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Abstract – In this paper, a mixed method (MM) com-
bining the advantages of finite difference time domain
(FDTD), extrapolation, and matrix cascade methods is
proposed. First, the hybrid algorithm combining the
FDTD and extrapolation method is used to compute the
electromagnetic characteristics of the single-layer fre-
quency selective surface (FSS). Subsequently, matrix
cascade method is used to calculate the electromagnetic
characteristics of the multi-layer FSS. By introducing the
Floquet theorem and considering the periodic boundary
condition (PBC), absorbing boundary conditions (ABC)
of the FSS, a three-dimensional model, is established.
The computational results show that, while maintaining
the same level of accuracy, the hybrid method greatly
improves the computation speed and reduces the com-
puter memory compared with the simulation software.
It can provide an important reference for the subse-
quent study of the electromagnetic characteristics of
the FSS.

Index Terms – FDTD, extrapolation method, matrix cas-
cade, FSS, electromagnetic characteristics.

I. INTRODUCTION
At present, radome is widely used for military and

civil fields [1-3]. However, the traditional dielectric
radome does not have the stealth function and cannot
meet the requirements of high in-band wave transmission
and strong out-of-band stealth. In order to overcome the
shortcomings of traditional dielectric radome, frequency
selective surface (FSS) is adopted by the researchers
[4-10] and implanted in the radome to obtain specific
electromagnetic (EM) characteristics. Therefore, study-
ing the EM properties of the FSS is a key indicator for
the design of FSS.

The commercially available simulation packages,
e.g., HFSS and CST [11-13], do not offer the desired
level of flexibility for calculating the EM properties of
FSS. Therefore, a customized simulation package needs
to be pursued.

At present, the numerical computation methods for
the EM properties of FSS mainly include finite element

method (FEM) [14] and finite difference time domain
method (FDTD) [15]. The FEM divides the entire com-
putational domain into a mesh, which takes up a large
amount of computer memory. It is generally the case that
the speed of computations slows down with increasing
memory requirement. Therefore, the FEM is not suitable
for large-sized objects.

The FDTD method has the advantage of increasing
the computation accuracy and reducing the memory re-
quirements. It is used to compute the EM characteris-
tics of the FSS. However, it has certain limitations. For
example, iteration number depends on the relationship
between step size and time, and in order to improve the
accuracy, it is necessary to encrypt the grid. To solve
this problem, researchers have proposed many methods,
such as second-order time approximation [16, 17]. How-
ever, the derivation processes are usually very compli-
cated. Therefore, the extrapolation method is adopted in
this paper.

Based on the extrapolation method, a new algorithm
is proposed in this paper. The computation mainly in-
cludes two steps. First, the result is obtained under the
original mesh density (#1). Then, in order to improve
the accuracy, the mesh density is increased to twice the
original mesh density, and the result is obtained while
keeping the computation region unchanged (#2). For the
above two results, the extrapolated solution can be ob-
tained by the extrapolation formula. This method not
only greatly improves the computation accuracy but also
reduces the computer memory [18]. It is widely used in
the field of mathematics and EM field.

A mixed method (MM) combining FDTD, extrapo-
lation method, and cascading to compute the EM prop-
erties of multi-layer FSS is proposed in this paper. It
has the advantages of fast computational speed of FDTD,
matrix cascade, and high computational accuracy of ex-
trapolation method, while avoiding the disadvantages
of increasing the grid density to improve the accuracy.
Therefore, the hybrid method promises to be a favorable
candidate for computing EM properties of FSS. In Sec-
tion II, the computation process of the EM characteris-
tics of the single-layer FSS is introduced in detail. Then,
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infinite periodic structure, are used to verify the accuracy 

of the hybrid method. In Section IV, influence factors of 

reflection coefficient are analyzed. 

II. HYBRID FDTD/EXTRAPOLATION/CASCADE 

METHOD 

A. The Basic Principle of FDTD 

The basic principle of FDTD is to use the idea of 

central difference to discretize Maxwell’s equations in 

space and time [19]. From Maxwell’s equations, iterative 

formulas for electric and magnetic field components can 

be derived by employing the central difference formula. 

To compute the EM properties of the infinite 

periodic FSS, the Floquet theorem is introduced. Thus, 

the EM characteristic of the entire FSS structure is 

obtained by calculating only one unit of the FSS. Figure 

1 shows the model of the FSS. Periodic boundaries are 

applied to the four sides of the model, and absorbing 

boundaries are applied to the upper and lower sides. 
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Fig. 1. FSS model.               Fig. 2. Computation model.  

 

Periodic boundary condition (PBC) is explained in 

detail in [4]. At present, the common methods to achieve 

absorbing boundary condition (ABC) mainly include 

perfectly matched layer (PML), convolution perfectly 

matched layer (CPML), and uniaxial perfectly matched 

layer (UPML). When dealing with decay pattern, PML 

needs to be placed sufficiently far away from the obstacle 

so that the decay pattern is fully attenuated. However, 

this will increase the number of grids and reduce the 

computation speed. Therefore, PML has low efficiency 

when dealing with decay pattern. CPML is an improved 

version based on PML [19]. In addition, the parameter 

ranges of CPML only apply to individual special cases. 

In actual computations, to satisfy the ABC, a larger range 

of adjustment coefficients is required, which is not 

conducive to obtaining results quickly. Therefore, 

UPML ABCs are adopted in this paper.  

Under the excitation of a Gaussian pulse, EM waves 

propagate along the upper and lower sides of the 

excitation loading surface. We set the reflection 

sampling surface and the transmission sampling surface 

on the upper and lower sides of the FSS structure, 

respectively. The schematic diagram of the computation 

model is shown in Figure 2. 

It can be seen from Figure 2 that the transmission 

field Et is calculated on the transmission sampling 

surface, and the total field is calculated on the reflection 

sampling surface, which includes the reflected field Er 

and the incident field Ei. Therefore, the expressions for 

the reflection and transmission coefficients of FSS are 

shown in the following equation: 

r
i

E

E
R ,  t

i

E

E
T                         (1) 

where Er is the reflected field, Et is the transmission 

field, and Ei is the incident field. 

B. The Basic Principle of Extrapolation Method 

The basic principle of the extrapolation method is to 

first calculate the result under the original mesh density 

(#1). The time step size dt = min(ds)/(4c), where, ds is 

the space step and c is the wave velocity in space. Then, 

in order to improve the accuracy, the mesh density is 

increased to twice the original mesh density, and the 

result is obtained (#2). At this time, the time step size 

remains unchanged and still meets the requirements of 

computational stability. Since the two space divisions 

before and after are different, but the time step remains 

the same, the results of these two times can be combined. 

For the above two results, a simple extrapolation 

formula is performed. Extrapolation solution is obtained. 

This method not only greatly improves the computation 

accuracy but also reduces the computer memory 

requirements. The following discussion briefly 

introduces the reason why the extrapolation method can 

improve the computation accuracy. 

Assuming that f is a function of the independent 

variable x and time t, and the spacing on the x-axis is h, 
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From eqn (4) and (5), 
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Fig. 1. FSS model.

considering cascading, the expression of the EM charac-
teristics of the multi-layer FSS is derived. In Section III,
the dielectric plate and FSS, having an infinite periodic
structure, are used to verify the accuracy of the hybrid
method. In Section IV, influence factors of reflection co-
efficient are analyzed.

II. HYBRID
FDTD/EXTRAPOLATION/CASCADE

METHOD
A. The basic principle of FDTD

The basic principle of FDTD is to use the idea of
central difference to discretize Maxwell’s equations in
space and time [19]. From Maxwell’s equations, iterative
formulas for electric and magnetic field components can
be derived by employing the central difference formula.

To compute the EM properties of the infinite peri-
odic FSS, the Floquet theorem is introduced. Thus, the
EM characteristic of the entire FSS structure is obtained
by calculating only one unit of the FSS. Figure 1 shows
the model of the FSS. Periodic boundaries are applied to
the four sides of the model, and absorbing boundaries are
applied to the upper and lower sides.

Periodic boundary condition (PBC) is explained in
detail in [4]. At present, the common methods to achieve
absorbing boundary condition (ABC) mainly include
perfectly matched layer (PML), convolution perfectly
matched layer (CPML), and uniaxial perfectly matched
layer (UPML). When dealing with decay pattern, PML
needs to be placed sufficiently far away from the obsta-
cle so that the decay pattern is fully attenuated. However,
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this will increase the number of grids and reduce the
computation speed. Therefore, PML has low efficiency
when dealing with decay pattern. CPML is an improved
version based on PML [19]. In addition, the parameter
ranges of CPML only apply to individual special cases.
In actual computations, to satisfy the ABC, a larger range
of adjustment coefficients is required, which is not con-
ducive to obtaining results quickly. Therefore, UPML
ABCs are adopted in this paper.

Under the excitation of a Gaussian pulse, EM waves
propagate along the upper and lower sides of the excita-
tion loading surface. We set the reflection sampling sur-
face and the transmission sampling surface on the upper
and lower sides of the FSS structure, respectively. The
schematic diagram of the computation model is shown
in Figure 2.

It can be seen from Figure 2 that the transmission
field Et is calculated on the transmission sampling sur-
face, and the total field is calculated on the reflection
sampling surface, which includes the reflected field Er
and the incident field Ei. Therefore, the expressions for
the reflection and transmission coefficients of FSS are
shown in the following equation:

R = Er
Ei
,T = Et

Ei
, (1)

where Er is the reflected field, Et is the transmission
field, and Ei is the incident field.

B. The basic principle of extrapolation method
The basic principle of the extrapolation method is to

first calculate the result under the original mesh density
(#1). The time step size dt = min(ds)/(4c), where, ds is
the space step and c is the wave velocity in space. Then,
in order to improve the accuracy, the mesh density is in-
creased to twice the original mesh density, and the result
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is obtained (#2). At this time, the time step size remains
unchanged and still meets the requirements of computa-
tional stability. Since the two space divisions before and
after are different, but the time step remains the same,
the results of these two times can be combined.

For the above two results, a simple extrapolation for-
mula is performed. Extrapolation solution is obtained.
This method not only greatly improves the computation
accuracy but also reduces the computer memory require-
ments. The following discussion briefly introduces the
reason why the extrapolation method can improve the
computation accuracy.

Assuming that f is a function of the independent
variable x and time t, and the spacing on the x-axis is
h, Taylor expansion of f (xi+1) at tn is

f (xi+1)|tn = f (xi)|tn +h
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∂x

∣∣∣∣
x=xi,tn

+
h2∂ 2 f
2!∂x2

∣∣∣∣
x=xi,tn

+O(h3). (2)
Furthermore, Taylor expansion at xi+1/2 is
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From Equation (2) and (3)
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From Equation (4) and (5),
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f (xi+1)|tn + f (xi−1)|tn = 2 fc(xi)|tn . (7b)
Substituting Equation (7) into eqn (6),

f (xi)|tn =
1
3

[
4 fenc(xi)|tn − forg(xi)

∣∣
tn

]
+O(h4). (8)

Here, f enc is the results calculated by encrypting the grid
(twice the original mesh density) and f org is the results
under the original mesh density.

It can be seen from Equation (8) that the remaining
term is the fourth-order of the space step, so that the ex-
trapolation solution has higher computation accuracy.

Fig. 3. The computation flow chart of the hybrid method.

C. Hybrid FDTD/extrapolation method
When performing the three-dimensional (3D) nu-

merical computation of the reflection coefficients of the
FSS, first, the FDTD/ extrapolation method is used to
calculate the EM field, given a certain grid density. Due
to space limitations, take the electric and magnetic field
components in the x-direction as an example. The up-
dated equations of the electric field and magnetic field
are shown in the following equations:

En+1
x (i, j,k) = 2εx−∆tσx

2εx+∆tσx
En

x (i, j,k)

+ 2∆t
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µx∆y (E
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z (i, j+1,k)−En

z (i, j,k)),
(10)

where εx is the dielectric constant, σ x is the electrical
conductivity, µx is the magnetic permeability, ∆t is the
time step, and ∆y and ∆z are space steps, respectively.

Take the electric field component along the x-
direction as an example, denoted as Eorg

x (i, j,k). Then,
the grid is encrypted. At this time, the calculated result
is recorded as Eenc

x (i, j,k). The computation flow chart of
the hybrid method combining FDTD and extrapolation
method is shown in Figure 3.

From Equation (8), the extrapolation solution is

Eext
x (i, j,k) =

1
3
[4Eenc

x (i, j,k)−Eorg
x (i, j,k)]. (11)
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D. Cascading
The scattering matrix for each independent periodic

structure is calculated. Then, all independent scattering
matrices are cascaded. Figure 4 shows the schematic di-
agram of the N-layer FSS. In addition, when the spac-
ing is small (d/λ < 1), the propagation constant of the
cross-polarization is negative imaginary, and the field de-
cays exponentially away from the FSS. Thus, the quan-
tities of practical interest are the reflection coefficient of
the main polarization, and the cross-polarization is ig-
nored. The reflection coefficients of a single-layer FSS
are calculated using the method in Section II-C. Then,
the single-layer scattering matrix according to the com-
putation results of the reflection and transmission coeffi-
cients is deduced by the following expression:

Sn =

[
Tn

(
1− R2

n
T 2

n

)
Rn
Tn

e j2kdn

−Rn
Tn

e− j2kdn 1
Tn

]
,det

(
Sn

)
= 1, (12)

dn = d1 +d2 + · · ·+dn−1, n = 1,2, . . . ,N.

From Equation (12), the expression of the cascaded
transmission matrix T can be obtained as

T =

[
A B
C D

]
= SNSN−1 · · ·S2S1. (13)

When the second port is open circuit, A is the ratio
of the voltage of the first port to the voltage of the second
port and C is the ratio of the current of the first port to
the voltage of the second port; when the second port is
short circuit, B is the ratio of the voltage of the first port
to the current of the second port and D is the ratio of the
current of the first port to the current of the second port.

After cascading, the reflection and transmission co-
efficients of the multi-layer FSS turn out to be

R =−(C/D) , (14)

T = A− (BC/D) . (15)

III. VERIFICATION OF COMPUTATION
METHOD

A. Verification of hybrid method
In order to test the accuracy of the hybrid method,

a dielectric plate and FSS with infinite periodic structure
are considered. The period of the dielectric plate along
the x-axis and y-axis is 15 mm, its thickness is 6 mm, and
the relative permittivity is 4.3. Metal patch with a length
of 12 mm and a width of 3 mm on the surface of the
above-mentioned dielectric layer. The model is shown
in Figure 5. A Gaussian pulse excitation with the center
frequency of 8 GHz is applied to the structure. The re-
flection coefficient comparison chart is shown in Figure
6(a) and (b), respectively. The extrapolated solution of
Figure 6(a) is calculated from the grid size r = 1.5 mm
and r = 3 mm. Figure 6(b) is calculated from the grid
size r = 0.3 mm and r = 0.6 mm. Tables 1 and 2 show
the comparing results of the dielectric plate and the FSS.
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numerical computation of the reflection coefficients of 

the FSS, first, the FDTD/ extrapolation method is used to 

calculate the EM field, given a certain grid density. Due 

to space limitations, take the electric and magnetic field 

components in the x-direction as an example. The 

updated equations of the electric field and magnetic field 

are shown in the following equations: 
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where εx is the dielectric constant, σx is the electrical 

conductivity, μx is the magnetic permeability, Δt is the 

time step, and Δy and Δz are space steps, respectively. 

Take the electric field component along the 

x-direction as an example, denoted as E
org 

x  (i, j, k). Then, 

the grid is encrypted. At this time, the calculated result is 

recorded as E
enc 

x  (i, j, k). The computation flow chart of 

the hybrid method combining FDTD and extrapolation 

method is shown in Figure 3. 
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D. Cascading 

The scattering matrix for each independent periodic 

structure is calculated. Then, all independent scattering 
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decays exponentially away from the FSS. Thus, the 
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1 2 1.N N

A B
T S S S S

C D


 
  
 

                       (13) 

When the second port is open circuit, A is the ratio of the 

voltage of the first port to the voltage of the second port 

and C is the ratio of the current of the first port to the 

voltage of the second port; when the second port is short 

circuit, B is the ratio of the voltage of the first port to the 

current of the second port and D is the ratio of the current 

of the first port to the current of the second port. 

After cascading, the reflection and transmission 

coefficients of the multi-layer FSS turn out to be 
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Fig. 5. Structure model.

The expression of maximum relative error is

Rr =
max |Rcst−Ri|

Rcst
, (16)

where Rcst is the simulation result (CST) and Ri is the
computational result.

It can be seen from Figure 6 that the denser the
grid, the higher the computation accuracy of the FDTD.
However, if the computation accuracy is improved by
encrypting the grid, the memory requirement will be
greatly increased, thus reducing the computation speed.
In engineering applications, not only high computation
accuracy but also fast computation speed is required.
Therefore, the method needs to be improved. In addition,
it can be seen from Figure 6 that the sparser the grid, the
worse the computation accuracy of the FDTD, but the ex-
trapolation solution can greatly improve the computation
accuracy without increasing the grid density.

It can be seen from Tables 1 and 2 that within the
range of errors permitted, the computation speed of the
hybrid method is superior. The proposed method can
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III.  VERIFICATION OF COMPUTATION METHOD 

A. Verification of Hybrid Method 

In order to test the accuracy of the hybrid method, a 

dielectric plate and FSS with infinite periodic structure 

are considered. The period of the dielectric plate along 

the x-axis and y-axis is 15 mm, its thickness is 6 mm, and 

the relative permittivity is 4.3. Metal patch with a length 

of 12 mm and a width of 3 mm on the surface of the 

above-mentioned dielectric layer. The model is shown in 

Fig. 5. A Gaussian pulse excitation with the center 

frequency of 8 GHz is applied to the structure. The 

reflection coefficient comparison chart is shown in 

Figure 6(a) and (b), respectively. The extrapolated 

solution of Figure 6(a) is calculated from the grid size r = 

1.5 mm and r = 3 mm. Figure 6(b) is calculated from the 

grid size r = 0.3 mm and r = 0.6 mm. Tables 1 and 2 show 

the comparing results of the dielectric plate and the FSS. 

The expression of maximum relative error is 
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where Rcst is the simulation result (CST) and Ri is the 

computational result. 
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coefficient of FSS. 

 

Fig. 6. Comparison chart of computation results. 
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 Maximum 

relative error 
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MM 
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1256.2 s 14,855 M 1.8% 

CST 4267.8 s 266,761 M  
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grid, the higher the computation accuracy of the FDTD. 

However, if the computation accuracy is improved by 

encrypting the grid, the memory requirement will be 

greatly increased, thus reducing the computation speed. 

In engineering applications, not only high computation 
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it can be seen from Figure 6 that the sparser the grid, the 

worse the computation accuracy of the FDTD, but the 

extrapolation solution can greatly improve the 

computation accuracy without increasing the grid 

density. 

It can be seen from Tables 1 and 2 that within the 

range of errors permitted, the computation speed of the 

hybrid method is superior. The proposed method can 

greatly save the computation time and improve accuracy 

of the EM properties of the FSS. 

B. Verification of Cascade Method for Multi-Layer 

FSS 

The above method is extended to the computation 

of EM characteristics of multi-layer FSS. The two-layer 

FSS structure is considered. The distance between the 

two-layer structures is 24 mm, and the structural 

parameters of the FSS are the same as those in Section 

III-A. The computation results are shown in Figure 7. 
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greatly save the computation time and improve accuracy
of the EM properties of the FSS.

B. Verification of cascade method for multi-layer FSS
The above method is extended to the computation

of EM characteristics of multi-layer FSS. The two-layer
FSS structure is considered. The distance between the
two-layer structures is 24 mm, and the structural param-
eters of the FSS are the same as those in Section III-A.
The computation results are shown in Figure 7.

As shown in Figure 7, the hybrid method is used to
calculate the reflection coefficient of the multi-layer FSS.
The calculated result is very close to the simulation re-

Table 1: Comparison of the efficiency (dielectric plate)
Spacing Running

time
Memory

requirement
Maximum

relative
error

FDTD
3 mm 4.906 s 7306 M 17.5%

1.5 mm 8.342 s 7322 M 7.1%
0.25 mm 858.66 s 8476 M 1.4%

MM
Running time Memory

requirement
Maximum

relative
error

12.436 s 7886 M 1.5%
CST 120.86 s 16998 M

Table 2: Comparison of the efficiency (FSS)
Spacing Running

time
Memory

requirement
Maximum

relative
error

FDTD
0.6 mm 233.5 s 7406 M 7.05%
0.3 mm 1025.1 s 12,853 M 5.9%

MM
Running time Memory

requirement
Maximum

relative
error

1256.2 s 14,855 M 1.8%
CST 4267.8 s 266,761 M

Fig. 7. Reflection coefficient comparison diagram.

sult, and the error between the two is small. In addition,
the matrix cascading technology can greatly reduce the
number of grids and the computer memory requirements
and increase the computation speed. Through compari-
son, we can see that the computation method in this paper
is correct and reasonable.

IV. EXAMPLES AND ANALYSIS
A. Computation of FSS with different patches

The structural parameters of the dielectric layer are
the same as above, and the length and width of the up-
per patch are both 12 mm. And the length and width
of the lower patch are 12 and 3 mm, respectively. The
3D model is shown in Figure 8, the Gaussian excitation
source is the same as above, and the computational re-
sult is shown in Figure 9. The FSS with different patch
geometries are shown in Table 3.

From Table 3, we can see that the computation speed
of the hybrid method is superior. In the same way, the
algorithm proposed in the paper is suitable for the com-

Table 3: Comparing methods
Running time Occupy

memory
MM 2625.1 s 26,988 M
CST 8468.6 s 47,899 M
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Fig. 8. Structure model.

Fig. 9. Computation results.

putation of EM characteristics of the FSS with different
patch geometry.

B. Factors influencing reflection coefficient
1) The impact of dielectric constant

The reflection coefficient of the FSS is closely re-
lated to the dielectric constant of the dielectric layer.
Suppose the structural parameters of FSS are the same as
Section III-A. Keep the excitation source and the length
and width of the dielectric layer unchanged. Change the
dielectric constant of the dielectric layer and observe the
change of reflection coefficient. The computed reflection
coefficients are shown in Figure 10.

From Figure 10, within 1-5 of dielectric constant, it
can be concluded that the resonance frequency decreases
with increasing dielectric constant. It can be seen that

Fig. 10. The effect of dielectric constant on results.

Fig. 11. The effect of patch geometry on results.

the dielectric layer mainly affects the resonant frequency.
Therefore, by loading FSS, the transmission frequency of
the radome can be adjusted effectively.

2) The impact of patch geometry parameters
The reflection coefficient of the FSS is not only

closely related to the dielectric constant but also tightly
dependent on the structure of the patch. As in the previ-
ous case, keeping the excitation source, the size of the di-
electric layer, and the material characteristics unaltered,
and changing the patch geometry to square, monopole,
and cross shape, the computed results are shown in Fig-
ure 11.

As shown in Figure 11, the resonance frequency de-
pends on the patch geometry; the larger the patch geom-
etry covers the area of the dielectric layer, the larger the
resonance point of frequency. It provides an important
reference basis for the design of passband range of the
FSS.

V. CONCLUSION
1. In this paper, a hybrid method combining FDTD,

extrapolation, and cascading is proposed to com-
pute the reflection coefficient of the multi-layer
FSS. By means of an example, it is shown that the
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algorithm has the advantages of increasing the com-
putation speed and accuracy, and reducing the com-
puter memory.

2. The EM characteristics of the FSS are computed.
The results show that the proposed method in this
paper is also applicable to multi-layer FSS with dif-
ferent patch geometry.

3. Within 1-5 of dielectric constant, the resonance fre-
quency decreases with increasing the dielectric con-
stant.

4. The resonance frequency depends on the patch
geometry. The larger the area of the patch ge-
ometry covering the dielectric layer, the larger
the resonance frequency; a property which pro-
vides an important reference for the design of
the FSS.
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