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Abstract ─ Magnetic induction tomography aims to 

reconstruct the passive electric properties of an object by 

measuring its scattered magnetic field. Current state-of-

the-art numerical techniques are based on differential 

formulations such as the finite element method. A 

formulation based on volume integral equations has  

not yet been applied to its biomedical field and could 

improve the reconstruction speed by reducing the 

number of unknowns. This paper investigates salient 

characteristics of the approach and offers a solution 

based on inhomogeneous Green's functions. 

 

Index Terms ─ Biomedical, magnetic induction, volume 

integral. 
 

I. INTRODUCTION 
Biomedical magnetic induction tomography (MIT) 

is a novel imaging technique with applications to stroke 

detection, inductive measurement of wound conductivity 

and lung imaging [1]. Its main benefits are a very low 

operating and construction cost, non-ionizing interactions 

with matter and contactless operation. A low frequency 

field (in the kHz to the MHz range) is used to induce 

eddy currents inside an object of interest. The eddy 

currents depend on the passive electric properties (PEP) 

of the object and these in turn induce a secondary 

magnetic field, which can be measured at sensors outside 

the volume of interest. Computation of the scattered 

magnetic field is done through the forward model. 

Current state-of-the-art forward models are based on 

approximate, differential or surface integral equations. 

Here, the main challenge is to obtain accurate results 

while maintaining a low computation cost. The forward 

model may be formulated as a large linear system, which 

needs to be solved iteratively. While a finer discretization 

may yield more accurate results, it also leads to a  

more computationally burdensome model. For imaging 

purposes, the PEP of the domain of interest must be 

reconstructed from the known incident and scattered 

fields, which is referred to as the inverse problem. The 

inverse problem is solved iteratively by minimizing the 

differences between the measured scattered magnetic 

field and the forward model evaluation for estimated 

values of the PEP to which a penalty term may be added. 

For each iteration of the inverse solver, the forward 

problem must be solved, so an efficient forward model is 

critical. Biological tissues in the MIT frequency range 

may be considered as penetrable objects and volume 

integral equations (VIEs) can adequately model the 

problem. VIEs offer several advantages such as the need 

to discretize a much smaller domain than differential 

methods, a better accuracy than approximate methods 

and a wider range of applicability than surface integral 

methods. Although VIEs are commonly used in a higher 

frequency range (e.g., microwave tomography) and  

for non-destructive evaluation (NDE), specific issues 

plague their application to biomedical MIT. Since both 

permittivity and conductivity are being reconstructed (as 

opposed to only conductivity for NDE) and because  

at these frequencies biological tissues have very high 

dielectric properties [2], conditioning issues arise. For 

large domains requiring the implementation of iterative 

solvers, this yields a slow convergence of both the 

forward and the inverse solvers [1]. This paper presents 

and validates a model that tackles this conditioning issue 

arising from the high contrasts in biomedical MIT by 

using Green's function theory. 

 

II. PROBLEM FORMULATION 

A. Volume integral equation based model 

The standard VIE is obtained by using Green's 

function and the volume equivalence principle to solve  

the wave equation [3]. Discretization is performed by  

the method of moments with Dirac basis functions. The 

scattered magnetic field at the sensors is obtained through: 

 𝒉𝑠𝑐𝑎𝑡(𝒙) = −�̃�𝑏𝑿𝑮𝑅𝓛−1𝒆0, (1) 

with 𝓛−1 = (𝑰 − 𝑘𝑏
2𝑮𝑿)−1 the scattering operator, 𝑿  

a diagonal matrix containing the electric contrast  

values 𝑋(𝒓) = �̃�(𝒓)/�̃�𝑏 − 1, with �̃�𝑏 = 𝜎 − 𝑗𝜔𝜖𝑟𝜖0 the 

background complex conductivity, 𝑮 = Δ𝑉 (𝑰 +
∇∇

𝑘𝑏
2) 𝑔 the 

dyadic Green's function, 𝑔(𝒓, 𝒓′) = 𝑒𝑗𝑘𝑏|𝒓−𝒓′|/(4𝜋|𝒓 −
𝒓′|) denotes the scalar Green's function, Δ𝑉 the 
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discretization volume and 𝒆0 is the incident electric field. 

The matrix 𝑮𝑅 = 𝜉∇𝑔 is defined through the Levi-Civita 

tensor and represents the cross product of the gradient and 

the scalar Green's function.  

The selected criterion is the 𝐿2 norm of the 

differences between the measurements and the forward 

model evaluation. To deal with the ill-posedness of  

the problem, an additive regularization term is added  

to include a priori information about the domain to 

reconstruct. An 𝐿2𝐿1 penalization term on the first 

differences of the contrast is chosen in order to preserve 

the object edges. The function 𝑅(𝑿) = 𝜆√𝛿2 + 𝑡(𝑿)2  
is well adapted, where 𝑡 is the sum of contrast variations 

along each axis, 𝛿 is a hyperparameter that defines  

the transition between the quadratic and linear behaviors 

of the penalty function and 𝜆 is the regularization 

parameter. The cost functional to minimize is therefore: 

𝐹(𝑿) = ||𝑦 − 𝑓(𝑿)||
2

2
+ 𝜆𝑅(𝑿). To minimize this cost 

functional, the L-BFGS algorithm is chosen. This quasi-

Newton method offers a lower computation cost per 

iteration than a Newton method, while converging  

faster than a gradient method. The gradient of the cost 

functional is obtained by computing its Fréchet derivative. 

Straightforward computations yield ∇𝐹 =  𝑱†(𝑦 − 𝑓) +
𝜆𝑅𝐻𝑆

′  where Jacobian 𝑱 can be expressed as: 

 𝑱 = 𝑮𝑅(𝑰 − 𝑮𝑿)−Tdiag{𝒆}. (2) 

The issue with the VIE model is that the scattering 

operator 𝓛 is ill-conditioned due to the high contrast 

values of biological tissues in this low frequency range. 

This implies a very slow convergence of the forward 

model. The poor conditioning of the forward model also 

results in a slow convergence of the inverse solver. This 

yields a very high computation cost, which makes the 

model impractical for realistic applications. 
 

B. Inhomogeneous Green’s function based model 

A solution to the problem's poor conditioning and 

slow convergence is to perform a change of variables  

to a new contrast value 𝑿2, which is defined as a 

perturbation in an otherwise healthy tissue. Since in 

biomedical imaging the goal is to identify a small 

perturbation in a known background, this healthy tissue 

can be included into the background propagation 

medium. Two approaches may be considered. The first 

one is the linear embedding via Green's operator 

(LEGO), which makes use of the port theory to include 

the mutual scattering events between the background  

and the perturbation domain [4], but is computationally 

burdensome. The second one is based on the Green's 

function theory [5]. If one considers an inhomogeneous 

propagation medium including the healthy tissue, an 

inhomogeneous Green's function (IG) can be computed 

by solving 𝑮𝑖𝑛 = 𝓛1
−1𝑮12. Domains 1 and 2 respectively 

denote the inhomogeneous propagation medium and the 

volume of interest, which contains the contrast values  

𝑿2 that are to be determined. After discretization, the 

forward model is given by: 

 𝒉𝑠𝑐𝑎𝑡(𝑿2) = 𝑮𝑅𝑿1(𝒆1 + 𝑮𝑖𝑛𝑿2𝒆2). (3) 

Here, 𝒆2 = 𝓛2
−1𝒆1|2 and 𝒆1 = 𝓛1

−1𝒆1 are the total 

fields in each domain and 𝒆1|2 is the total field in  

Domain 2 due to the inhomogeneous Domain 1. Matrices 

involving 𝑿1 may be computed only once so that only 𝒆2 

needs to be computed at each iteration of the inverse 

solver. The new scattering operator 𝓛2
−1 has a much 

better conditioning and convergence of both the forward 

and inverse problems are greatly improved. The new 

Jacobian is given by: 

 𝑱 = 𝑮𝑅𝑿1𝑮𝑖𝑛(𝑰2 + 𝑿2𝓛2
−1𝑮22)diag{𝓛2

−1𝒆1|2}. (4) 

 

III. RESULTS 
The LEGO and IG models were compared to the 

standard VIE for a dielectric sphere emulating white 

matter with a layer of cerebrospinal fluid and a small 

blood perturbation as seen in Fig. 1 (a). The left pane of 

Fig. 1 (c) shows good agreement between the scattered 

magnetic field for the three models and the right pane 

shows improvement in the convergence of the inverse 

solver for the LEGO and IG models. In Fig. 1 (b) the 

reconstructed domain using the IG model is presented. 

The data were generated using the VIE model with 80 

dB of added Gaussian noise in order to avoid the inverse 

crime. We notice that, although the boundaries of the 

perturbation are properly identified, the conductivity 

values are slightly underestimated, which seems to be an 

effect of the regularization.  
 

 

Fig. (a) Exact and (b) reconstructed domains, and (c) 

Im{𝐻𝑧} component of the scattered magnetic field and 

convergence of the cost functional for each model. The 

simulation domain is a cube with 20 cm edges, discretized 

onto a 15 X 15 X 15 Cartesian grid. It is illuminated by 

15 sources (z oriented magnetic dipoles of unit amplitude) 

and 15 detectors are placed circularly (r = 16 cm) on 

three planes (z = –2:5; 0; 2:5 cm). 
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IV. DISCUSSION 
These results indicate that, although the standard 

VIE model is not suitable for MIT, the alternate IG 

model offers considerable improvements regarding 

convergence of both the forward and inverse solvers. 

Although the proposed method shows some advantages 

over state-of-the-art numerical methods such as fewer 

unknowns and a structure well suited to parallelization, 

further work is required in order to reconstruct images 

with a lower SNR and to reduce computational cost 

through numerical methods such as Block algorithms 

and preconditioning. 
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