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Abstract – In this paper, a low-cost, simple, and reliable
bi-static radar cross-section (RCS) measurement method
by using a historic Marconi set-up is presented. It uses a
transmitting (Tx) antenna (located at a constant position,
at a reference angle of θ = 0◦) and a moving receiver
(Rx) antenna. A time gating method is used to extract
the information from the reflection in the time domain;
applying time filter allows removing the antenna side-
lobe effects and other ambient noises. In this method,
the Rx antenna (on the movable arm) is used to measure
the reflected field in the angular range from 1◦ to 90◦

from the structure (printed circuit board, PCB) and the
reference configuration represented by a ground (GND)
plane of the same dimension. The time gating method
is then applied to each pair of PCB/GND measurements
to extract the bi-static RCS pattern of the structure at a
given frequency. Here, a comparison of measurement
results is carried out at 18 and 32 GHz with simula-
tion ones indicating successful performance of the pro-
posed method. It can be used as a low-cost, reliable,
and available option in future measurement and scientific
research.

Index Terms – RCS Measurement, Marconi Set-Up,
Time Gating.

I. INTRODUCTION
Radar cross-section (RCS) measurement is one of

the essential requirements in the field of telecommuni-
cation engineering, of which evaluation is always con-
troversial due to the existence of measurement errors,

environmental noise, post-processing requirements to
extract results, and expensive automation measuring
equipment [1]. RCS was first discussed in the mili-
tary field [2–4]. This concept was introduced in non-
military applications in 1965 [5]. Accurate modeling
and analysis of structures is a basic need in the design of
radar cross-section reduction (RCSR) structures. For this
purpose, physical optics (PO) analyses of small struc-
tures are an effective method for RCS estimation of
small structures [6]. In [7], investigation of the RCS
of finite frequency selective surface (FSS) has been pre-
sented and compared with the infinite size FSS, which
is helpful for the design of FSS structures with low
RCS. The RCS measurement techniques have been well
presented in [8]. Performing RCS measurement in a
laboratory requires hardware such as shielded chamber,
absorbers, Tx/Rx antennas, radio frequency (RF) signal
sources, and receivers [9]. Also, extracting and process-
ing measurement information to eliminate background
noise, antenna side-lobe effects, and other environmen-
tal reflection factors require using numerical techniques,
such as time gating, which is well discussed in the lit-
erature, for example in [10]. Based on the optical theo-
rem, the wideband RCS measurements method that uses
a forward RCS of structure has been presented in [11].
The RCS measurement methods for static and dynamic
facilities were presented in [12] and [13], respectively.
By using spectral extrapolation technique, one can elim-
inate the end of band errors of RCS measurement, which
is an appropriate technique in minimizing of the noise
[14]. During the last decades, many methods, such
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as the method of moment (MOM), geometrical the-
ory of diffraction (GTD), and PO have been proposed
[15]. Moreover, many numerical tools such as finite
element method (FEM), boundary element method, and
software packages implementing a combination of them
were developed to easily calculate the RCS of structures
[16]. Bi-static RCS measurement by using some spe-
cial equipment (synchronized Tx/Rx, source and receiver
equipment, and moving rails) is expensive, and, there-
fore, only a few laboratories can measure it [17, 18]. To
solve the problem of expensive automation set-ups, using
Marconi training set-up can be effective as a simple and
reliable solution in the static RCS measurement. The
Marconi set-up, which is used as one of the teaching aids
in laboratories, has a movable arm and an angled calibra-
tor (protractor) whose rotation rate can be adjusted and
controlled [19]. However, both automatic and manual
solutions for RCS measurement are possible.

In this paper, a simple, cost-effective, and reliable
numerical bi-static RCS measurement method is pre-
sented to extract the RCS results by mounting the Mar-
coni set-up inside of the anechoic chamber and using
the time gating method. In this measurement, the Tx
antenna is placed in front of the printed circuit board
(PCB) and GND of the sample structure, and the Rx
antenna is moved manually on the rotating-angular cal-
ibrated arm to extract the reflection information at all
angles from 1◦ to 90◦ for different frequencies. Then,
the PCB/GND measurement information at each angle
is post-processed, by converting them from frequency
domain to time domain by using inverse fast Fourier
transform (IFFT). The data are then time filtered and re-
converted to the frequency domain by using FFT. The
procedure is applied to data obtained from both PCB
and GND reflections at each angle. The bi-static pattern
is then extracted at each frequency. The measurement
results and the results obtained from the numerical tools
of CST Suite software are in good agreement with the
IEEE 1502 recommended [16] (known as the main refer-
ence for RCS measurement). Comparison of simulation
and measurement results of a sample structure indicates
that this simple, reliable, and cost-effective test method
could be used as a measurement method instead of the
conventional automated test procedure that needs soft-
ware automation for controlling the hardware (rail, Tx,
and Rx antennas).

II. BI-STATIC TEST METHOD
The Marconi test set-up as one of the oldest equip-

ment in the communication laboratory is shown in Fig-
ure 1(a). This set-up has a central stand for placing
the device under test (DUT) on it, ad a rotating and
calibrated arm where the amount of rotation can be
seen and controlled (see Figure 1(b) and (c)). To mea-
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Fig. 1. Photograph of the measurement set-up and 

DUT. (a) Schematic of the Marconi set-up in 

anechoic chamber. (b) Angular calibrated surface of 

the Marconi set-up. (c) Bi-static set-up using 

Marconi set-up, Tx/Rx antenna, and DUT. (d) 

Sample metasurface under test. 
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Fig. 1. Photograph of the measurement set-up and DUT.
(a) Schematic of the Marconi set-up in anechoic cham-
ber. (b) Angular calibrated surface of the Marconi set-up.
(c) Bi-static set-up using Marconi set-up, Tx/Rx antenna,
and DUT.(d) Sample metasurface under test

sure bi-static RCS, the Tx antenna is placed in front
of the target at the same height as the DUT, while the
Rx antenna is placed on the rotating arm at the same
height. The RX antenna is rotating to cover any angle
needed for the measurement of RCS, storing and pro-
cessing the reflection signal from the target. The proto-
type of the sample metasurface for RCSR test is shown
in Figure 1(d). The metasurface under test has a dimen-
sion of 250 × 250mm2, and it is printed on a single
layer grounded RO4003 substrate with 1.6-mm thickness
(Figure 1(d)).

To measure the bi-static pattern of the sample struc-
ture by using the Marconi set-up, it is necessary to fix
the Tx antenna in front of the target and then measure
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the reflection from PCB/GND of DUT by the Rx antenna
mounted on a movable arm at any angle. The Rx antenna
is rotated manually by using the calibrated screen of the
set-up protractor (see Figure 1(b)) to minimize the angu-
lar error. Since the structure of the sample metasurface
has symmetry with respect to x/y axes (horizontal and
vertical axes in Figure 1), it is appropriate to measure the
reflection from the PCB/GND of the metasurface in the
angle range of 1◦÷90◦.

III. POST-PROCESSING PROCEDURE
After measuring the reflection from PCB/GND at all

desired angles (θ =±1◦±90◦) by using the time gating
method, the PCB/GND reflection signals (both real and
imaginary parts) at any specific angle θ are converted
from the frequency domain to the time domain. The dis-
crete IFFT equation is used [20].

Xk =
1
N

N−1

∑
n=0

xnei2πkn/N ,k = 0, . . . ,N −1 (1)

where xn is the nth value of the reflection signal (real
and imaginary) in the frequency domain, N is the num-
ber of frequency samples, and Xk is the kth value of the
signal in the time domain. Then, by applying a suitable
time filter (here Kaiser) in the time domain, noise and
other existing environmental reflections are removed. At
this stage, only the PCB/GND reflection signals remain,
and by FFT, the reflection rate from the PCB/GND is cal-
culated in terms of frequency. The FFT equation that is
used reads [20]

xk =
N−1

∑
n=0

Xkei2πkn/N ,k = 0, . . . ,N −1 (2)

where Xk is the kth value of the signal in the time domain,
N is the number of time steps, and xn is the nth value
of the complex value signal in the frequency domain.
This coordinate loop shown in Figure 2 flowchart is
used to extract the PCB/GND reflection at all angles
(θ = 1◦−90◦).

In order to apply the measurement flowchart pre-
sented in Figure 2 and measure the bi-static RCS of the
metasurface at 18 and 32 GHz, N5227A PNA Network
Analyzer was used. The 30-GHz bandwidth (from 10 to
40 GHz) has been covered by three sets of TX/Rx anten-
nas, in 1601 frequency points in each frequency band,
and considering 100 Hz PNA resolution bandwidth. The
frequency bandwidth, steps, and resolution bandwidth
are chosen so that the reflected signal from PCB/GND
in the time domain might be detected [1]. It should also
be noted that the radial distance between Tx/Rx antenna
to PCB/GND is equal to 2.5 m, which gives rise to high
spatial attenuation, especially at high frequencies.

To depict the RCS results of the structure in the
entire band of interest (10− 40 GHz), the RCS results
from three measurements (in three separate frequency
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Fig. 2. Flowchart of RCSR measurement using the 
Marconi set-up and time gating method. 

Fig. 2. Flowchart of RCSR measurement using the Mar-
coni set-up and time gating method.

bands of 10−18, 18−22, and 22−40 GHz) are merged
in one single plot and presented as the final RCS result
of the proposed structure. By starting from θ = 1◦, the
reflection from PCB/GND was measured at all angles
between 1◦ and 90◦. It should be noted that the reflection
measurement from DUT is done by the same configura-
tion of the network analyzer, and, in this case, the reflec-
tion of both PCB and GND in the frequency domain
has the same power range, as depicted in Figure 3(a).
In this case, it is impossible to distinguish between the
reflection signal of PCB and GND due to the similar
amplitude of their reflection power. At this stage, the dis-
tinction between the reflection signals and consequently
the time gate required to apply the time filter is deter-
mined by applying IFFT and transmitting the PCB and
GND reflection signals from the frequency domain to the
time domain. Figure 3(b) shows the PCB/GND reflection
at θ = 1◦ in the time domain (which corresponds to the
22−40 GHz band).

It can be seen that there is a difference in the reflec-
tion amplitude of PCB and GND in the time interval of
27− 29 ns. Applying a proper time filter to the reflec-
tion signals in this time interval reduces the background
noise, side-lobe signals (especially at 6−10 ns range that
is related to the side-lobes), and reflection from other
environmental factors with more than 80 dB. Figure 3(c)
shows the PCB/GND reflection results after the applica-
tion of the high order (400) Kaiser time filter. The differ-
ence between the reflection signal of PCB and GND in
the period of 27−29 ns can be seen in Figure 3(c).

By applying the appropriate time filter (Kaiser) as
well as FFT to the signals of this time period, the
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Fig. 3. Time and frequency domain reflection results of
the PCB/GND and RCS results. (a) Initial reflection sig-
nal of PCB/GND in frequency domain. (b) Time domain
measurement results of PCB/GND. (c) PCB/GND reflec-
tion results after applying Kaiser time gating filter. (d)
Reflection signal of PCB/GND after FFT. (e) RCSR
measurement and simulation of the sample metasurface
at θ = 1◦.

reflection of PCB and GND in the frequency domain
and subsequently RCS result of considered sub-band,
here 22−40 GHz, can be calculated. It should be
noted that all post-processing steps, i.e., IFFT, FFT,
and Kaiser filter calculation, have been implemented
in Matlab.

In the next step, the PCB/GND reflection for the
considered frequency band (22−40 GHz) at θ = 1◦

is obtained by applying the IFFT which is plotted in
Figure 3 (d). It can be appreciated that in the frequency
range, 22–40 GHz, the reflection from the PCB sur-
face is less than that from the GND one. One can con-
clude that by considering the metasurface, a broadband
RCSR performance has been achieved. At this stage,
the difference between PCB and GND signal is extracted
as a measured RCSR, which is plotted in Figure 3 (e).
The simulation and measurement results in Figure 3 (e)
are in good agreement with each other and there are
small differences (lower than 1.5 dB) between simu-
lated and measured results at 18 and 32 GHz, which
indicate the efficiency of the proposed test method.
Comparison of the simulation results provided by the
full-wave CST Microwave Studio software with the mea-
sured ones proves the accuracy and reliability of the pro-
posed method.

In the same manner, RCS measurement of the meta-
surface in the other two frequency bands (10−18 and
18−22 GHz) has been carried out and the final RCS
result was merged in Figure 4(a) and (b). Reflections
of PCB and GND are plotted in Figure 4(a). Compari-
son between simulation and measurement results of sam-
ple metasurface is shown in Figure 4(b). It can be seen
that there is a good agreement between measurement and
simulation results in the overall 10−40 GHz frequency
band.

A. Bi-static RCS pattern extraction
In the following, the reflection values are extracted

from other angles as shown in Figure 2. By performing
the above-described procedure for all of the other angles
and extracting the reflection values from PCB/GND at
18 and 32 GHz (at any angle), the bi-static RCS pattern
of sample metasurface was plotted in Figure 5(a) and (b),
respectively.

For better presenting and validating the test method,
the simulated and measured normalized PCB/GND RCS
patterns are compared with each other. Due to the
symmetry of the structure, the measurement results
from θ = 1◦ to 90◦ are mirrored to θ = −1◦ to
−90◦. Note that the measurement results for θ =
0◦ are not applicable (because the Tx and Rx anten-
nas should have shared the same location); when
using two Tx/Rx antennas, the minimum measurable
angle is 1◦.
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Fig. 5. Measurement and simulation bi-static results of 
the proposed metasurface at (a) 18 and (b) 32GHz. 
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Fig. 4. Frequencydomain reflection results of the 
PCB/GND and RCS results. (a) Initial reflection signal 
of PCB/GND in frequency domain. (b) 
Frequencydomain measurement results of PCB/GND. 
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Fig. 4. Frequencydomain reflection results of the
PCB/GND and RCS results. (a) Initial reflection signal
of PCB/GND in frequency domain. (b) Frequencydo-
main measurement results of PCB/GND.

Comparison of measurement and simulation results
at 18 GHz shows that there is a good agreement between
them in the angular range of 1◦−60◦. According to 5(a),
there is a difference up to several dB between the simu-
lation results and the measurement at angles greater than
60◦. The reason for this difference can be the errors in the
environmental factors such as set-up vibration, and errors
related to the construction of metasurfaces and calibra-
tion of test equipment. In general, there is a good sim-
ilarity and agreement between the measurement results
with the proposed method and the simulation results at
18 GHz, which is due to the following reasons: (1) accu-
rate angular calibration that is achieved using the Mar-
coni set-up allowing accurate measurement of reflection
at any angle; (2) elimination of the reflection noise effect
from the environment by the high-order time filter, which
reduces a significant part of the environmental measure-
ment error (intrinsic advantage of time gating method).
Similarly, a comparison between the measurement and
simulation RCS pattern at 32 GHz shows that the pro-
posed method has good accuracy. In this case, the num-
ber of resonances in the RCS pattern of the structure has
increased, as can be seen in the measurement results.
A comparison between the RCS pattern measurement
and simulation results at 32 GHz proves that the pro-

 
 
In the same manner, RCS measurement of the 

metasurface inthe other two frequency bands (10−18 
and 18−22GHz) has been carried out and the final RCS 
result was merged in Figure4(a) and(b). Reflections of 
PCB and GND are plotted in Figure4(a). Comparison 
between simulation and measurement results of sample 
metasurface is shown inFigure4(b). It can be seen that 
there is a good agreement between measurement and 
simulation results in the overall 10−40 GHz frequency 
band.  

 
 

A. Bi-Static RCS Pattern Extraction 
In the following, the reflection values are extracted 

from other angles as shown in Figure 2. By performing 
the above-described procedure for all of the other 
angles and extracting the reflection values from 
PCB/GND at 18 and 32 GHz (at any angle), the bi-
static RCS pattern of sample metasurface was plotted in 
Figure 5(a) and (b), respectively.  

For better presenting and validatingthe test method, 
the simulated and measured normalized PCB/GND 
RCS patterns are compared with each other. Due to the 
symmetry of the structure, the measurement results 
from θ ꞊ 1° to 90° are mirrored to θ ꞊ −1° to −90°. Note 
that the measurement results for θ ꞊ 0° arenot applicable 

(because the Tx and Rx antennas should have shared 
the same location); when using two Tx/Rx antennas, the 
minimum measurable angle is 1°. 
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method). Similarly, a comparison between the 
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this case, the number of resonances in the RCS pattern 
of the structure has increased, as can be seen in the 
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Fig. 5. Measurement and simulation bi-static results of 
the proposed metasurface at (a) 18 and (b) 32GHz. 
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Fig. 4. Frequencydomain reflection results of the 
PCB/GND and RCS results. (a) Initial reflection signal 
of PCB/GND in frequency domain. (b) 
Frequencydomain measurement results of PCB/GND. 
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Fig. 5. Measurement and simulation bi-static results of
the proposed metasurface at (a) 18 and (b) 32GHz.

posed method has good accuracy. In this case, the num-
ber of resonances in the RCS pattern of the structure has
increased, which can be appreciated in the measurement
results.

Unlike the simulation results at 18 GHz and
60◦−90◦ incident angles, there is good agreement
between the measurement and simulation results.

IV. CONCLUSION
A low-cost, simple, and reliable bi-static test method

was proposed using a calibrated Marconi scientific-
educational test set-up to perform the measurements and
post-process by time-gating method (using FFT, time fil-
tering, and IFFT) used to extract scattering pattern of
objects and structures. This method can be used as a
suitable alternative to expensive bi-static measurement
methods that require expensive hardware and software
equipment. Using time gate and applying appropri-
ate time filtering (in this case, the Kaiser filter was
used) leads to eliminating the background and environ-
ment reflection, also. The performance of the proposed
method is confirmed by testing a sample metasurface and
comparing it with the simulation results. The sample
metasurface has dimensions of 250 × 250 mm2, which
is printed on the Rogers 4003 substrate with a thickness
of 1.6 mm. Comparison of simulation and measurement
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results shows that the proposed method has the poten-
tial to be widely used in laboratory and scientific appli-
cations by students and researchers. Also, the compar-
ison between bi-static measurement results and simula-
tion results (in accordance with the IEEE 1502 standard)
validates the accuracy of the proposed method.
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