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Abstract – Based on a test rig supported by active mag-
netic bearings (AMBs), this paper focuses on the study
of the nonlinear dynamic characteristics and the factors
affecting the operation of a rotor system under the cou-
pling of magnetic bearing force and Alford force. In
order to solve the nonlinear dynamic response of rotor
system, a dynamic equation of the rotor which intro-
duces Alford force and the electromagnetic force of the
AMBs controlled by PID is established. By changing
the control parameters (kP and kD), operation parameters
(rotational speed), and structural parameters (clearance
between impeller and volute), the equation is solved by
using Runge−Kutta method. The results show that the
rotor system exhibits complex nonlinear dynamic char-
acteristics under the coupling action of Alford force and
magnetic bearing force. The rotor system appears dif-
ferent dynamic behaviors such as single period, multi
multi-period, and quasi quasi-period when changing the
control parameters. Among all the control parameters,
adjusting kD is more effective to ensure system stability.
The amplitude of rotor increases from 8.2 µm to 11.9 µm
with the increase of speed from 6000 rpm to 10,000 rpm,
while that decreases from 9.6 µm to 8.2 µm with the
increase of clearance between impeller and volute from
1mm to 4 mm. Therefore, under the influence of Alford
force, apart from the control parameters, the operation
parameters and structural parameters of magnetic bear-
ings also affect the operation of the rotor system sup-
ported by the AMBs.

Index Terms – Active magnetic bearings, Alford force,
Rotor rotor dynamics, Nonlinearnonlinear.

I. INTRODUCTION
The stable operation of rotor system is the premise

of normal operation of rotating machinery. However,

because of the manufacturing and assembly problems,
the impeller and volute are relatively eccentric, thus lead-
ing to the uneven distribution of tip clearance unevenly
distribution as well as the difference in blade effi-
ciency and pressure distribution around the circumfer-
ence. According to Bernoulli principle, the blade with
small clearance is more efficient and dose does more
work and, therefore, receives more aerodynamic load.
In consequence, apart from the resultant torque, a trans-
verse force acting on the impeller axis which increases
with the increase of impeller eccentricity is generated by
the circumferential aerodynamic force. The transverse
force is a self-excited force of the rotor which may even-
tually cause the instability of the rotor. Consequently, it
is necessary to explore the influence of this force cou-
pling on the rotor system.

GE found this phenomenon in the test of a gas tur-
bine. The vibration was not effectively eliminated by
dynamic balance method but finally solved by changing
the structure. At that time, people did not pay more atten-
tion to this phenomenon. Until 1958, Thomas first raised
this problem in the study of the stability of steam tur-
bine [1]. Alford studied this problem and established
a mechanical model [2]. Therefore, this force is usu-
ally called Alford force. Since then, many scholars
have studied Alford force. Cheng et al. who com-
bined rolling bearing force with Alford force and used
the Runge−Kutta method to solve the dynamic equa-
tions of the system found that excessive bearing clear-
ance and rotor eccentricity will reduce the stability of
the system [3]. Jung et al. did a limit-cycle analysis
of auto-balancer system considering Alford force. The
results showed that for certain combinations of bearing
parameters and operating speeds, the global asymptotic
stability of the synchronous balanced condition can be
guaranteed [4]. Yada et al. analyzed the open/close noz-
zle mode and the open/close ratio of the symmetrical
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part of the partial intake turbine in the turbopump of the
rocket engine. It is found that the Alford force varies
with the rotation angle at a certain opening/closing ratio
and put forward the universal rules to provide guidelines
for follow-up research [5]. Taking the flexible shaft and
elastic disk rotor system as the research object, Yang et
al. established the vibration differential equation with
the modal synthesis method and solved the equation by
using the Runge−Kutta method. The results showed that
the increase of speed and disk radius will lead to the
increase of rotor response, which can help to improve the
stability of the system by adjusting the support position
[6]. Li et al. analyzed the impact of nonlinear coupling
factor and blade-bending vibration to dynamic charac-
teristics of rotor-bearing system and the results indicated
that the Alford force caused by blade tip clearance makes
the motion state of the system more complex [7].

Based on the rolling bearing rotor system, many
scholars have studied the factors that affect the opera-
tion of rotor system considering Alford force. However,
in recent years, with the application and development of
electromagnetic technology, permanent magnet genera-
tor [8–10], maglev planar motor [11–13], and magnetic
bearings [14–16] have been widely concerned because
of its advantages of no friction, high speed, and long life.
In addition, active magnetic bearings (AMBs) that can
be actively controlled has have been successfully applied
in many industrial products [17]. Therefore, it is nec-
essary to study the factors affecting the stability of the
rotor system supported by the AMBs under Alford force.
There are few researches on it, nevertheless. Wang et
al. who established the finite element model of the cou-
pling of magnetic bearing force and Alford force under
PID control algorithm used the Newmark-β method to
solve the dynamic response of the rotor system. The
results showed that under the action of magnetic bear-
ing force and Alford force, the system shows complex
dynamic characteristics and the control parameters have
great influence on the characteristics of rotor system.
But, this paper only does the simulation research [18].

In this paper, an AMB test rig is taken as the research
object, a dynamic equation which considers the cou-
pling effect of Alford force and magnetic bearing force
under the PID controller is established, and the rotor
response is solved with the Runge−Kutta method. The
results show that after considering Alford force, the sys-
tem has significant nonlinear characteristics. Meanwhile,
by changing the control parameters (kP and kD), operat-
ing parameters (rotational speed), as well as structural
parameters (clearance between impeller and volute), the
characteristics of the system have changed greatly. It
shows that different from the traditional bearing, the
magnetic bearing should take not only structural char-
acteristics but also the control parameters into account.
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The Taylor expansion is carried out at ix=0, x=0 
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where μ0is the vacuum permeability, Ais the area of a 
single magnetic pole, N is the total number of turns 
of the coil on a pair of magnetic poles, C0 is the 
unilateral air gap when the rotor is at the magnetic 

Motor AMB
Rotor

AMB

Displacement sensor

A -side B -side

AMB

Fig. 1. Active magnetic bearing rotor system structure.
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A. The AMBs rotor system model
A typical AMB rotor system structure is shown in
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AMBs and driven to rotate by motor.

The electromagnetic force produced by an electro-
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The magnetic bearing adopts differential arrange-
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The Taylor expansion is carried out at ix = 0, x =

0 and the higher order term is ignored, . The magnetic
bearing force on the rotor can be expressed as:
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0
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(3)

where µ0 is the vacuum permeability, A is the area of a
single magnetic pole, N is the total number of turns of
the coil on a pair of magnetic poles, C0 is the unilateral
air gap when the rotor is at the magnetic center, I0 is the
coil bias current, ix is the coil control current, kh is the
displacement stiffness coefficient, and ki is the current
stiffness coefficient.

B. Alford force model
Many scholars have focused on the modeling of

Alford force. The first model given by Thomas is as fol-
lows:

f =
moλu

2
·

dξsp

dδ
· e, (4)

where mo is the total gas flow, λ is the pressure coef-
ficient, u is the tangent speed at the center of the blade,
ζ sp is the local efficiency loss, δ is the tip clearance,
and e is the eccentricity.
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Alford made a further study and established the
model as:

f =
T βe
DH

, (5)

where, T is the torque on the impeller, D is the diameter
at the center of the blade, H is the blade height, β is the
efficiency coefficient, and e is the eccentricity.

However, their models have some limitations. First,
their models are based on the local efficiency loss of
impeller. What’s more, it is difficult to get some param-
eters of the model. In Thomas’ model, dξsp

dδ
is irregular

and difficult to calculate. In Alford’s model, similar to
the correction factor, β is a variable value that can be
adjusted to meet the matching between theory and exper-
iment by adjusting that value. Since then, many schol-
ars have revised and improved the Alford force model
[19–20]. Among them, based on fluid mechanics and
momentum theorem, Chai et al. combined the impeller
structure parameters to carry out theoretical modeling
and used numerical methods to verify the reliability of
the model [21]. This paper applies the model established
by Chai et al. The details are as below follows:
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fax = fa · cosθ

fay = fa · sinθ

(
tanθ =

y
x

)
,

(6)
where e is the eccentricity, RT is the tip radius, RB is the
root radius, β 1 is the inlet angle, β 2 is the outlet angle,
ρ0 is the airflow density, ζ is the speed coefficient, δ̄

is the average tip clearance, V is the inlet speed, and fax,
fay are the component forces of the Alford force in the x
and y directions.

C. System dynamics equation
Alford force and magnetic bearing force are sub-

stituted into the rotor system and the system dynamics
equation is as follows:

mẍ0 = fAMB +mēϖ
2 sinϖT + fALFORD. (7)

The AMBs are different from rolling bearings as the
control algorithm also affects the support characteristics
of the AMBs. This paper adopts PID controller which is
widely used in industry, and the bearing force under the
PID controller can be expressed as:

fAMB = kxx0 + ki[kPx0 + kI

T∫
0

Sx0dS+ kDẋ0], (8)

Table 1: Parameters of magnetic bearing and impeller
Parameter name Symbol Value Unit

Mass m 14.56 kg
Current stiffness ki 338.54 N/A

Displacement stiffness kh 2.502e6 N/µm
Tip radius RT 29 mm

Root radius RB 7.5 mm
Inlet angle β 1 25 ◦

Outlet angle β 2 30 ◦

where m is the rotor mass, and kP, kI , and kD are the
proportional, integral, and differential coefficients.

Formulae (8) and (6) are substituted into eqn (7) and
the dimensionless transformation is introduced to facili-
tate computation.

Taking x0
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= x, ē
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= e, ω̄
√
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(10)
Due to the strong nonlinear characteristics of the

system, the Runge−Kutta method is used to solve the
dynamics equation of the system and the results are ana-
lyzed.

III. SYSTEM CHARACTERISTIC ANALYSIS
In order to explore the influence of Alford force,

simulation is carried out. In the simulation, the magnetic
bearing rotor system and impeller parameters are shown
in the Table 1.

The Poincare map is obtained according to the solu-
tion of the motion equation. As shown in Figure 2, with-
out considering the influence of Alford force, the system
is characterized by a single point on Poincare map at 100
Hz, and it shows that the system behaves as a typical sin-
gle period motion. After introducing Alford force, the
Poincare map shows a bunch of outward divergent points
and the system is in multi-period motion. When the
rotating speed is increased to 500 Hz, the Poincare map
is similar to that at 100 Hz, but the divergence is stronger
than that at 100 Hz, which indicates that the system is
in multi-period motion and with a stronger non-linearity.
Fast Fourier transform (FFT) analysis at the speed of 500
Hz shows that apart from the main frequency, there is
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(a) Poincare map without Alford force at 100 Hz.

(b) Poincare map considering Alford force at 100 Hz.

(c) Poincare map considering Alford force at 500 Hz.

(d) FFT analysis at 500 Hz.

Fig. 2. Dynamics behavior of the system.

still a frequency of 204 Hz which verifies the existence
of Alford force.

As mentioned above, the supporting characteristics
of the AMBs can be changed by adjusting control param-
eters. In this paper, with the adoption of the PID con-
troller. kP and kD are expressly explored as they have a
great influence on the system characteristics. Figure 3
is the Poincare map and phase trajectory diagram of
the system when kD is 0.0015 and 0.015, respectively.
The Poincare map appears as a closed ellipse and the
phase trajectory is relatively miscellaneous when kD is
0.0015. At this time, the whole system is in quasi-
periodic motion. When kD is 0.015, the Poincare map
and the phase trajectory are single, which means the sys-
tem is in single periodic motion. The results show that
the system runs more stably with the increase of kD. This
is because in the AMBs rotor system, adjusting kD is
equivalent to changing system damping which can effec-
tively improve the stability of system operation.

Figure 4 is the Poincare map as well as the phase
trajectory diagram of the system when kP is 1 and 3,
respectively. Compared with kD, kP has less influence on
the system. Whether kP is 1 or 3, the Poincare maps of
the system are divergent points and the phase trajectories
are multiple mixed lines. In this case, the system is in
multi-periodic motion. The small influence of kP is due
to the fact that in the AMBs rotor system, adjusting kP is
equivalent to changing the system stiffness.

IV. EXPERIMENTAL SETUP
In order to verify the accuracy of the above analy-

ses, an AMBs rotor system test rig is used to conduct
the experiment. The experimental setup is shown in
Figure 5.

First, the experiment is conducted without installing
the volute. Assuming that the circumference of the
impeller is a uniform field without differential pressure,
so no influence of Alford force will be considered. As
shown in Figure 6, the amplitude response of the rotor at
a speed of 100 Hz in this state is obtained. Then through
installing the volute to create Alford force, the amplitude
response of the rotor in this state is obtained. Compar-
ing that with the amplitude response of the rotor without
volute, the results are shown in Figure 7. It shows that
the amplitude of the rotor increases by about 2 µm within
the range of all running speeds after installing the volute
considering the effect of Alford force.

ISO 14839-2 defines the vibration displacement
level of a magnetic bearing rotor system under steady
conditions [22]. In Figure 8, xmax and ymax are the max-
imum amplitudes measured by the sensor in the radial
direction, and Dmax is the maximum radial displacement
of the rotor.
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(a) Poincare map with kD = 0.0015.

(b) Poincare map with kD = 0.015.

(c) Phase trajectory with kD = 0.0015.

(d) Phase trajectory with kD = 0.015.

Fig. 3. Dynamics behavior of the system under
different kD.

(a) Poincare map with kP = 1.

(b) Poincare map with kP = 3.

(c) Phase trajectory with kP = 1.

(d) Phase trajectory with kP = 3.

Fig. 4. Dynamics behavior of the system under
different kP.
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Table 2: Recommended criteria of zone limits
Level Dmax/Cmin

A A < 0.3
B 0.3 ≤ a < 0.4
C 0.4 ≤ a < 0.5
D 0.5 ≤ a

Cmin means the gap between protective bearing and the
rotor. In this paper, Cmin = 0.125 mm.

Based on the above testing principles and methods,
the vibration displacement level curve of both ends of the
rotor are obtained, as shown in Figure 9. With the effect
of impeller, the amplitude of terminal A is larger than B.

As shown in Table 2, the ISO 14839-2 standard
defines the level of vibration displacement of a rotor in a
magnetic levitation system, where a = Dmax/Cmin.

Combined with the recommended level of standards
in the table, the amplitude ratio of vibration displace-
ment at both ends is less than 0.3, indicating that the
rotor vibration displacement level of the test rig is within

Fig. 9. Rotor vibration level.
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Fig. 10. Rotor response under different rotational speeds.

Fig. 11. Rotor modal analysis.
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level A, which provides a guarantee for subsequent
research.

Figure 10 shows the amplitude of the rotor consid-
ering Alford force at different speeds. It can be seen
that the amplitude of the rotor increases from 8.2 µm
to 11.9 µm with the increase of the rotating speed from
6000rpm to 10,000 rpm. While at 8000 rpm, the ampli-
tude of the rotor is the largest, reaching 14.7 µm, because
8000 rpm is close to first-order frequency. The modal
shape and frequency of the rotor in the free-−free state

Fig. 13. Rotor response under different clearance.

are obtained by simulation, as shown in Figure 11, and
the first-order mode frequency is 130 Hz, which verified
the above analysis.

Alford force is caused by the clearance difference.
In this paper, sleeves with different inner diameters are
machined to produce different Alford forces and the
structure is shown in the Figure 12. The response of the
rotor with different clearances is obtained and shown in
the Figure 13 which reveals that with the increase of the
clearance from 1mm to 4 mm, the amplitude of the rotor
decreases from 9.6 µm to 8.2 µm. This means that a
larger gap produces a smaller Alford force. Due to the
large clearance, the flow field between the cylinder and
impeller is more uniform and the pressure difference is
smaller, thus leading to a smaller Alford force.

V. CONCLUSION
Taking an AMBs rotor system test rig as the research

object, this paper not only analyzes the dynamic charac-
teristics of the rotor system under the coupling action
of Alford force and magnetic bearing force but also
explores the factors affecting the operation of the sys-
tem. The results reveals that the rotor system shows more
complex characteristics when considering Alford force.
The specific conclusions are as follows:.

1) Without considering Alford force, the whole system
behaves in a typical single period motion. At the
same time, the test rig meets the level-A standard
without the influence of Alford force, which guar-
antees the follow-up research. After considering the
Alford force, the whole system behaves in a multi-
period motion, which indicates that it has strong
nonlinear characteristics.

2) It can be concluded that when the control parame-
ters kP and kD, the rotational speed, and the clear-
ance between impeller and volute are changed,
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kP has little influence on the rotor operation and
kD of which selection should be paid more atten-
tion to when setting the parameters is more obvi-
ous. In addition, the coupling effect is more obvi-
ous with the increase of speed, ; therefore, when
the system operates at high speed, we need to pay
more attention. Last but not least, the clearance
between impeller and volute also affects the state
of the system. With the increase of clearance, the
effect is relatively reduced. In further design, the
effect can be reduced by increasing the clearance
appropriately.
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