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Abstract – A new numerical method to generate spa-
tially variant lattices (SVLs) is derived and implemented.
The algorithm proposed solves the underlying partial
differential equations iteratively with an update equa-
tion derived using the finite-difference method to obtain
an SVL that is continuous, smooth, and free of unin-
tended defects while maintaining the unit cell geome-
try throughout the lattice. This iterative approach is
shown to be more memory-efficient when compared to
the matrix-based approach and is, thus, suitable for the
calculation of large-scale SVLs. The iterative nature of
the solver allows it to be easily implemented in graphics
processing unit to parallelize the computation of SVLs.
Two spatially variant self-collimating photonic crystals
are generated and simulated to demonstrate the function-
ality of the algorithm as a tool to generate fully three-
dimensional photonic devices of realistic size.

Keywords – Iterative finite-difference method, function-
ally graded, metamaterials, photonic crystals, spatial
variance.

I. INTRODUCTION
Self-collimating photonic crystals (SCPCs) are

devices in which an electromagnetic wave travels
through a volume of material without any diffraction
and only moves along an axis of the lattice regard-
less of angle of incidence [1]. Attempts to control
power flow inside these structures in an arbitrary man-
ner in 3D SCPCs have been limited to the introduc-
tion of defects or deformations [2], which often weaken
or destroy the overall electromagnetic properties of the
SCPC. Spatial variance is a process to spatially adjust
the geometrical aspects of periodic structures like pho-
tonic crystals (PhCs) [3]. The algorithm for spatial vari-
ance introduces geometrical changes to the PhC in a
way that makes the PhC smooth, continuous, and free
of unintentional defects [4] while retaining the geom-

etry of the unit cells so that electromagnetic response
is maintained. Most approaches to incorporate spatial
variance in SCPCs [5–7] do so in either planar SCPCs
or with devices in which the third dimension is not
spatially varied. The method described in [3] suffers
from the major drawback of being memory inefficient
due to its reliance on large full storage matrices and
computationally expensive lower–upper (LU) decompo-
sition operations, thus limiting the size of spatially vari-
ant lattices (SVLs) that can be generated. Although
other methods such as Galerkin, Crank-Nicolson, and
Fourier methods [8] exist to solve partial differential
equations, these run into the similar drawbacks of mem-
ory inefficiency when solving large problems. The
present body of work discusses the formulation of an
iterative algorithm to compute SVLs based on similar
approaches to those used in electromagnetic simulation
tools such as the finite-difference time-domain (FDTD)
method, in which an update equation is used to explic-
itly solve the underlying system of partial differential
equations point-by-point throughout the problem space
[9]. Approaches with similar formulations to the one
presented in this body of work have been successfully
implemented with the use of general purpose graph-
ics processing units (GPGPUs) to accelerate and scale
execution [10].

II. GENERATION OF SPATIALLY VARIANT
LATTICES

In this section, the step-by-step description of the
overall algorithm to generate SVLs is presented. The
first two subsections discuss the mathematical back-
ground of spatially variant gratings and SVLs. The
following subsections define the steps necessary to
calculate an SVL using the iterative algorithm as
well as presenting the flow-diagram of the proposed
algorithm.
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A. Spatially variant planar gratings and lattices
Consider a simple sinusoidal grating described by a

grating vector ~K. The grating vector has a direction per-
pendicular to the planes of the grating and has a magni-
tude of 2π/Λ, where Λ is the period of the grating. Given
a grating vector, the sinusoidal grating is calculated by

εa(~s) = cos(~K •~s), (1)
where~s = xâx + yây + xâz and εa(~s) is called the analog
grating because of its continuous variation between the
values of −1 and 1.

When attributes of the grating such as period or
the orientation are spatially varied, the grating vector ~K
becomes a function of position. When this happens, ~K
becomes ~K(~s) and the calculation in eqn (1) fails to prop-
erly compute the analog grating [3]

εa(~s) 6= cos
[
~K(~s)•~s

]
. (2)

Spatial variance is incorporated through an interme-
diate parameter called the grating phase Φ(~s) [3]. The
equation shown in eqn (3) is solved numerically through
a best fit approach of least squares since there are more
equations than unknowns. Then, the analog grating can
be calculated by eqn (4)

∇Φ(~s) = ~K(~s), (3)
εa(~s) = cos [Φ(~s)] . (4)

To extend the functionality of eqn (3) and (4) from
planar gratings to general lattices, Rumpf [3] states that
the unit cell that describes the periodic structure to be
spatially varied is decomposed into a complex Fourier
series. Each term in the Fourier series is a spatial har-
monic that can be interpreted as a one-dimensional pla-
nar grating. Given the infinite nature of Fourier trans-
forms, this complex series is truncated to only a finite set
of M planar gratings. Each planar grating in the truncated
series is spatially varied and the overall SVL is obtained
by summing each 1D grating.

B. A general solution for ∇Φ(~s) = ~K(~s)
Rumpf [3] presented a matrix-based numerical solu-

tion for the expression in eqn (3) in the framework of
least squares with the use of [A]−1[b] = [x]. This imple-
mentation is a brute force approach that provides fast
and accurate results for small-sized problems. The issue
with this approach to the solution arises when large-scale
lattices are being generated since the [A]−1[b] = [x] is
a matrix problem that increases memory and computa-
tional requirements. This poor scaling with larger lat-
tices leads to a hard-set limit of the size of lattice that
can be computationally generated.

III. ITERATIVE SOLUTION TO ∇Φ(~s) = ~K(~s)
A. The update equation

The derivation of the fundamental equations to itera-
tively generate SVLs begins by expanding the expression
to be solved in eqn (3) into Cartesian coordinates

∂Φ(~s)
∂x

+
∂Φ(~s)

∂y
+

∂Φ(~s)
∂ z

=Kx(~s)âx+Ky(~s)ây+Kz(~s)âz.

(5)
This vector equation can be separated into three

independent scalar equations by setting the vector com-
ponents on each side of the equation equal

∂Φ(~s)
∂x

= Kx(~s), (6)

∂Φ(~s)
∂y

= Ky(~s), (7)

∂Φ(~s)
∂ z

= Kz(~s). (8)

For brevity, the following formulation focuses on
eqn (6) as the basic building block for the update equa-
tion and then applied by inspection to the other equa-
tions. Eqn (6) can be approximated by a central finite-
difference to the i− 1 side or a central finite-difference
to the i+1 side

Φ|i, j,k−Φ|i−1, j,k

∆x
=

Kx|i, j,k +Kx|i−1, j,k

2
i−1. (9)

Φ|i+1, j,k−Φ|i, j,k
∆x

=
Kx|i+1, j,k +Kx|i, j,k

2
i+1. (10)

Solving eqn (9) and (10) for Φ|i, j,k results in

Φ|i, j,k =
Φ|i−1, j,k +Φ|i+1, j,k

2
+

∆x
4
(Kx|i−1, j,k−Kx|i+1, j,k).

(11)
In order to generate the grating phase term itera-

tively, eqn (11) needs to be interpreted as an update equa-
tion, where a new term of Φ|i, j,k is calculated at each
iteration based on an old value of Φ|i, j,k at a previous
iteration. Then, eqn (11) is written as

Φnew|i, j,k =
Φold|i−1, j,k +Φold|i+1, j,k

2
+

∆x
4
(Kx|i−1, j,k−Kx|i+1, j,k). (12)

Observing eqn (12), this problem consists of a sys-
tem with more equations than unknowns. It is not pos-
sible to satisfy this system of equations exactly to obtain
Φnew|i, j,k. Instead, a least-squares approach was used to
solve this system of equations. To incorporate the least-
squares framework into eqn (12), three error terms are
included in the formulation that should be minimized

Φnew|i, j,k =
Φold|i−1, j,k +Φold|i+1, j,k

2
+

∆x
4
(Kx|i−1, j,k−Kx|i+1, j,k)+ ε1.

Φnew|i, j,k =
Φold|i, j−1,k +Φold|i, j+1,k

2
+

∆y
4
(Ky|i, j−1,k−Ky|i, j+1,k)+ ε2.

Φnew|i, j,k =
Φold|i, j,k−1 +Φold|i, j,k+1

2
+

∆z
4
(Kz|i, j,k−1−Ky|i, j,k+1)+ ε3.

(13)

Solving for each error term in eqn (13) yields

ε1 = Φnew|i, j,k−
Φold|i−1, j,k +Φold|i+1, j,k

2
− ∆x

4
(Kx|i−1, j,k−Kx|i+1, j,k).

ε2 = Φnew|i, j,k−
Φold|i, j−1,k +Φold|i, j+1,k

2
− ∆x

4
(Kx|i, j−1,k−Kx|i, j+1,k).

ε3 = Φnew|i, j,k−
Φold|i, j,k−1 +Φold|i, j,k+1

2
− ∆x

4
(Kx|i, j,k−1−Kx|i, j,k+1).

(14)
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In the least-squares framework, the overall error metric
E to minimize is defined as

E = ε
2
1 + ε

2
2 + ε

2
3 . (15)

To minimize the error in eqn (15), the first-derivative rule
is used, resulting in

0 =
d

dΦnew|i, j,k
(ε2

1 + ε
2
2 + ε

2
3 ). (16)

Incorporating the error term into eqn (14)

Φnew|i, j,k =
1
3
[
Φold|i−1. j,k +Φold|i+1, j,k

2
+

∆x
4
(Kx|1−1, j,k−Kx|1+1, j,k)]

+
1
3
[
Φold|i. j,−1,k +Φold|i, j+1,k

2
+

∆x
4
(Kx|1, j−1,k−Kx|1, j+1,k)]

+
1
3
[
Φold|i. j,k−1 +Φold|i, j,k+1

2
+

∆x
4
(Kx|1, j,k−1−Kx|1, j,k+1)]. (17)

Comparing the terms inside the square brackets in
eqn (17) to eqn (12) shows that solving the system of
equations in eqn (17) by least squares is the same as cal-
culating the arithmetic mean of the value of Φnew|i, j,k
generated by solving eqn (12) individually. Therefore,
the calculation for Φnew|i, j,k can be written as

Φnew|i, j,k =
Φx|i, j,k +Φy|i, j,k +Φz|i, j,k

3
(18)

where

Φx|i, j,k =
Φold|i−1, j,k +Φold|i+1, j,k

2

+
∆x
4
(Kx|i−1, j,k−Kx|i+1, j,k).

Φy|i, j,k =
Φold|i, j−1,k +Φold|i, j+1,k

2

+
∆y
4
(Ky|i, j−1,k−Ky|i, j+1,k).

Φz|i, j,k =
Φold|i, j,k−1 +Φold|i, j,k+1

2

+
∆z
4
(Kz|i, j,k−1−Kz|i, j,k+1). (19)

B. Boundary conditions
The terms used to calculate Φnew|i, j,k in eqn (19)

fail to properly compute at the edges of the grid due to
the equations needing data from outside of the problem
grid that does not exist. The following section describes
how to introduce Neumann boundary conditions into eqn
(19). Since the devices being created with this algorithm
are finite in volume, the Neumann boundary condition
was chosen because it prescribes a continuation of the
function of the boundary for values outside of it. For
the rest of this formulation, a finite discretized grid of
Nx×Ny×Nz× points with 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, and
1≤ k ≤ Nz, respectively, is used.

The first condition where Φx|i, j,k fails to compute is
when i=1 since the calculation becomes

Φx|1, j,k =
Φold|0, j,k +Φold|2, j,k

2
+

∆x
4
(Kx|0, j,k−Kx|2, j,k). (20)

which is attempting to access elements Φold|0, j,k and
Kx|0, j,k which are out of the range 1 ≤ i ≤ Nx for the
discretized grid.

In a similar manner, the second boundary problem
occurs when i = Nx; the calculation becomes

Φx|N, j,k =
Φold|Nx−1, j,k +Φold|Nx+1, j,k

2
+

∆x
4
(Kx|Nx−1, j,k−Kx|Nx+1, j,k). (21)

where Φold|Nx+1, j,k and Kx|Nx+1, j,k are attempting to
access values from outside of the 1 ≤ i ≤ Nx range of
the discretized grid.

To reformulate eqn(19) to avoid out-of-bound
access, only eqn(10) is interpreted as the update equa-
tion for values of i = 0

Φx|1, j,k = 4Φold|2, j,k−2∆x(Kx|2, j,k +Kx|1, j,k). (22)

When i = Nx, the terms attempting to access values
outside of the grid are dropped and eqn (9) is then inter-
preted as the update equation

Φx|Nx, j,k = 4Φold|Nx−1, j,k−2∆x(Kx|Nx, j,k +Kx|Nx−1, j,k)
(23)

The formulation for Φx that makes use of eqn (19),
(22), and (23) is

Φx|i, j,k =

4Φold|2, j,k−
2∆x

(
Kx|2, j,k +Kx|1, j,k

) i = 1

Φold|i−1, j,k +Φold|i+1, j,k

2
+

∆x
4
(
Kx|i−1, j,k +Kx|i+1, j,k

) 2≤ i≤ Nx−1.

4Φold|Nx−1, j,k−
2∆x

(
Kx|Nx, j,k +Kx|Nx−1, j,k

) i = Nx

(24)

By inspection of eqn (24), the expressions for Φy
and Φz that include boundary conditions are

Φy|i, j,k =

4Φold|i,2,k−
2∆y

(
Ky|i,2,k +Ky|i,1,k

) j = 1

Φold|i, j−1,k +Φold|i, j+1,k

2
+

∆y
4
(
Ky|i, j−1,k−Ky|i, j+1,k

) 2≤ j ≤ Ny−1.

4Φold|i,Ny−1,k−
2∆y

(
Ky|i,Ny,k +Ky|i,Ny−1,k

) i = Ny

(25)
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Φz|i, j,k =

4Φold|i, j,2−
2∆z

(
Kz|i, j,2 +Kz|i, j,1

) k = 1

Φold|i, j,k−1 +Φold|i, j,k+1

2
+

∆z
4
(
Kz|i, j,k−1 +Kz|i, j,k+1

) 2≤ k ≤ Nz−1.

4Φold|i, j,Nz−1−
2∆z

(
Kz|i, j,Nz +Kz|i, j,Nz−1

) k = Nz

(26)

IV. IMPLEMENTATION
A. Algorithm flowchart

To summarize the implementation of the algorithm,
the flowchart in Figure 1 presents the algorithm behavior,
along with highlighting in gray the iterative nature of the
solver used to obtain SVLs. A general overview of the
algorithm will be presented here, with more explanation
to follow in the upcoming sections. The flowchart begins
with the definition of the baseline unit cell of the lattice
εuc(~s) and the spatially variant ~K function ~K(~s). Then,
εuc(~s) is decomposed into a complex Fourier series trun-
cated into a set of P×Q×R spatial harmonics. Each
one of these truncated spatial harmonics is then spatially
varied to obtain the overall SVL. The gray area in the
flowchart of Figure 1 represents the iterative solver to
spatially vary each spatial harmonic. Each iteration in
the solver checks for the difference between the grating
phase, the current, and previous iterations and compares
it to a tolerance term, tol. Once this tolerance is reached,
the iterative solver stops executing and the next spatial
harmonic is spatially varied. Once all spatial harmonics
are processed, the algorithm finishes execution.

B. Algorithm inputs
In the first presentation of the algorithm to generate

SVLs, Rumpf [5] described the most common inputs to
the algorithm. The first input consists of the function
representing the baseline periodic element that describes
the lattice, εuc(~s). In this paper, this function is set to 0
for all areas describing air and 1 for areas where material
exists.

This baseline unit cell is then decomposed into
a complex Fourier series via a fast Fourier transform
(FFT). Each term in the Fourier series is a spatial har-
monic with its own direction, amplitude, and period and,
thus, can be considered as a single sinusoidal grating.
εuc(~s) then becomes a weighted sum of sinusoidal grat-
ings of the form

εuc(~s) =
P

∑
p

Q

∑
q

R

∑
r

αpqre j~Kpqr~s. (27)

where ~s is position, αpqr is the complex Fourier coeffi-
cient of the pqrth term, and ~Kpqr is the grating vector
associated with the pqrth term. The associated grating
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Fig. 1. Flowchart describing the algorithm and its steps.
The area inside of the gray box represents the iterative
solver for the grating phase. A grating phase is calculated
for every Cartesian direction and then combined into a
singular global grating phase.

vectors are calculated analytically according to
~Kpqr = p~T1 +q~T2 + r~T3. (28)

The second set of data in [11] consists of a series
of functions that define the spatial variance of the lat-
tice parameters. Separate functions for lattice spacing,
fill fraction, and unit cell orientation need to be con-
structed that describe the intended behavior for the final
lattice. The examples of input functions described in Fig-
ure 2 show a lattice orientation that changes based on the
direction of a line path as well as the lattice spacing being
spatially varied in a Gaussian profile to go from 0 to 1 of
the nominal lattice spacing; finally, the fill fraction of
the device is changed radially outward to go from 1% to
100%. It is important to note that these input maps can
take any shape the end-user requires for their application.
The examples in Figure 2 is a graphical representation of
a subset of possible maps.

C. Build spatially variant ~K function
To compute the spatially variant ~K function, an array

that encompasses the problem space is constructed. The
~Kpqr grating vector associated with the pqrth spatial har-
monic is extracted and applied to the whole grid. A rota-
tion matrix is generated to aid in the addition of the tilt
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that once the numerical difference between old  and 

Fig. 2. Sample algorithm inputs. From left to right: lat-
tice orientation, lattice spacing, and lattice fill fraction.
Any of these input maps can be drawn graphically on a
Cartesian grid to represent arbitrary shapes.

of the orientation to an intermediary ~K value at a point in
the grid.

In order to calculate the spatially variant ~K, the iter-
ative solver shown in the flowchart in Figure 1 first needs
to calculate the grating phase in accordance with eqn
(3). The grating phase is solved iteratively in accordance
with eqn (24)–(26), and at each iteration, Φold and Φnew
are compared to each other. This comparison is done
to determine when the iteration process to calculate the
grating phase stops. In this implementation, this crite-
ria for stopping the iterative process is controlled by a
tolerance factor; this means that once the numerical dif-
ference between Φold and Φnew is negligible, the answer
for the grating phase is considered complete.

D. Calculate spatially variant grating
After computing the overall grating phase through-

out the problem space, the spatially variant grating,
εpqr(~s), is calculated with the use of

εpqr(~s) = αpqre jΦpqr(~s) (29)
where αpqr represents the Fourier coefficient for the
pqrth planar grating of the unit cell.

E. Calculate overall lattice
Having calculated each spatially variant grating, the

overall lattice is obtained from their sum

εa(~s) = R

[
PQR

∑
pqr=1

εpqr(~s)

]
(30)

The numerical noise caused by the use of the FFT
and the construction of the lattice via the use of eqn (30)
can cause the values in εa(~s) to contain an imaginary
component, which should be dropped by retaining only
the real part of the summation.
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As mentioned in Section I, a potential application 

of SVLs is a spatially variant SCPC to direct the flow 

of light through a volume. The algorithm will be 

demonstrated here by generating and simulating this 

type of lattice. In the sections that follow, a technique 

for generating the input maps for this type of lattice is 

described. Then, two different spatially variant SCPC 

structures are generated with the iterative algorithm 

described in this paper. Finally, the results of an FDTD 

simulation of these structures are presented to 

demonstrate that functional lattices can be generated. 

 

A. Line-Path Algorithm: An Intuitive Lattice 

Orientation Generator for SCPCs 

This section describes the approach used to 

calculate the lattice orientation input map for flowing 

an electromagnetic wave around a double bend. The 

algorithm begins by creating a line path that the 

electromagnetic wave should follow. This is shown in 

Figure 3. 
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the line. A loop is set up that iterates through every 

point in the lattice and calculates the three vectors a , 

b , and c  for each point. The lattice orientation 

function that results from this process is shown in 

Figure 3. 
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Two spatially variant SCPCs were generated from the 
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cell in the left portion of Figure 4 is a simple cubic unit 

cell with the same dimensions and material parameters 

shown in [5]. The second lattice uses a hexagonal unit 

cell, as shown in the right portion of Figure 4, which 

exhibits broadband, omnidirectional, out-of-plane, and 

self-collimation as described in [12]. These structures 

were selected for generation with this algorithm due to 

their sensitivity to lattice spacing and overall structure 

[5, 12]. The final generated lattices are shown in Figure 

5. In Figure 5, red arrows represent the input and output 

ports of the electromagnetic wave. 
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dimensions. Cubic unit cell (left) has dimensions 

Fig. 3. Line path used as nominal unit cell orientation
(left) and the output lattice orientation (right). The figure
on the left represents the nominal path an electromag-
netic beam would follow inside of the lattice. The fig-
ure on the right represents the orientation vectors of each
unit cell as a function of position based on the orientation
line.

V. GENERATION AND SIMULATION OF
FULLY 3D SVLs

As mentioned in Section I, a potential application of
SVLs is a spatially variant SCPC to direct the flow of
light through a volume. The algorithm will be demon-
strated here by generating and simulating this type of
lattice. In the sections that follow, a technique for gener-
ating the input maps for this type of lattice is described.
Then, two different spatially variant SCPC structures are
generated with the iterative algorithm described in this
paper. Finally, the results of an FDTD simulation of
these structures are presented to demonstrate that func-
tional lattices can be generated.

A. Line-path algorithm: An intuitive lattice orienta-
tion generator for SCPCs

This section describes the approach used to calcu-
late the lattice orientation input map for flowing an elec-
tromagnetic wave around a double bend. The algorithm
begins by creating a line path that the electromagnetic
wave should follow. This is shown in Figure 3.

For each discrete point along the line, three vectors
~a,~b, and~c are defined that set the ideal orientation of the
unit cells along the line. From here, the unit cell orien-
tation of any other point within the lattice is set equal to
the orientation defined at the closest point on the line. A
loop is set up that iterates through every point in the lat-
tice and calculates the three vectors ~a,~b, and ~c for each
point. The lattice orientation function that results from
this process is shown in Figure 3.

B. Large lattice simulations
Two spatially variant SCPCs were generated from

the two different unit cells, as shown in Figure 4. The
unit cell in the left portion of Figure 4 is a simple cubic
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function that results from this process is shown in 
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cell in the left portion of Figure 4 is a simple cubic unit 

cell with the same dimensions and material parameters 

shown in [5]. The second lattice uses a hexagonal unit 

cell, as shown in the right portion of Figure 4, which 

exhibits broadband, omnidirectional, out-of-plane, and 

self-collimation as described in [12]. These structures 

were selected for generation with this algorithm due to 

their sensitivity to lattice spacing and overall structure 

[5, 12]. The final generated lattices are shown in Figure 

5. In Figure 5, red arrows represent the input and output 

ports of the electromagnetic wave. 
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variant SCPCs with their respective materials and 

dimensions. Cubic unit cell (left) has dimensions 

Fig. 4. Unit cells used to generate the two spatially vari-
ant SCPCs with their respective materials and dimen-
sions. Cubic unit cell (left) has dimensions a = 1.59 cm
and hexagonal unit cell (right) has dimensions b = 1.00
cm.1.59a   cm and hexagonal unit cell (right) has 

dimensions 1.00b   cm. 

  

Fig. 5. Generated spatially variant SCPCs. The arrows 

show the input and output directions of the 

electromagnetic waves. Left generated with a cubic unit 

cell, total dimensions 20 31.90a   cm. Right generated 

with a hexagonal unit cell, total dimensions 

12 12.00b   cm. 

 

Full-wave simulations were performed using 

Remcom’s XFDTD software. The source used was a 

Gaussian beam that was linearly polarized along the z -

axis impinging the input face of each self-collimating 

SCPC as shown in Figure 5. Each lattice was simulated 

at two difference frequencies and these were 1 15f   

GHz and 2 22.5f   GHz. The beam inside of the lattice 

was expected to follow the orientation of the unit cells 

due to propagating through an SC crystal. Results for 

both the simple cubic and hexagonal spatially variant 

SCPCs are shown in Figures 6 and 7. 

  

Fig. 6. FDTD simulation of electric field intensity in a 

spatially variant lattice generated with a cubic unit cell 

at 1 15f   GHz with a Gaussian beam ( 2.985   cm). 

  

Fig. 7. FDTD simulation of electric field intensity in a 

spatially variant lattice generated with a hexagonal unit 

cell at 2 22.5f   GHz with a Gaussian beam (

1.333   cm). 

 

Both simulations shown in Figures 6 and 7 show 

the electromagnetic wave traveling through the lattice 

following the curvature defined in Figure 3 and exiting 

through the output face. The simulation shown in 

Figure 6 exhibits greater spurious scattering. There are 

two main reasons for this. First, the cubic unit cell has 

weaker self-collimation; so it has a limited range of 

angles, or field-of-view (FOV), in which a wave can 

self-collimate. The waves outside this FOV will scatter 

into different directions and will not follow the defined 

path of SC. Second, the lattice orientation function fed 

into the SV algorithm was not enforcing the vectors 

perpendicular to the direction of SC, and, thus, the unit 

cell orientation across the three axes of freedom was 

not enforced. This can further change or reduce the 

limited FOV of the unit cell, leading to unwanted 

scattering. It is hypothesized that the performance of 

the lattice with the cubic unit cell can be improved by 

enforcing all three axes of freedom to follow the 

curvature, along with a deformation control [13] 

algorithm to further suppress any deformations along 

the path. The simulation of the hexagonal unit cell 

shows much better performance with almost zero 

spurious scattering. The hexagonal unit cell exhibits 

omnidirectional SC along the main axis of propagation, 

allowing the beam to exit the intended output face with 

minimal scattering loss. 

 

VI.  RESULTS 
The algorithm was benchmarked against the 

matrix-based SVL computation approach for memory 

consumption. Figure 8 presents the results of the 

benchmark when the number of unit cells in a simple 

cubic lattice is increased in the x , y , and z  directions. 

These results were obtained by calculating the total 

memory space allocated inside of MATLAB® for the 

working variables of the grating phase, input maps, and 

intermediate parameters used in MATLAB’s LU 

decomposition algorithm. 

 
Fig. 8. Iterative solver vs. matrix solver memory usage. 

 

Fig. 5. Generated spatially variant SCPCs. The arrows
show the input and output directions of the electromag-
netic waves. Left generated with a cubic unit cell, total
dimensions 20a = 31.90 cm. Right generated with a
hexagonal unit cell, total dimensions 12b = 12.00 cm.

unit cell with the same dimensions and material param-
eters shown in [5]. The second lattice uses a hexagonal
unit cell, as shown in the right portion of Figure 4, which
exhibits broadband, omnidirectional, out-of-plane, and
self-collimation as described in [12] . These structures
were selected for generation with this algorithm due to
their sensitivity to lattice spacing and overall structure
[5, 12]. The final generated lattices are shown in Figure
5. In Figure 5, red arrows represent the input and output
ports of the electromagnetic wave.

Full-wave simulations were performed using Rem-
com’s XFDTD software. The source used was a Gaus-
sian beam that was linearly polarized along the z-axis
impinging the input face of each self-collimating SCPC
as shown in Figure 5. Each lattice was simulated at
two difference frequencies and these were f1 = 15 GHz
and f2 = 22.5 GHz. The beam inside of the lattice was
expected to follow the orientation of the unit cells due to
propagating through an SC crystal. Results for both the
simple cubic and hexagonal spatially variant SCPCs are
shown in Figures 6 and 7.
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angles, or field-of-view (FOV), in which a wave can 

self-collimate. The waves outside this FOV will scatter 

into different directions and will not follow the defined 

path of SC. Second, the lattice orientation function fed 

into the SV algorithm was not enforcing the vectors 

perpendicular to the direction of SC, and, thus, the unit 

cell orientation across the three axes of freedom was 

not enforced. This can further change or reduce the 

limited FOV of the unit cell, leading to unwanted 

scattering. It is hypothesized that the performance of 

the lattice with the cubic unit cell can be improved by 

enforcing all three axes of freedom to follow the 

curvature, along with a deformation control [13] 
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the path. The simulation of the hexagonal unit cell 

shows much better performance with almost zero 

spurious scattering. The hexagonal unit cell exhibits 
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VI.  RESULTS 
The algorithm was benchmarked against the 

matrix-based SVL computation approach for memory 
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Fig. 7. FDTD simulation of electric field intensity in
a spatially variant lattice generated with a hexagonal
unit cell at f2 = 22.5 GHz with a Gaussian beam (ω =
1.333cm).

Both simulations shown in Figures 6 and 7 show
the electromagnetic wave traveling through the lattice
following the curvature defined in Figure 3 and exit-
ing through the output face. The simulation shown in
Figure 6 exhibits greater spurious scattering. There are
two main reasons for this. First, the cubic unit cell
has weaker self-collimation; so it has a limited range
of angles, or field-of-view (FOV), in which a wave can
self-collimate. The waves outside this FOV will scatter
into different directions and will not follow the defined
path of SC. Second, the lattice orientation function fed
into the SV algorithm was not enforcing the vectors per-
pendicular to the direction of SC, and, thus, the unit
cell orientation across the three axes of freedom was not
enforced. This can further change or reduce the limited
FOV of the unit cell, leading to unwanted scattering. It is
hypothesized that the performance of the lattice with the
cubic unit cell can be improved by enforcing all three
axes of freedom to follow the curvature, along with a
deformation control [13] algorithm to further suppress
any deformations along the path. The simulation of the
hexagonal unit cell shows much better performance with
almost zero spurious scattering. The hexagonal unit cell
exhibits omnidirectional SC along the main axis of prop-
agation, allowing the beam to exit the intended output
face with minimal scattering loss.
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VI. RESULTS
The algorithm was benchmarked against the matrix-

based SVL computation approach for memory consump-
tion. Figure 8 presents the results of the benchmark
when the number of unit cells in a simple cubic lat-
tice is increased in the x, y, and z directions. These
results were obtained by calculating the total memory
space allocated inside of MATLAB® for the working
variables of the grating phase, input maps, and interme-
diate parameters used in MATLAB’s LU decomposition
algorithm.

Figure 8 shows that there is a linear trend in the
peak memory utilization while using the iterative SVL
solver, whereas the peak memory usage when using the
matrix solver shows an exponential growth. These trends
in memory usage are a clear indication that the iterative
solver presented is an excellent tool to generate large-
scale lattices, while the matrix solver falls behind in
memory consumption due to the computationally expen-
sive LU decomposition.

VII. CONCLUSION
It was shown that the formulation of an iterative

SVL algorithm can be used to produce fully three-
dimensional SVLs with greater memory efficiency. A
line path algorithm was used to convey the unit cell ori-
entation as a function of position in an easy and intuitive
manner. Large-scale SVLs were able to be generated to
be used in electromagnetic applications as spatially vari-
ant PhCs. Two lattices consisting of 20× 20× 20 and
12×12×12 unit cells, respectively, were generated and
simulated using the FDTD method to confirm the device
functionality. The low memory requirements of the iter-
ative approach to generating SVLs allow for the real-

ization of much larger photonic devices. Further, many
geometrical properties in addition to unit cell orientation
can be spatially varied to control multiple aspects of the
wave at once in a 3D volume. This may prove valuable
for unlocking the full potential that PhCs can offer to
arbitrarily control electromagnetic waves throughout a
volume.
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