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Abstract—At millimeter frequencies, a simulation of 

propagating complex modulated signals through an environmental 

channel can be computationally prohibitive using the finite 

difference time domain method. A transfer function approach 

known as the “grid impulse response” method uses a delta-

function as a source signal to solve for the transfer function of the 

finite difference time domain grid. Once the transfer function of 

the channel is known, any number of source signals of differing 

lengths, such as those involving M-ary quadrature amplitude 

modulation may be used to estimate the propagation of a complex 

modulated signal through the environmental channel. Numerical 

investigations show that the maximum error between the two 

approaches can be very small. Simple environmental channels  

are used to present the error vector magnitude at mmWave 

frequencies obtained from the grid impulse response method.  
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I. INTRODUCTION  

Modern millimeter-wave communication systems have 
complex hardware and modulation schemes that can be modeled 
using finite difference time domain (FDTD) directly by 
propagating the source signal through a simulated channel. Using 
the full FDTD approach will be a computationally-demanding 
task for dense FDTD grids propagating long-duration signals 
due to the gridding requirements based on the very small 
wavelengths found at millimeter-wave frequencies. Authors in 
[1-2] show that transfer functions derived from the system 
response to a delta-function source signal can be used to predict 
the response of the 1D FDTD grid for an arbitrary input. Perrin 
et al. use a similar technique to predict the grid response in 3D 
[3]. We extend this previous work into the millimeter-wave 
frequencies and show numerically that a delta-function excitation 
of the grid can be used to obtain the transfer function of the 
FDTD grid. Once obtained, the transfer function can be used to 
solve for the signal received at any grid point when the source 
is excited by an arbitrary source signal. This approach is known 
as the grid impulse response (GIR) method. We will show the 
use of the GIR method to calculate the distortion of a modulated 
signal using error-vector-magnitude as the metric of distortion. 

II. THE TRANSFER FUNCTION AND GRID IMPULSE RESPONSE 

We define the transfer function of the FDTD grid as, 

𝑇(𝜔) =
𝐹( 𝑅𝑋(𝑡) )

𝐹( 𝑇𝑋(𝑡) )
 , (1) 

where 𝐹  is the fast Fourier transform, RX is the time-domain 
sampled signal at a point of interest in the FDTD grid, TX is the 
source signal used to excite the FDTD grid, and 𝑇(𝜔) is the 
transfer function. It is often more convenient to work with the 
time domain representation of the transfer function, the grid 
impulse response (GIR) given by: 

𝐺𝐼𝑅(𝑡) = 𝐹−1(𝑇 (𝜔) ) . (2) 

Note that for a delta-function source signal incident on the 
FDTD grid, the GIR is directly obtained by sampling the grid, 
𝐺𝐼𝑅(𝑡) = 𝑅𝑋(𝑡). Once the GIR is found, any signal of interest 
can be solved at the RX sampling point by convolution, given 
by: 

𝑅𝑋𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑡) = 𝐺𝐼𝑅(𝑡) ∗ 𝑇𝑋𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦(𝑡) , (3) 

where * indicates convolution, and 𝑅𝑋𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 is the predicted 
signal obtained from the arbitrary signal source 𝑇𝑋𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 . 

This formulation is most useful in solving for signals where the 
number of time steps needed to inject the signal into the grid is 
much larger than the number of time steps needed for the GIR 
to converge.   

III. NUMERICAL DEMONSTRATION OF ACCURACY 

We used an M-ary quadrature amplitude modulation (M-
QAM) signal to examine the accuracy of the GIR method. The 
FDTD code from [5] is used for all simulations, run in single 
precision. A source transmitting an M-QAM signal is placed in 
free-space terminated in either convolutional perfectly matched 
layer (CPML) [6] or perfect electrical conductor (PEC) 
boundaries. The signal is a 16-QAM modulation, 10 GSym/s, 
with five symbol durations. The CPML is eight cells thick. A 
simulation using the full FDTD approach and another using  
the GIR method are compared. The signals at a given point of 
interest in space as a function of time-step are recorded for both 
methods.  The received signal from the full-length simulation 
𝑅𝑋full  is compared with the predicted signal from the GIR 
method. The signals are compared with an error metric defined 
by, 

𝐸𝑟𝑟𝑜𝑟 = |𝑅𝑋𝑓𝑢𝑙𝑙 − 𝑅𝑋𝐺𝐼𝑅| . (4) 

𝑅𝑋𝑓𝑢𝑙𝑙 has its maximum amplitude normalized to 1, and RXGIR 

is normalized using the same normalization constant. The free 
space propagation case is shown in the solid line in Fig. 1. At 
500 time steps, the jump in the figure is due to the arrival of the 
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transmitted signal at the receiver. The signal difference previous 
to this time step is due to numeric noise. The GIR determination 
uses 1816 time steps. Through time step 1816, the error is less 
than 10−6. At time step 1817, the error increases by ~10x, with 
a maximum error of approximately 10−3 from time step 1888 
and beyond. Thus, for time steps less than or equal to the number 
of time steps used in the full FDTD simulation, the GIR method 
will capture the grid response with the error of a predicted signal 
< 10−6. For time steps after this point, the error will reflect the 
degree to which the long-term GIR has been captured. When the 
GIR has begun to converge, the error for future time steps is 
relatively low (~10−3), and will be reduced further when the 
grid is sampled for more time steps. When the long-term GIR 
has not been captured, the error for future time steps will be 
large. This is shown in the dashed line in Fig. 1, where the 
CPML boundaries are replaced with PEC walls to simulate a 
metal enclosure shown by the Box results. Through the time step 
of the GIR simulation, the response of the grid is captured well 
(< 10−6 error). The maximum error very quickly approaches 
0.5 for time steps after this point, corresponding to essentially 
no agreement between predicted and actual signals. This is due 
to the resonant nature of the box, and shows the transfer function 
method can fail when used inappropriately.  

 
 
Fig. 1. Error between full-length FDTD simulation, and predicted response using 

the GIR method. Dashed line shows the PEC box case, while the solid line shows 
the free-space case. Truncated at 3000 timesteps for clarity.  

IV. ERROR VECTOR MAGNITUDE CALCULATION 

 The GIR method is an excellent compromise between 
accuracy and computational expense for determining distortion 
in a modulated signal from a channel. By creating a modulated 
signal and convolving with the GIR, the effects of the channel 
will be seen on the received signal. This can show channel 
effects such as path loss, power delay profile, and the error 
vector magnitude (EVM) [4] introduced by the channel. 
Application of the technique to an EVM calculation is shown 
using two identical dipole antennas operating at 90 GHz as a 
TX/RX pair in a free-space channel and in a channel with an 
infinite ground plane below the antennas. The distance between 
the two antennas is swept through 0.12 m. A 1000 symbol, 
duration 16-QAM signal is the excitation and the signal is post- 

processed to yield the EVM. The mean EVM is shown in Fig. 2. 
The ground-bounce case shows significantly increased distortion 
resulting from the reflected signal, with two distinct peaks 
appearing. These peaks are not present in the free-space case, 
and so are solely attributable to the reflected signal from the 
ground-plane. 

 
 
Fig. 2. EVM for a dipole-dipole case using 16-QAM signal, with results calculated 
by the GIR. Distinct peaks are seen from ground-bounce effects.  

V. CONCLUSION 

We have shown that the use of transfer functions in the full 
3D FDTD grid can obtain long-term grid responses wit accuracy 
less than < 10−6 . An understanding of the error in such an 
approach has been introduced, showing clear cases where the 
GIR is not satisfactory. Through the use of the transfer function 
of the grid, simulations of the modulated signals can be solved 
rapidly, and channel effects on the EVM of the signal seen 
directly. 
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