotropic
and inhomogeneous media. Consequently, postulat-
ing the consistency of the Maxwell’s equations in the
electrostatic limit along with the material realizabil-
ity conditions, it can be inferred that the constructed
(Dc,Sc)−forms are internally consistent. This com-
pletes the proof of existence of the (Dc,Sc)−forms and
the relative proof of their internal consistency.

V. CONCLUSION

Governing (G) and constitutive (C) equations in
mathematical physics can be diagonalized (D−form)
with respect to any chosen direction in space. The
fact that there also exists an accompanying dual sup-
plementary equation (S−form) associated with the
D−form is a recent result. This paper focused on
the important electrostatic limit, by considering fully-
anisotropic and inhomogeneous dielectrics in three spa-
tial dimensions. It completes the (D,S)−treatment of
the Maxwell’s electrodynamic equations presented in
[1] and [2]. Furthermore, it substantiates the discus-
sion in [3] by rigorously discussing the consistency of
the derived (D,S)−forms. Selecting the z−axis, it was
rigorously established that the system of (G, C) equa-
tions can be partitioned into the (D,S)−forms. It was

also demonstrated that the (D,S)−forms are sharply
equivalent with the (G, C) equations and thus internally
consistent. In carrying out the proofs it was required
that diagonal entries of the permittivity matrix ε must
be non-zero, a condition which in virtue of the positive-
definiteness of ε is satisfied. The diagonalization and
supplementation of magneto-static fields will be rigor-
ously treated in an upcoming work.

VI. APPENDIX

Diagonalization and Supplementation with respect to
the x−axis:

A. Operator matrix entries for the Sa−form

Aa
11 = −

(
ε22 −

ε21ε12
ε11

)
∂y −

(
ε23 −

ε21ε13
ε11

)
∂z,

(37a)

Aa
12 =

ε21
ε11

, (37b)

Aa
21 = −

(
ε32 −

ε31ε12
ε11

)
∂y −

(
ε33 −

ε31ε13
ε11

)
∂z,

(37c)

Aa
22 =

ε31
ε11

, (37d)

[
D2

D3

]
=




Aa
11 Aa

12

Aa
21 Aa

22



[

ϕ
D1

]
. (38)

B. Operator matrix entries for the Da−form

La
11 = −ε12

ε11
∂y −

ε13
ε11

∂z, (39a)

La
12 = − 1

ε11
, (39b)

La
21 = −∂yAa

11 − ∂zAa
21, (39c)

La
22 = −∂yAa

12 − ∂zAa
22, (39d)




La
11 La

12

La
21 La

22



[

ϕ
D1

]
+

[
0
ρ

]
= ∂x

[
ϕ
D1

]
. (40)

Diagonalization and Supplementation with respect to
the y−axis:
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C. Operator matrix entries for the Sb−form

Ab
11 = −

(
ε33 −

ε32ε23
ε22

)
∂z −

(
ε31 −

ε32ε21
ε22

)
∂x,

(41a)

Ab
12 =

ε32
ε22

, (41b)

Ab
21 = −

(
ε13 −

ε12ε23
ε22

)
∂z −

(
ε11 −

ε12ε21
ε22

)
∂x,

(41c)

Ab
22 =

ε12
ε22

, (41d)

[
D3

D1

]
=




Ab
11 Ab

12

Ab
21 Ab

22



[

ϕ
D2

]
. (42)

D. Operator matrix entries for the Db−form

Lb
11 = −ε23

ε22
∂z −

ε21
ε22

∂x, (43a)

Lb
12 = − 1

ε22
, (43b)

Lb
21 = −∂zAb

11 − ∂xAb
21, (43c)

Lb
22 = −∂zAb

12 − ∂xAb
22, (43d)




Lb
11 Lb

12

Lb
21 Lb

22



[

ϕ
D2

]
+

[
0
ρ

]
= ∂y

[
ϕ
D2

]
. (44)

Diagonalization and Supplementation with respect to
the z−axis:

E. Operator matrix entries for the Sc−form

Ac
11 = −

(
ε11 − c

ε13ε31
ε33

)
∂x −

(
ε12 −

ε13ε32
ε33

)
∂y,

(45a)

Ac
12 =

ε13
ε33

, (45b)

Ac
21 = −

(
ε21 −

ε23ε31
ε33

)
∂x −

(
ε22 −

ε23ε32
ε33

)
∂y,

(45c)

Ac
22 =

ε23
ε33

, (45d)

[
D1

D2

]
=




Ac
11 Ac

12

Ac
21 Ac

22



[

ϕ
D3

]
. (46)

F. Operator matrix entries for the Sc−form

Lc
11 = −ε31

ε33
∂x − ε32

ε33
∂y, (47a)

Lc
12 = − 1

ε33
, (47b)

Lc
21 = −∂xAc

11 − ∂yAc
21, (47c)

Lc
22 = −∂xAc

12 − ∂yAc
22, (47d)




Lc
11 Lc

12

Lc
21 Lc

22



[

ϕ
D3

]
+

[
0
ρ

]
= ∂z

[
ϕ
D3

]
. (48)
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