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Abstract ─ A search-and-track algorithm is 
proposed for controlling the number of guided 
modes of planar optical waveguides with arbitrary 
refractive index profiles. The algorithm starts with 
an initial guess point in the parameter space that 
supports a specific number of guided modes. 
Then, it searches for, and tracks, the boundaries of 
this space or another space supporting a different 
number of modes. It does so by monitoring the 
sign of a unified cutoff dispersion function. The 
algorithm is applied to both symmetric and 
asymmetric silicon-based parabolic-index 
waveguides. It shows that unlike asymmetric 
waveguides, the single-mode condition of 
symmetric waveguides is controlled by TM-, as 
opposed to TE-, polarization. This abnormal 
polarization control is strongest for high index 
contrast waveguides of sub-micrometer core sizes. 
The results are verified by the full-vectorial beam 
propagation method.   
  
Index Terms ─ EM propagation, integrated optics, 
numerical analysis, optical waveguides, 
waveguide theory.  
 

I. INTRODUCTION 
Identifying the optical waveguide parameters 

which support a specific number of modes is a key 
step that precedes the design of any photonic 
integrated circuit. In a few special cases, exact 
analytical expressions   of   these   parameters are 
available [1]. In most of the other cases, they are 

only identified by approximate or numerical 
computational approaches [2-11]. The inherent 
assumptions and/or approximations in many of 
these approaches limit their application to specific 
regions of the parameter space. Other numerically 
intensive computational approaches [11] consume 
a considerable amount of time in generating 
design curves which map waveguide parameters to 
the number of guided modes.  

The purpose of this paper is to develop an 
algorithm for controlling the number of modes of 
planar waveguides of an arbitrary refractive index 
profile, which combines simplicity and generality. 
The algorithm applies to both strong- and weak-
guiding conditions and discriminates between TE 
and TM polarizations. It starts with a priori 
knowledge of waveguide parameters which 
support an initial number of guided modes. Then, 
it monitors the sign of a unified cutoff dispersion 
function to allocate the boundaries of the 
parameter space which supports the required 
number of modes. It identifies this space without 
direct solution of the dispersion equation. The 
algorithm reveals an abnormal TM-polarization 
dependence of the single-mode condition (SMC) 
of symmetric parabolic-index waveguides. This 
dependence is verified by computations done by 
full-vectorial beam propagation method (FV-
BPM) [12]. To the best of our knowledge, this 
peculiar result has not been previously reported. It 
mainly affects the design of high index contrast 
waveguides with sub-micrometer core sizes.  
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II. BACKGROUND THEORY 
 
A. Differential mode counting   

The number of guided modes supported by an 
optical waveguide may change by changing any of 
its geometrical or refractive index parameters. The 
requirement that the effective refractive index, ne, of 
each guided mode must cross-over the substrate 
refractive index, ns, as the mode becomes guided or 
leaks into the substrate, implies a change in the sign 
of the corresponding dispersion function at cutoff 
[3]. It allows computing the number of modes at 
any point of the parameter space in terms of the 
number of modes at another reference point by 
counting the number of changes in the sign of the 
cutoff dispersion function along an arbitrarily 
chosen path between these points. This count must 
exclude the changes in this sign due to poles of the 
dispersion function, which may crossover the cutoff 
point along that path. It is the basis of the search-
and-track (SAT) algorithm presented in this paper.  
 

B. Discretization model 
Consider the case of a planar waveguide with 

core thickness t, upper cladding thickness h, and a 
semi-infinite substrate. Its cover and substrate 
refractive indexes are na and ns, respectively. Its 
core refractive index has a maximum, cn , and a 
minimum, which is greater than ns. It is converted 
by discretization to a nonuniform stack of L step-
index layers of thickness lt  and refractive index 

ln . The recurrence dispersion function of this 
stack is obtained in terms of the normalized 
propagation constant,    11  feb  , 

following the approach in [13]. Here, 22
see nn , 

and  22max sl
l

f nn , which limits b between 

zero and unity. The cutoff dispersion function of 
this stack, LC , is obtained by taking the limit of 
the dispersion function as 0b . It is given by (1) 

where,  llll T 
2

1,1 csc ,       cot 11 ll T  

 lll T cot1, ,      11111,   llllll  ,  

        1
2

22 cot11ˆ Taa   , 

  12222 ˆˆ C  , 1 1 ,aH a       

and   aa aaa  21 2 . The cutoff dispersion 

function,    11 cot TC .  The normalized 
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parameters,   222 sllol nntT   , and 

  22
12 so nnhH   , where o is the free-

space wavelength. The asymmetry parameter, 

   22
1

22
sas nnnna  , the stack-layer refractive 

index parameter, 22
sll nn , and the polarization 

parameters, 1 al   for TE modes, 

while ll    and 22
1 aa nn  for TM modes. 

 

C. Interference of pole crossing with mode 
counting  
The dispersion function has two groups of 

poles. The poles of the first group are given by, 
     111  fllb  . Each stack layer generates 

one of these poles. They never cross the cutoff 
point (b=0) due to changing any of the waveguide 
parameters. The poles of the second group are 

given by,      22212
, 1 llpl Tpbb   , where p = 

1,2,..,  lT , for each stack layer of  lT . 

Here,  x  denotes the floor of x. One of these 

poles crosses the cutoff point each time lT  

equals an integer multiple of  along any path in 
the parameter space. To investigate the effect of 
this crossing on the sign of CL, the normalized 
thickness of the lth layer in the vicinity of q  is 
expressed as,  qTl , where q is a positive 

integer and  is infinitesimally small. Only 1lC  

(the minor indicated in (1)) depends on lT  through 

the  lTcot , and  lT2sec  terms of the three 

parameters, l , 1l , and 1l . These terms 

become infinitely high when  tends to zero. 
Therefore, with the assumption that no other 
normalized thickness is an integer multiple , they 
dominate over other terms, which results in, 

 1l ,   1,1 lll  , and 2
1,1   lll  , 
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where we have used   1cos   and   sin . 
These approximations become exact in the limit 
when 0 . Now,   llll CC  1,1     

  1
2

1,    lll C  while    1 1 ll CC 2llC . 

Therefore,   21,1    lllll CC  , which 

changes its sign when lT  crosses qNext, 

filtering out 1lC  from the determinant of (1), 

allows writing CL as the product of 1lC  and the 
matrix, 
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where we have used 
   01 1 21,1   lllll CC   as 0 . 

Since l
LU  is independent of lT , then the limit, 

   


l
LlL UCC

0
1

00
lim limlim , which shows 

that LC  must change its sign when lT  crosses q. 
This change in sign does not correspond to an 
increase or a decrease in the number of supported 
modes.   
 

III. PROPOSED ALGORITHM 
 
A. Search-and-track approach  

In order to identify the closed space of 
generalized waveguide parameters u and v, which 
support a specific number of guided modes, M, the 
proposed algorithm starts with an initial guess of a 
point that either belongs to this space (see point 1 
in Fig.1) or to a space supporting Mo modes, which 
is different from M. For example, a point in the nc-
t space with an initial maximum core refractive 
index, nco, and an initial thickness, to. This initial 
guess may either be obtained using different 
physical and/or mathematical bounds (see below).  

After choosing the initial guess point (IGP), 
the algorithm searches for a point on the space 
boundaries. For example, the boundary between 
the spaces supporting M and M+1 modes shown in 
Fig. 1. It does so by moving along a single 
dimension in the horizontal or the vertical 
direction of the u-v space in infinitesimally small 
steps starting from the IGP, keeping the other 

space dimension unchanged, see Fig. 1. In moving 
along either of the horizontal or vertical search 
paths, it monitors the sign of LC . Any unwanted 
sign changes due to function poles crossing the 
cutoff point are filtered out, as described below. 
Once the number of sign changes exceeds the 
absolute difference between M and Mo, the motion 
along the horizontal (or vertical) dimension stops 
and the preceding point along the search path 
represents a point on the boundary that encloses 
the target space, which supports the required 
number of modes, M. See the flow chart in Fig. 
2(a) for a description of the search loop. 

The boundary point 2, allocated by the search 
loop, is the origin of a staircase path that tracks 
that boundary, see Fig. 1. It is created by a step 
decrease (or increase) in the vertical (or 
horizontal) parameter of the u-v space starting 
from this origin point, followed by a search for a 
new boundary point along the horizontal (or 
vertical) search dimension of the u-v space. This 
step-and-search process continues until sufficient 
points are allocated to reconstruct the space 
boundary within a predefined computational 
window. It requires a priori knowledge of the 
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Fig. 1. A horizontal search path extending from an 
initial guess point 1 (with Mo = M) to point 2, 
which represents the origin of the track, followed 
by a downward  staircase (dotted) or linear (solid) 
track of the boundary (dashed) between two u-v
parameter spaces supporting M and M+1 modes. 
Although not shown, vertical search paths as well 
as upward staircase tracks may also be followed 
which results in four search and track possibilities.
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shape of the boundary to determine the directions 
of increasing or decreasing u and v along the track. 
These directions are governed by a general rule, 
which is described below. The staircase tracking 
loop is described in the flow chart of Fig. 2(a).  

If the search path increases with the tracking 
steps, for example as in the nc-t space,1 then the 

                                                 
1 The upper or lower boundary of an  nc-t space 

supporting M modes satisfies the asymptotic 

computations of the space boundary may be 
speeded up by using linear tracking. This tracking 
interpolates between the last two boundary points 
to predict the location of the third boundary point. 
Then, it searches for the actual boundary point 
starting from this predicted point, which is closer 
to the space boundary compared to the staircase 
tracking approach, see Fig. 1. It may be regarded 
as a modification of the staircase tracking in which 
a horizontal step is added to the vertical step in 
going from an actual boundary point to a predicted 
boundary point (a bottom corner point of the stair). 
The horizontal step equals the difference in u 
between the last two boundary points, as shown by 
the flow chart of Fig. 2(b). This interpolation 
process continues along the track, which shortens 
the overall search length and reduces the CPU 
computational time. 
 

B. Tracking rule  
As a preliminary step towards developing a 

tracking rule which specifies the directions of 
increasing or decreasing u and v along the 
boundary between two spaces, we classify 
waveguide parameters into two types depending 
on whether their increase may add modes to, or 
                                                                            
conditions, sc nn   when t  and cn  
when 0t . These conditions, in addition to the 
monotonic change of t and nc along the boundary, 

imply that 0 cnt  and 022  cnt . Thus, the 
search path along nc increases as t decreases along 
the track. 
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Fig. 2. (a) A flow chart description of a horizontal-
search and downward-tracking algorithm. It
assumes that u and v have opposite tracking
directions. The index j counts the number of sign
changes along the search path between points 1
and 2 of Fig.1. The index k counts the boundary
points. The parameter Lo represents the number of
discretization layers at the IGP, which, in general,
may change to L as u or v changes. The vectors uB

and vB are the u- and v-coordinates of the space
boundary. Vertical search interchanges u and v in
the search loop while upward tracking
interchanges them in the tracking loop.  
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Fig. 2. (b) A flow chart description of linear
downward tracking that substitutes the flow chart
in (a) in going from A to B. Staircase tracking is
initially followed (when k=1) until two or more
boundary points (k>1) are allocated. 

48 ACES JOURNAL, VOL. 26, NO. 1, JANUARY 2011



subtract modes from, the waveguide. Next, the 
number of modes supported by the array is 
expressed as a two dimensional function  vuM ,  
in the u-v space. The dependence of M on other 
waveguide parameters is suppressed for simplicity. 
Let  vuY ,  be a randomly selected continuous 
differentiable function associated with M, which 
satisfies the relation,   MY  . The value of Y at 
the upper or lower boundary of the space 
supporting M modes is denoted by BY . In the 

vicinity of this boundary, YYY B  , where 

Y  represents a first-order perturbation from BY . 
This perturbation may be expanded by the first-
order terms of a Taylor series, 

    vvYuuYY BB  , around the 

boundary. For all functions Y, which satisfy 

  MY  , their derivatives in this expansion must 
be positive for mode-adding parameters and 
negative for mode-subtracting parameters. If this 
is not the case, then it would contradict the 
definition of these derivatives which are computed 
at the boundaries of the space where u and v have 
their extreme values (minima (maxima) for mode-
subtracting parameters and maxima (minima) for 
mode-adding parameters at the upper (lower) 
boundary). The relation between u  and v  at 
the boundary (upper or lower) is obtained by 
setting 0Y  in the Taylor expansion. It gives,  

     uvYuYv BB  .            (3) 

According to (3), u  and v  must have opposite 
(similar) signs whenever  BuY   and  BvY   

have similar (opposite) signs. This result leads to a 
simple tracking rule, which states that: two 
waveguide parameters of the same type must have 
opposite tracking directions (if one decreases, then 
the other increases and vice versa) while those of 
different types must have the same tracking 
direction (both increase or decrease) along the 
boundaries of the parameter space supporting a 
specific number of modes. For example, the 
increase in either of the thickness t or the 
maximum core refractive index nc of an optical 
waveguide never decreases the number of guided 
modes. It either increases it or keeps it constant. 
Therefore, t and nc must have opposite tracking 
directions along the boundaries of a specific space. 
Inspection of the waveguide design parameters 
leads to the conclusion that, except for the 

substrate refractive index, ns, all other parameters 
(including t, h, nc, and na) are mode-adding 
parameters. Note that the cover refractive index is 
constrained by, sa nn  . Since the free-space 
wavelength is a mode-subtracting parameter, 
normalization of any of the mode-adding 
parameters by o does not change their type. 
 

C. Filtering out sign changes due to poles   
In order to filter out sign changes due to poles, 

it is sufficient to flip the sign of LC  at each 
crossing of a pole during the search loop; see the 
flow chart of Fig. 2(a). If these sign changes are 
not filtered out, they result in a premature 
termination of the search path and faulty locations 
of the boundary points of the parameter space. An 
alternative approach eliminates the crossing of 
poles by satisfying the condition,  

222max scol
l

nnt   , which ensures that all 

the layers of the stack are single moded (  lT ). 
This elimination is only possible in graded-index 
waveguides. In other more general cases of 
refractive index profiles, which include step-index 
layers, e.g. in [14], the thickness of the step-index 
layers may exceed the maximum imposed by this 
condition. Hence, the above rule of flipping the 
sign of LC  at the crossing of each pole must be 
applied.  
 

IV. APPLICATIONS 
 

A. Modal maps   
In this section, the SAT algorithm identifies 

waveguide parameters, which support different 
number of TE and TM modes. Since the number 
of modes supported by a step-index waveguide 
whose core refractive index is nc (and shares all 
other waveguide parameters) represents an upper 
bound, the algorithm starts by choosing an IGP, 
which belongs to the space supporting the 
minimum number of modes (zero for asymmetric 
guides and one for symmetric guides). This choice 
allows selecting any combination of u and v of this 
step-index waveguide as an IGP. Next, the 
algorithm allocates the upper boundary of the 
space, which supports the initial number of modes, 
as explained in Section III. Then, the computations 
follow a sequential approach in allocating the 
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boundaries of the subsequent spaces. In these 
sequential computations, the upper boundary of 
one space is the lower boundary of the subsequent 
space. Thus, allowing sequential generation of the 
IGPs of the successive spaces, as their boundaries 
are constructed. The accuracy of the generated 
IGPs is verified by monitoring the flip in the sign 
of the cutoff dispersion function between 
successive spaces excluding those due to pole 
crossings. The final outcome is a two-dimensional 
modal map of selected waveguide parameters, 
which support different number of modes. 
 

B. Asymmetric profiles  
Consider the case of an optical waveguide 

made of a-SiOx:H [15]. The waveguide parameters 
are h=0, na=1, ns=1.45, 

    21 1062.016.1  txxn  for 10 tx   and 

n(x) = 2.0 for  tttxt  211 , where the x-axis 
has its origin at the cover-cladding interface and 
points towards the substrate. Its modal map was 
computed in the t2-t1 plane (replacing u with t2  and 
v with t1) using a MATLAB code which employs a 
vertical search with a downward staircase-tracking 
algorithm and follows the sequential approach 
described above. The algorithm starts with an IGP 
(t1=0.1 m, t2=0.1 m) in the space supporting 
zero modes. The computational steps along t1 and 
t2 are both equal to 10-2 m. The choice of a 
uniform stack layer thickness of 10-3 m in the 
graded-index layer eliminates the crossing of poles 
as t1 increases. The pole filtering rule switches the 
sign of the cutoff dispersion function each time the 
normalized thickness of the step-index layer 
crosses q as t2 increases. The resultant modal map 
is shown in Fig. 3. It identifies combinations of t1 
and t2 which support different number of TE and 
TM modes. 

As an example of the computations of the 
modal map in the t plane (replacing u with 

  222 2 csc nnn   and v with t),  consider a 
truncated parabolic-index waveguide with h=0, 

na=1, ns = 1.45, and    221 txnxn c  for 

tx 0 . Its modal map was computed at o=1.55 
m as described above, however, horizontal 
search was used, as opposed to vertical search, 
starting from an IGP (t=5 m, nc=1.45001). The 
results are shown in Fig. 4. It identifies 

combinations of t and  which support different 
number of TE and TM modes. The overall CPU 
times for these computations are 638 s and 659 s 
for the TE- and TM-modes, respectively. If linear 
tracking is used (see Section III-A) with the same 
IGPs to generate this modal map, then the CPU 
times reduce to   332 s and 380 s, for the TE- and 
TM-modes, respectively. This reduction represents 
45% saving in the overall computational time.  

The accuracy of the above modal maps has 
been verified using a FV-BPM simulator, which 
employs an iterative mode computational 
technique [12]. Because of the unlimited time 
needed to scan the parameter spaces of the entire 
modal maps, computations of the number of 
modes were carried out by changing the horizontal 
parameter of each map in steps at arbitrarily 
selected values of its vertical parameter (t1 in the 
modal map of Fig. 3 and t in the modal map of 
Fig. 4). The results (not shown) show excellent 
agreement between these modal maps and the FV-
BPM computations for both TE and TM 
polarizations.  
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Fig. 3. Modal map of TE (solid) and TM (dashed)
modes of a planar waveguide of a truncated
parabolic index layer of thickness  t1 grown on top
of a step-index layer of thickness t2 computed at
o=1.55 m. The other waveguide parameters are
h=0, na=1, and ns=1.45. The number of modes is
indicated in each zone. Because of its small size,
the zone supporting zero modes almost disappears.
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C. Symmetric profile  

      To investigate the effect of symmetry on the 
modal map, a symmetric parabolic-index 
waveguide is considered. Its core refractive index 

is    22181  txnxn c   for tx 0  while 

ns = 1.45. The SAT algorithm starts with the same 
IGP (t=5 m, nc=1.45001), which now belongs to 
the parameter space supporting a single mode. It 
uses the same numerical parameters and free-space 
wavelength as in the previous section. The 
computed modal map is plotted in Fig. 5. The 
CPU computational times of the TE and TM 
modes, using staircase tracking, are 666 s and 684 
s, respectively. Again, linear tracking reduces 
these CPU times to 349 s and 360 s, respectively, 
which saves 47% of the overall computational 
time. The modal map of Fig. 6 shows that the 
splitting in cutoff boundaries between the TE and 
TM modes is inverted. Namely, unlike the 
asymmetric waveguides, the cutoff t (or ) of the 
TM modes is smaller than that of the TE modes at 
any  (or t). This inversion means that, under 
SMC, the maximum waveguide thickness equals 
the cutoff thickness of the first-order TM-, as 
opposed to TE- mode. Therefore, operating under 
single TE-mode condition does not ensure 
simultaneous single-mode operation of both modal 
polarizations in symmetric parabolic-index 
waveguides. This result has not been previously 

reported by various approximate methods which 
analyzed these symmetric waveguides, e.g. in [2, 
5, 6]. 

 

D. FV-BPM computations  
In order to verify this abnormal polarization 

dependence of the SMC, a symmetric parabolic-
index waveguide parameters, 55.2cn (=0.34) 

and 5.0t m, were selected, which support two 
TM modes and a single TE mode. They 
correspond to a point between the cutoff 
boundaries of the TM1 and the TE1 modes in the 
modal map of Fig. 5. Next, the FV-BPM simulator 
used in Section IV-B computed the modes of this 
guide at o=1.55 m. The results of these 
computations show that the waveguide supports 
two TM modes and a single TE mode. The 
computed modal field profiles are shown in Fig. 6. 
While these results are in agreement with the 
modal map computations, further verification was 
carried out to exclude any error in the mode 
excitation conditions of the FV-BPM 
computations. It is done by selecting a design 
point ( 55.2cn  and 6.0t m) from the modal 
map of Fig. 5, just above the cutoff boundary of 
the TE1 mode. Then computing the effective index 
of the TM1 mode (ne=1.470229) and verifying that 
it is, indeed, greater than the effective index of the 
TE1 mode (ne=1.460989).  
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Fig. 5.  Modal map of TE (solid) and TM (dashed) 
modes of a symmetric parabolic-index waveguide 
with ns=1.45 computed at o=1.55 m, showing 
parameters of the t  space supporting one to 
thirteen modes. 
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Fig. 4. Modal map of TE (solid) and TM (dashed)
modes of a truncated parabolic-index waveguide
with h = 0, na=1, and ns=1.45 computed at o=1.55
m, showing parameters of the t space
supporting zero to twelve modes. 
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Full dispersion information was obtained by 
repetitive FV-BPM computations of ne, as the 
waveguide thickness increased in steps from 0.1 
m to 1.5 m, at o=1.55 m. The resultant 
dispersion curves are plotted in Fig. 7. It shows 
that, starting form the first-order mode (m=1), the 
dispersion curves of the TM and TE polarizations 
intersect near cutoff. This intersection leads to 
lower cutoff thickness of the higher-order TM 
modes compared to TE modes. Above the 
intersection thickness, the dispersion curves follow 
their normal behavior where the effective index of 
the TE modes is greater than the TM modes. 
Below this thickness, this relation is inverted and a 
range of thickness arises (between the cutoffs of 
the higher-order TM and TE modes) where an 
extra TM mode is supported. This range is where 
the modes of Fig. 6 were computed. This result is, 
again, consistent with the modal map 
computations and is a logical outcome of the 
inversion of the modal cutoff, which verifies the 
utility of the proposed algorithm. 
 

E. Abnormal parameter space  
In order to investigate the effect of the upper 

cladding layer thickness on the TM polarization 
dependence of the SMC, we consider an 
asymmetric parabolic waveguide with fixed          
ns = 1.45, na = 1,  = 0.1 (nc=1.62), and a variable 
h. It becomes a symmetric waveguide (as in 

Section IV-C) in the limit as h . The cutoff 
thickness of the TE1 and TM1 modes of this guide 
were computed at different h at o = 1.55 m. The 
computations applied a vertical search with a 
downward stair-tracking algorithm to the h-t plane 
(replacing u with h and v with t). They started 
from an IGP (h=0.1 m and t=0.1 m) which 
supports zero modes (Mo=0), skipped a single sign 
change on the search path (corresponding to j=1 in 
the flow chart of Fig. 2(a)) to reach a point on the 
upper boundary of the target parameter space, 
which supports a single mode (M=1). Next, they 
followed opposite tracking directions along that 
boundary, according to the tracking rule of Section 
III-B. Figure 8 plots the computed cutoff 
waveguide thickness of the first-order TE and TM 
modes versus h. As expected, the cutoff thickness 
of the TM1 mode starts higher (at low h), gradually 
decreases (with increasing h), and ends up lower 
than the cutoff thickness of the TE1 mode. The 
upper cladding thickness h=730 nm at the point of 
intersection is the minimum h  which results in an 
abnormal TM-polarization control of the SMC in 
this specific example. For further understanding of 
this abnormal polarization control, recomputations 
of the modal map of Fig. 4 (in the t  space) were 
carried out replacing h=0 with h=730 nm. The new 
modal map (not shown) shows an intersection 
between the cutoff thickness of the TE1 and TM1 
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Fig. 6. Transverse electric-filed distribution of the
TE0 (top), TM0 (middle), and TM1 (bottom) modes
of a symmetric parabolic-index waveguide with
t=500 nm, nc = 2.55, and ns=1.45, computed by
FV-BPM at o=1.55 m. The field is normalized
to a maximum of unity. 
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Fig. 7. Effective index ne versus t/o for the first 
three TE (solid) and TM (dashed) modes of a 
symmetric parabolic-index waveguide with nc = 
2.55 and ns=1.45, computed by FV-BPM. Below is 
a zoom-in on the dispersion curves of the first-
order (m=1) and the second-order (m=2) modes 
near their cutoff.  
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modes (upper boundaries of the M=1 space) at 
andt=1.7 m. They show that at any     
t>1.7 m () the SMC is controlled by the TE 
mode, otherwise (t<1.7 m and ) it is 
controlled by the TM mode. Thus, the common 
waveguide cutoff thickness at the intersection 
point in Fig. 8 represents the maximum t which 
results in abnormal TM-polarization control of the 
SMC at h=730 nm. 

In order to identify the boundary between the 
normal and abnormal spaces in the t-h plane, Fig. 
9(a) plots h against this common cutoff thickness 
of the TE1 and TM1 modes, as changes between 
0.04 and 0.4. It identifies the combinations of t and 
h where the SMC is controlled by the TE (normal) 
or the TM (abnormal) mode. Figure 9(b) plots the 
same h against to identify the same boundary 
between the normal and abnormal spaces in the -
hplane. Both figures show that the minimum h of 
the abnormal space decreases with decreasing t or 
increasing. This decrease in the minimum h 
implies the need of a lower h in the case of high-
index contrast waveguides of sub-micrometer core 
sizes to sustain the normal TE control of the SMC. 
 

V. CONCLUSION 
A numerical algorithm has been proposed for 

the design of planar optical waveguides with 
arbitrary refractive index profiles. The algorithm 
identifies the waveguide parameters, which 
support different number of modes. It is exact in 
the sense that the discretization error may 

arbitrarily be minimized by increasing the number 
of stack layers. It may be combined with genetic 
algorithms [16, 17] to optimize the performance of 
planar integrated optical devices under the 
constraint of supporting a specific number of 
modes using the appropriate cutoff function.  

Application of the algorithm to symmetric and 
asymmetric parabolic-index waveguides reveals a 
fundamental difference between the modal 
polarizations which control the number of their 
guided modes. If the upper cladding thickness is 
greater than some critical thickness, which 
decreases under high index contrast and/or small 
core sizes, then this number is controlled by TM 
polarization. Otherwise, it is controlled by TE 
polarization.  
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Fig. 9.  Boundary between normal and abnormal 
regions of the (a) t-h and (b) h  space of a 
parabolic-index waveguide with ns=1.45 and na=1 
computed at o=1.55 m.  
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Fig. 8.  Cutoff thickness of TE1 (solid) and TM1

(dashed) modes versus upper cladding thickness h
for a parabolic-index waveguide with =0.1,
ns=1.45, and na=1, computed at o = 1.55 m.  
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