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Abstract—In this work we show how the plane wave expansion
method for calculating the band structure of materials with
periodic electric permittivity may be extended to calculate
the band structure of periodic materials that also possess a
sinusoidal time-modulation. The numerical technique is applied
to a structure possessing a synthetic linear momentum which
causes unidirectional bandgaps to appear in the band structure.
Such devices could be of use for tunable magnet-free isolators in
integrated photonics platforms.

I. INTRODUCTION

Electromagnetic devices that allow only one-way wave
propagation have many practical uses including in optical
isolators [1], antennas [2] and duplexed communication
transceivers [3]. Any static linear electromagnetic device is
time-reversible and therefore cannot be used for unidirectional
wave propagation. However, incorporating a synthetic momen-
tum into the system via directional time-modulation can break
time-reversal symmetry and induce one-way electromagnetic
wave propagation [4]. Most traditional computational tech-
niques assume static material properties. However, some recent
reports have detailed methods for incorporating a sinusoidal
time-modulated permittivity into computational electromag-
netic tools [5]. In this work we extend the plane wave
expansion method for calculating the photonic band structure
of static periodic structures to materials that have harmonically
time-modulated electric permittivities. With this method we
show how a directional spatio-temporal modulation results in
an asymmetric (in wavevector) bandstructure that produces
unidirectional wave propagation in a range of frequencies.

II. METHOD

This work is concerned with electric permittivities of the
form ε(z, t) = εa(z) + εb(z) cos[2πΩt + φ] where εa(z +
Λ) = εa(z) and εb(z + Λ) = εb(z) are both periodic in Λ.
For one-dimensional material variation, the Maxwell equations
become:

∂Ex(z, t)

∂z
= −µ0

∂Hy(z, t)

∂t
, (1a)

−∂Hy(z, t)

∂z
= −ε0

∂

∂t
[ε(z, t)Ex(z, t)]. (1b)

If the time derivative in (1b) is expanded, one obtains:

−∂Hy(z, t)

∂z
= −ε0{εa(z)

∂Ex(z, t)

∂t
+

εb(z) cos[Ωt+ φ]
∂Ex(z, t)

∂t
−

εb(z)Ω sin[Ωt+ φ]Ex(z, t)}.

The spatial periodicity motivates the use of a Bloch form, and
the time-modulation motivates inclusion of harmonics ω+nΩ
for integer n. Our ansatz for solution of Eqs. 1 is:

Ex(z, t) =
∑
G,n

Ex(G,n)ei(k+G)ze−i(ω+nΩ)t, (2a)

Hy(z, t) =
∑
G,n

Hy(G,n)ei(k+G)ze−i(ω+nΩ)t, (2b)

where G = m2π/Λ for m integer. Combining Eqs. 2 with
Eqs. 1 produces:

µ0(ω + nΩ)Hy(G,n)−GEx(G,n) = kEx(G,n),

(3a)

−GHy(G,n) + ε0

∑
G′

{εa(G−G′)(ω0 + nΩ)Ex(G′, n)

+[eiφEx(G′, n+ 1) + e−iφEx(G′, n− 1)] = kHy(G,n),
(3b)

which is an eigenvalue equation with eigenvalue k and eigen-
vector made up of the components Ex(G,n) and Hy(G,n).
To obtain the bandstructure for these dynamic geometries, a
range of frequency values is chosen, and for each frequency,
the corresponding eigenvalue k is obtained.

III. SYNTHETIC MOMENTUM

To illustrate the physical properties of time-modulated pe-
riodic structures, consider the geometry shown in Fig. 1 (a).
The structure consists of a repeating unit cell consisting of
three layers each modulated by the same frequency but with
relative phase offsets of 2π/3. The phase sequence of 0,
2π/3, 4π/3 from left to right produces a non-zero overlap
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Fig. 1. (a) One-dimensional periodic structure with time-modulated permittivity. ε1(t) = 3.0 + 0.5 cos(Ωt), ε2(t) = 3.0 + 0.5 cos(Ωt + 2π/3) and
ε3(t) = 3.0 + 0.5 cos(Ωt+ 4π/3). (b) Mode coupling vector in the spatio-temporally modulated system in (a). (c) The mode-coupling scheme in the empty
lattice. The bold line is the fundamental band (n = 0) whereas the thin lines correspond to harmonics which is the fundamental band shifted vertically by
±nΩ (only n = 1 is depicted). (d) The bandstructure of the dynamic geometry shown in (a) using the proposed numerical method.

with the continuous travelling wave modulation of the form
cos(Ωt+ 2π

Λ z) which produces a synthetic momentum pointing
toward −z. Fig. 1 (b) shows the net momentum-frequency
coupling vector. In a static periodic system, the coupling vector
would be bidirectional, horizontal and of length 2π/Λ. In the
time-modulated system, it is unidirectional and tilted up by
the amount Ω with concomitant length.

Fig. 1 (c) shows how the mode coupling works in this
system. The empty lattice (a lattice with periodicity Λ and
time-modulation frequency Ω but εb → 0) is shown. Because
of the directionality of the spatio-temporal modulation, the
coupling vectors point only from right to left. The green arrows
show couplings that result in photonic bandgaps. The green
vectors couple band crossings that involve the fundamental
band, and, therefore, bandgaps are expected to open at the
green dots. The orange vectors show couplings between band
crossings, but these bands belong to different order harmonics,
and, therefore, no coupling occurs.

Fig. 1 (d) shows the band structure obtained using the pro-
posed method. Indeed one sees bandgaps in the first Brillouin
zone corresponding to the points highlighted in Fig. 1 (c).
Specifically, there is a bandgap near kΛ/π . 1.0 but no
bandgap near kΛ/π & −1.0. This means that incident waves
propagating along +k at a frequency in the bandgap will be
reflected; whereas, incident waves propagating along −k at a

frequency in the same frequency range will be transmitted
as if there were no periodic perturbation to the electric
permittivity at all. Due to the broken time-reversal symmetry,
the band structure is clearly asymmetric in k. Technologically
such a device could prove useful in tunable optical isolation
particularly in magnet-free integrated photonics platforms.

In conclusion, a technique for calculating the band struc-
ture of harmonically time-modulated system is presented. We
show how tailored time-modulation can impart a directional
synthetic momentum to the field causing unidirectional prop-
agation in these periodic materials.
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[1] D. L. Sounas and A. Alù, “Angular-momentum-biased nanorings to
realize magnetic-free integrated optical isolation,” ACS Photonics, vol. 1,
pp. 198–204, 2014.

[2] Y. Hadad, J. C. Soric, and A. Alù, “Breaking temporal symmetries
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