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Abstract – The method to evaluate the transmitted fields
of a source inside a simply connected magnetic shell
with large but finite conductivity at low frequencies is
proposed in this paper. When modeling the magnetic
shell with large conductivity, it is regarded as a pene-
trable object. Electric field integral equation (EFIE) is
selected for the exterior region problem and magnetic
field integral equation (MFIE) is chosen for the interior
region problem. Each operator is decomposed with loop-
star functions to overcome the problem of low-frequency
breakdown. Numerical results verify the accuracy of the
proposed method.
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I. INTRODUCTION
The analysis of electromagnetic compatibility

(EMC) is frequently carried out to keep a system or com-
ponents of a system working properly [1, 2]. For exam-
ple, components of a microelectronic system should
work normally and not interfere with others at the same
time. The protection of an electronic system with high
sensitivity from the electromagnetic (EM) emission from
a high power electrical equipment is usually needed on a
platform like ships and airplanes. One common strategy
to suppress EM interference (EMI) is to enclose the elec-
tronic or electrical equipment with a shield with large
conductivity if possible. Hence, it is necessary to cal-
culate the fields transmitted from a shielding shell. In
some scenarios, the amplitude of EM fields leaked from
a target is expected to be as small as possible so that it
cannot be detected. This is of great importance for some
underwater targets, such as submarines and unmanned
underwater vehicles. Because those underwater targets
are immersed in sea water, low-frequency EM waves can
propagate to a large distance. The body of underwater
targets may be filled with magnetic materials. At low
frequencies, the shell cannot be modeled as perfect elec-

trical conductor (PEC) because the skin depth is compa-
rable to its thickness. Hence, it is necessary to model the
fields transmitted from a magnetic shell with large but
finite conductivity accurately at low frequencies.

The method based on quasi-static approximation is
first developed by neglecting the displacement currents
[3, 4]. However, this approximate method can only work
well at low frequencies and may give wrong results at
relatively higher frequencies, and the frequency when
quasi-static method fails is difficult to predict.

Rigorous methods are proposed to model conduc-
tor with large but finite conductivity, like finite ele-
ment method (FEM), volume integral equation (VIE)
method, and surface integral equation (SIE) method. SIE
method is preferred to model conductors with the advan-
tage of only discretizing the surface of conductors. In
SIE method, the conductor is modeled as a penetrable
object. Appropriate equations from the interior and exte-
rior problems are selected to describe the behavior of the
fields in the interior of the conductor and the coupling
between other objects, respectively [5–8]. Examples are
the method using the generalized impedance boundary
condition (GIBC) [7] and the differential surface admit-
tance (DSA) [8].

The low-frequency breakdown (LFB) problem of
electric field integral operator (EFIO) in the SIE method
mentioned above has to be overcome. Some remedies
have been proposed. The primal and dual projectors
of solenoidal and non-solenoidal component are used to
perform quasi-Helmholtz decomposition of operators in
Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT)
equation [9]. Two low-frequency stable equations with
different augment techniques are proposed in [10] and
[11]. To reduce the number of equivalent surface
sources on the interface and improve the efficiency of
solvers, single-source formulations are proposed with
augment techniques for lossy conductors to cover the
low-frequency band analysis [12, 13]. Well-conditioned
formulation based on potential, instead of electric and
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to cover the low-frequency band analysis [12, 13]. 
Well-conditioned formulation based on potential, 
instead of electric and magnetic fields, is also reported 
to model good conductors [14]. 

In this work, the electric field integral equation 
(EFIE) in the exterior problem and the magnetic field 
integral equation (MFIE) in the interior problem of a 
shell are selected to model the shell with large 
conductivity and relative permeability, similar to [7]. 
The background media may also have large constitutive 
parameters, like sea water with large relative 
permittivity. Hence, PMCHWTs are not chosen because 
it may fail to model objects with high contrast material 
parameters. The shell is thin with a thickness of several 
centimeters. The approximation in [7] due to small skin 
depth does not hold in this work because the skin depth 
may be comparable to the thickness. Furthermore, the 
LFB problem in [7] is not fully considered. Here, loop-
star decomposition is performed on each operator in the 
equation for a simply connected shell. The low-
frequency scaling of the decomposed coefficient matrix 
is analyzed and two sets of new rescaling coefficients 
are applied to improve the conditioning of the formular 
at low frequencies. 
 

II. FORMULATION FOR THE SHELL 
 
A. Equation Formular at High Frequency 

A source in a magnetic shell with large but finite 
conductivity is shown in Figure 1. The source inJ  is in 
region 1V  with parameters ( )1 1 1, ,r rµ ε σ  and bounded 
by surface 1V∂ . Region 2V  denotes the shell with 
parameters ( )2 2 2, ,r rµ ε σ . The shell is bounded by 
surfaces 1V∂  and 2V∂ . The shell is immersed in a 
homogeneous background media 3V  with parameters 
( )3 3 3, ,r rµ ε σ . n̂  is the outward unit vector of the 
surface. In our application, region 1V  is air with 

1 0σ = , region 2V  has large conductivity 2σ  and 
relative permeability 2rµ , and region 3V  is sea water 
with large relative permittivity 3rε  and 3 4 S mσ = . 

 
 

Fig. 1. Configuration of a source in a shell immersed in 
a homogeneous background media. 
 

Based on extinction theorem, the EFIE and MFIE 
describing the internal problem of region 1V  can be 
written as 

 { } { }1 1 in
1 1 1ˆ 0, ,E d E d V− − × − + = ∈∂ n J M E r    (1) 

and 
 { } { }1 1 in

1 1 1ˆ 0, ,H d H d V− − × − + = ∈∂ n J M H r    (2) 

where 1
d
−J  and 1

d
−M  are the unknown equivalent 

surface electric current and magnetic current density on 
1V∂ . inE  and inH  are the fields radiated by the source 

inJ . The EFIE and MFIE describing the internal 
problem for region 2V  can be expressed as 
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where 1
d
+J  and 1

d
+M  are the equivalent surface electric 

current and magnetic current density on 1V∂ , 
respectively. 2

d
−J  and 2

d
−M  are the equivalent surface 

electric current and magnetic current density on 2V∂ , 
respectively. The EFIE and MFIE describing the 
internal problem of region 3V  can be written as 

 { } { }( )2 2
3 3 2ˆ 0, ,E d E d V+ + × − = ∈∂ n J M r    (7) 

 { } { }( )2 2
3 3 2ˆ 0, ,H d H d V+ + × − = ∈∂ n J M r    (8) 

where 2
d
+J  and 2

d
+M  are the equivalent surface electric 

current and magnetic current density on 2V∂ , 
respectively. Due to the boundary condition on the 
interfaces, i i

d d
+ −= −J J  and i i

d d
+ −= −M M , with i = 1, 2.  

The magnetic shell has large conductivity and is 
modeled as a penetrable object. Hence, the MFIE 
describing internal problem of region 2V  and EFIE 
describing external problem of region 2V  are selected: 

 { } { }1 1
1 1 1ˆ 0, ,in

E d E d V− − × − + = ∈∂ n J M E r    (9) 
Fig. 1. Configuration of a source in a shell immersed in
a homogeneous background media.

magnetic fields, is also reported to model good conduc-
tors [14].

In this work, the electric field integral equation
(EFIE) in the exterior problem and the magnetic field
integral equation (MFIE) in the interior problem of a
shell are selected to model the shell with large conduc-
tivity and relative permeability, similar to [7]. The back-
ground media may also have large constitutive param-
eters, like sea water with large relative permittivity.
Hence, PMCHWT equation are not chosen because it
may fail to model objects with high contrast material
parameters. The shell is thin with a thickness of sev-
eral centimeters. The approximation in [7] due to small
skin depth does not hold in this work because the skin
depth may be comparable to the thickness. Furthermore,
the LFB problem in [7] is not fully considered. Here,
loop-star decomposition is performed on each operator
in the equation for a simply connected shell. The low-
frequency scaling of the decomposed coefficient matrix
is analyzed and two sets of new rescaling coefficients are
applied to improve the conditioning of the formular at
low frequencies.

II. FORMULATION FOR THE SHELL
A. Equation formular at high frequency

A source in a magnetic shell with large but finite
conductivity is shown in Figure 1. The source Jin is in
region V1 with parameters (µr1,εr1,σ1) and bounded by
surface ∂V1. Region V2 denotes the shell with parame-
ters (µr2,εr2,σ2). The shell is bounded by surfaces ∂V1
and ∂V2. The shell is immersed in a homogeneous back-
ground media V3 with parameters (µr3,εr3,σ3). n̂ is the
outward unit vector of the surface. In our application,
region V1 is air with σ1 = 0, region V2 has large con-
ductivity σ2 and relative permeability µr2, and region
V3 is sea water with large relative permittivity εr3 and
σ3 = 4 S

/
m.

Based on extinction theorem, the EFIE and MFIE

describing the internal problem of region V1 can be
written as

n̂×
[
L 1E

{
J1−

d

}
−K1E

{
M1−

d

}
+Ein

]
= 0, r ∈ ∂V1,

(1)
and

n̂×
[
K1H

{
J1−

d

}
−L1H

{
M1−

d

}
+Hin

]
= 0, r ∈ ∂V1,

(2)
where J1−

d and M1−
d are the unknown equivalent surface

electric current and magnetic current density on ∂V1.
Ein and Hin are the fields radiated by the source Jin.
The EFIE and MFIE describing the internal problem for
region V2 can be expressed as

n̂×
[

L2E
{

J1+
d

}
−K2E

{
M1+

d

}
+L2E

{
J2−

d

}
−K2E

{
M2−

d

} ]= 0, r ∈ ∂V1,

(3)
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{
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}
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d

}
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d

}
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d
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(4)
and
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[
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{
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}
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}
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d
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(6)
where J1+

d and M1+
d are the equivalent surface electric

current and magnetic current density on ∂V1, respec-
tively. J2−

d and M2−
d are the equivalent surface elec-

tric current and magnetic current density on ∂V2, respec-
tively. The EFIE and MFIE describing the internal prob-
lem of region V3 can be written as

n̂×
[(

L3E
{

J2+
d

}
−K3E

{
M2+

d

})]
= 0, r ∈ ∂V2, (7)

n̂×
[(

K3H
{

J2+
d

}
−L3H

{
M2+

d

})]
= 0, r ∈ ∂V2, (8)

where J2+
d and M2+

d are the equivalent surface electric
current and magnetic current density on ∂V2, respec-
tively. Due to the boundary condition on the interfaces,
Ji+

d =−Ji−
d and Mi+

d =−Mi−
d , with i = 1, 2.

The magnetic shell has large conductivity and is
modeled as a penetrable object. Hence, the MFIE
describing internal problem of region V2 and EFIE
describing external problem of region V2 are selected:

n̂×
[
L1E

{
J1−

d

}
−K1E

{
M1−

d

}
+Ein]= 0, r ∈ ∂V1,

(9)

n̂×
[

K2H
{

J1+
d

}
−L2H

{
M1+

d

}
+K2H

{
J2−

d

}
−L2H

{
M2−

d

} ]= 0, r ∈ ∂V1,

(10)
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[
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d

}
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{
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d

}
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{
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d

}
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{
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d
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(11)
n̂×
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d

}]
= 0, r ∈ ∂V2. (12)
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The equivalent surface sources Ji+
d and Mi+

d on the sur-
face ∂Vi are expanded with RWG functions [15]

Ji+
d =

Ni

∑
n=1

ji
nfn, Mi+

d =
Ni

∑
n=1

mi
nfn. (13)

After testing eqn (9)–(12) with n̂× fm, a matrix equation
is obtained

L1E K1E 0 0
K2H −L2H −K2H L2H
K2H −L2H −K2H L2H

0 0 L3E K3E




j1

m1

j2

m2

=


−Vin

e
0
0
0

 .
(14)

The expressions of matrix entries are listed in the
Appendix. Note that a rotated identity matrix Ip

X appears
in K1E , K2H , K2H , and K3E . Once the equivalent surface
sources J2+

d and M2+
d on ∂V2 are solved, the transmitted

fields in the background media can be obtained
Et = L3E

{
J2+

d

}
−K3E

{
M2+

d

}
, r ∈V3, (15)

Ht = K3H
{

J2+
d

}
−L3H

{
M2+

d

}
, r ∈V3. (16)

B. Loop-star decomposition
At low frequencies, the LFB problem of operators

has to be dealt with. In this work, the loop-star decom-
position is adopted and the shell is assumed to be simply
connected. Different from the work in [7], the loop-star
scheme is applied to all operators in eqn (14). Specifi-
cally, after loop-star decomposition, the discretized oper-
ators in (14) become

UqH
iE/H =

[
ULL

iE/H ULS
iE/H

USL
iE/H USS

iE/H

]
,(i = 1,2,3) , (17)

where U denotes L or K. The scaling of entries in the
decomposed operators UqH

iE/H can be analyzed with Tay-
lor expansions when frequency approaches zero. At low
frequencies, the Green’s function can be expanded as

gi
(
r,r′
)
≈ 1

4πR

[
1− jkiR−

1
2
(kiR)

2 + · · ·
]
, (18)

and the dominant term of gi (r,r′) is O (1) as frequency
approaches zero. Hence, the scaling of each sub-block
in LiE and LiH is determined by the coefficients kiηi and
ηi
/

ki of the vector and scalar potential terms. At low
frequencies, if σi 6= 0, εieff ≈ σi

/
jω . Hence,

kiηi = ωµi = O (ωµ0) ,(i = 1,2,3) , (19)
η1

k1
=

1
ωε1eff

=
1

ωε0
= O

(
1

ωε0

)
, (20)

ηi

ki
=

1
ωεieff

=
j

σi
= O

(
1
σi

)
,(i = 2,3) . (21)

Hence, the scaling of LqH
1E is

LqH
1E = O

[
ωµ0 ωµ0
ωµ0

1
ωε0

]
. (22)

The scaling of LqH
2E and LqH

3E is

LqH
iE = O

[
ωµ0 ωµ0
ωµ0

1
σi

]
,(i = 2,3) . (23)

The scaling of LqH
2H and LqH

3H can be derived similarly as

LqH
iH = O

[
σi σi
σi

1
ωµ0

]
,(i = 2,3) . (24)

The gradient of Green’s function can be expanded at low
frequencies as

∇g
(
r,r′
)
≈ 1

4π

(
∇

1
R
− k2

i
2

R
R
+

jk2
i

3
R+ · · ·

)
. (25)

Note that the static term ∇
(
1
/

R
)

in (25) will be canceled
between the interaction of two local loop functions [16].
Hence, the leading term of KLL

iE/H is O
(
k2

i
)
. This does

not happen in other sub-blocks in KqH
iE/H . The expression

of k2
i in Vi is

k2
i =

{
ω2µ0ε0, i = 1
− jωµiσi, i = 2,3 , (26)

and the scaling of KqH
iE/H can be derived as, accordingly,

KqH
iE/H = O

[
ω2µ0ε0 1

1 1

]
, (i = 1) , (27)

KqH
iE/H = O

[
ωµ0σi 1

1 1

]
, (i = 2,3) . (28)

The scaling of rotated identity operator Ip,qH
X is [17]

Ip,qH
X = O

[
0 1
1 1

]
, (p = 1,2) . (29)

ZΛΣ =



ωµ0 ωµ0 ω2µ0ε0 1 0 0 0 0
ωµ0

1
ωε0

1 1 0 0 0 0
ωµ0σ2 1 σ2 σ2 ωµ0σ2 1 σ2 σ2

1 1 σ2
1

ωµ0
1 1 σ2

1
ωµ0

ωµ0σ2 1 σ2 σ2 ωµ0σ2 1 σ2 σ2
1 1 σ2

1
ωµ0

1 1 σ2
1

ωµ0
0 0 0 0 ωµ0 ωµ0 ωµ0σ3 1
0 0 0 0 ωµ0

1
σ3

1 1


. (30)

Eqn (14) ZI = V becomes ZΛΣIΛΣ =VΛΣ after loop-
star decomposition. The scaling of ZΛΣ can be writ-
ten as eqn (30). Apparently, the matrix of eqn (30)
is ill-conditioned as frequency approaches zero. To
improve the conditioning of ZΛΣ, two diagonal matrices
are defined as follows:

L = diag(aL,bL,cL,dL,eL, fL,gL,hL) , (31)
R = diag(aR,bR,cR,dR,eR, fR,gR,hR) . (32)

The preconditioned equation is
Ay = b, (33)

where A = LZΛΣR, y = R−1IΛΣ, and b = LVΛΣ. To
improve the conditioning of matrix A, the values of
rescaling coefficients in matrices L and R are selected
as follows:

aL =
√

1
ωµ0

,bL =
√

ωε0,cL =
√

1
ωµ0

,dL =
√

ωµ0,

eL =
√

1
ωµ0

, fL =
√

ωµ0,gL =
√

1
ωµ0

,hL =
√

1
ωµ0

,

(34)
aR =

√
1

ωµ0
,bR =

√
ωε0,cR =

√
ωµ0,dR =

√
ωµ0,

eR =
√

1
ωµ0

, fR =
√

ωµ0,gR =
√

ωµ0,hR =
√

ωµ0.

(35)
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The scaling of preconditioned matrix A is shown in
equation (36).

A =



1 ω
√

µ0ε0 ω2µ0ε0 1 0 0 0 0
ω
√

µ0ε0 1 ω
√

µ0ε0 ω
√

µ0ε0 0 0 0 0

σ2

√
ε0
µ0

σ2 σ2 σ2 1 σ2 σ2

1 ω
√

µ0ε0 ωµ0σ2 1 1 ωµ0 ωµ0σ2 1

σ2

√
ε0
µ0

σ2 σ2 σ2 1 σ2 σ2

1 ω
√

µ0ε0 ωµ0σ2 1 1 ωµ0 ωµ0σ2 1
0 0 0 0 1 ωµ0 ωµ0σ3 1
0 0 0 0 1 1

σ3
1 1


.

(36)
It is observed that much better conditioning of coefficient
matrix is achieved. The IΛΣ can be recovered from y by

IΛΣ = Ry, (37)
and the vector of RWG coefficients I can be recovered as
follows:

I =
(

T1

T2

)
IΛΣ =

(
T1

T2

)
Ry, (38)

where Tp is the basis transformation matrix on
surface ∂Vp.

The proposed method is stable with respect to the
small perturbations of the geometry and material param-
eter in the framework of Gakerkin testing.

III. NUMERICAL EXAMPLES
The radiation of a vertical magnetic dipole in a

spherical shell is calculated to validate the accuracy of
the proposed method. The relative error is calculated
with 20log

(
‖x−y‖

/
‖y‖
)
, where x and y are the cal-

culated and reference results. ‖•‖ is the l2 norm.
The parameter Imdl of the magnetic dipole is 1 Vm.

The dipole is placed along +z direction at (0,0,0.05 m).
The inner and outer radii of the shell are 0.3 and 0.33 m,
respectively. The region V1 is free space. The param-
eters of shell V2 are εr2 = 1, µr2 = 100, and σ2=1.0×
107 S

/
m. The parameters of background region V3 are

εr3 = 81, µr3 = 1, and σ3=4S
/

m. The frequency is
0.1 Hz. The inner and outer spherical surfaces are dis-
cretized with an average edge length of 0.04 m, result-
ing in 2556 and 3099 RWG functions on the inner and
outer surfaces, respectively. The current densities on the
outer surface are shown in Figure 2. If the Mie analyti-
cal solution is the reference result, the relative errors of
electric and magnetic current density on the inner sur-
face are −36.1 and −31.6 dB, respectively; the corre-
sponding relative errors of current densities on the outer
surface are −40.9 and −35.9 dB, separately. The condi-
tion number reduced from 1.1× 1022 to 2.4× 109 after
rescaling coefficients were applied.

The scattered fields in region V1 along the
line

(
r = 0.2 m,0≤ θ ≤ π,φ = π

/
4
)

are shown in
Figure 3. The total fields in the shell along the
line

(
r = 0.315 m,0≤ θ ≤ π,φ = π

/
4
)

are shown in
Figure 4. The transmitted fields in the background
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III. Numerical Examples 
The radiation of a vertical magnetic dipole in a 

spherical shell is calculated to validate the accuracy of 
the proposed method. The relative error is calculated 
with ( )20log −x y y , where x and y are the 

calculated and reference results.   is the 2l  norm.  
The parameter mI dl  of the magnetic dipole is 1 

Vm. The dipole is placed along +z direction at 
( )0,0,0.05 m . The inner and outer radii of the shell are 
0.3 and 0.33 m, respectively. The region 1V  is free 
space. The parameters of shell 2V  are 2 1rε = , 

2 100rµ = , and 7
2 =1.0 10 S mσ × . The parameters of 

background region 3V  are 3 81rε = , 3 1rµ = , and 

3 = 4 S mσ . The frequency is 0.1 Hz. The inner and 
outer spherical surfaces are discretized with an average 
edge length of 0.04 m, resulting in 2556 and 3099 
RWG functions on the inner and outer surfaces, 
respectively. The current densities on the outer surface 
are shown in Figure 2. If the Mie analytical solution is 
the reference result, the relative errors of electric and 
magnetic current density on the inner surface are −36.1 
and −31.6 dB, respectively; the corresponding relative 
errors of current densities on the outer surface are −40.9 
and −35.9 dB, separately. The condition number 
reduced from 221.1 10×  to 92.4 10×  after rescaling 
coefficients were applied. 

 
                 (a)                                         (b)                      
 

Fig. 2. (a) Electric current density on the outer surface. 
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The total fields in the shell along the line 
( )0.315 m,0 , 4r θ π φ π= ≤ ≤ =  are shown in Figure 4. 
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The transmitted electric and magnetic fields on the
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calculated with proposed method agree well with refer-
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Fig. 6. Transmitted fields on the XOZ plane. (a) Electric 
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Fig. 7. Transmitted fields on the XOZ plane. (a) 
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Magnetic field calculated with Mie series solution. 
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Fig. 12. Transmitted fields on the XOY plane. (a) Electric
field calculated with the proposed method. (b) Electric
field calculated with Mie series solution.

low frequencies. Presented numerical results validate the
accuracy of the proposed method.
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Fig. 13. Transmitted fields on the XOY plane. (a) Mag-
netic field calculated with the proposed method. (b)
Magnetic field calculated with Mie series solution.
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KiE and KiH include both residue term and Cauchy prin-
cipal value term. ki = ωµiεieff and ηi = µi

/
εieff are the

wave number and wave impedance in region Vi, respec-
tively. εieff = εi +σi

/
jω is the effective permittivity in

region Vi. gi (r,r′) = e− jkiR
/

4πR is the Green’s function
in the region Vi.

B. Expressions of matrix entries in (14)
The expressions of matrix elements in (14) are as
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