
Enhanced Parallel FDTD Method Using SSE Instruction Sets

Lihong Zhang 1, 2, Xiaoling Yang 3, and Wenhua Yu 3

1 School of Information Engineering
Communication University of China, Beijing, 100024, China

pzyzlh@yahoo.cn

2 Fundamentals Department
Chinese People’s Armed Police Force Academy, Langfang Hebei, 065000, China

3 Penn State University

University Park, PA, 16802, USA
ybob@2comu.com, wxy6@psu.edu

Abstract ─ To accelerate the simulation of the
parallel FDTD method, this paper proposes an
effective hardware acceleration technique based
on the SSE instruction sets, and puts forward a
three-level data parallel algorithm based on MPI,
OpenMP and SSE instructions. To demonstrate the
acceleration effect of this technique, this paper
develops two types of codes using C language: one
is based on MPI + OpenMP, another is based on
MPI + OpenMP + SSE, and then draws a
comparison between the computing time of the
two types of codes in the numerical experiments
for the same electromagnetic radiation problems.
The experimental results show that this
acceleration technique can achieve an acceleration
rate of 2.44 for the ideal case on a PC cluster and
2.37 for the practical problem on a 2-CPU
workstation without requiring any extra hardware
investment, and provide an efficient and
economical technique for the electromagnetic
simulations.

Index Terms ─ CPML, FDTD, MPI, OpenMP,
and SSE.

I. INTRODUCTION
Finite difference time domain (FDTD) method

is firstly proposed by Yee in 1966 [1], and has
grown into a relatively complete method system
after development through decades. In the FDTD

method, the electric (magnetic) field somewhere in
space can be calculated by the explicit way
through its previous value at the same location and
the four magnetic (electric) fields around it at the
half time step earlier. The updating equation of
magnetic field component along the z-axis is given
in (1) [2]. The updating equations of the other two
components are similar to (1).

).(

2
1

,,
2
1

2
1

,1,
2
1

2
1

,
2
1,

2
1

,
2
1,1

,
2
1,

2
1,

2
1,

2
1,

2
1,

2
1

1

,
2
1,

2
1

y

EE

x

EE

DHDH

n

kjix

n

kjix

n

kjiy

n

kjiy

kjib
n

kjizkjia
n

kjiz

∆

−
−

∆

−

−=

+

+

+

++

+

+

+

++

++++++

+

++

 (1)
Compared with other numerical methods, the

FDTD method becomes more and more popular
for the practical and complex problems because of
its simplicity and flexibility. Moreover, the main
advantage of the FDTD method is that it is parallel
in nature and it can be parallelized more efficiently
than finite element method (FEM) or method of
moments (MoM) [3]. Therefore, a variety of
parallel algorithms have been proposed to reduce
the computation time of FDTD electromagnetic
simulation[4-5], such as parallel techniques based
on message passing interface (MPI) [6] and
OpenMP [7]. Recently, a large number of
publications have been on the graphic processing
unit (GPU) acceleration [8-13].

In this paper, we propose an effective
hardware acceleration technique of parallel FDTD
simulation using streaming SIMD (single

1ACES JOURNAL, VOL. 27, NO. 1, JANUARY 2012

1054-4887 © 2012 ACES

Submitted On: July 27, 2011
Accepted On: Dec 18, 2011

instruction multiple data) extensions (SSE)
instruction sets [14] and develop a 3D parallel
FDTD procedure based on C language, MPI
library, OpenMP, and SSE instruction sets. The
procedure has been validated through an ideal case
and a practical problem.

II. SSE INSTRUCTION SETS
Each core in the multi-core processor has its

own cache, floating point unit (FPU) and vector
arithmetic logic unit (VALU), as shown in Fig. 1.
Unlike the FPU, the VALU allows us to operate
on four data at the same time. We use the VALU
that includes a 128-bit vector unit through the SSE
instruction sets to accelerate the parallel conformal
FDTD code, as shown in Fig. 2[15].

Fig. 1. CPU architecture including FPU and
VALU.

SIMD was introduced into the Intel
architecture with the MultiMedia eXtensions
(MMX) technology. MMX technology allows
SIMD computations to be performed on the
packed byte, word, and double word integers. The
Pentium III processor extended the SIMD
computation model with the introduction of the
SSE. SSE allows the SIMD computations to be
performed on operands that contain four packed
single-precision floating-point data elements. The
operands can be in memory or in a set of eight
128-bit registers [14]. Figure 3 is a typical SIMD
computation procedure.

Fig. 2. Concept flowchart in VALU.

Fig. 3. Flowchart of the SIMD computation.

Recently, Intel Corporation extends previous
SIMD offerings (MMX instructions and Intel
streaming SIMD extensions) to advanced vector
extensions (AVX). The 128-bit SIMD registers for
SSE have been expanded to 256 bits. By this mean,
SIMD computation procedure works as shown in
Fig. 4[16]. Intel AVX is designed to support 512
or 1024 bits in the future.

Fig. 4. SIMD computation for AVX.

Core1

Core2

Core3

Core4

Cache

FPU

VALU

Each Core

Scalar Unit
Vector Unit

CPU

= + = +

a

b

Result

1.0f 2.0f 3.0f 4.0f

5.0f 6.0f 7.0f 8.0f

6.0f 8.0f 10.0f 12.0f

add add add add

SIMD Mode Scalar Mode

+

=

A

B

A+B A7+B7 A6+B6 A5+B5 A4+B4 A3+B3 A2+B2 A1+B1 A0+B0

B7 B6 B5 B4 B3 B2 B1 B0

A7 A6 A5 A4 A3 A2 A1 A0

=

+

2 ACES JOURNAL, VOL. 27, NO. 1, JANUARY 2012

III. FDTD CODE IMPLEMENTATION

A. FDTD memory allocation

A 3-D array in the FDTD code is allocated
using the malloc function in C language, and
_aligned_malloc(size, alignment) function in this
paper. The parameter size in this function is the size
of the requested memory allocation; the parameter
aligment is the alignment value and is equal to 16
because that the SSE instruction sets require their
memory operands to be aligned to 16-byte (16B)
boundaries. For example, if we need a 3-D array
array_name[x_size, y_size, z_size], we can first
define a 1D array array_name_tmp[N] whose size
is N=x_size*y_size*z_size, and then map the 1-D
memory address to 3-D array array_name. The
pseudo-code segment is demonstrated as below:

// allocate the 1-D memory
array_name_tmp = (float*)_aligned_malloc(

sizeof (float) * x_size * y_size * z_size, 16);
array_name = (float ***)_aligned_malloc (

 sizeof (float**) * x_size, 16);
for(i = 0; i < x_size; i++){

array_name[i] = (float **)_aligned_malloc
(sizeof (float*) * y_size, 16);

 for(j = 0; j < y_size; j++){
 // map the 1-D memory address to 3-D array

map_address = i * y_size * z_size + j * z_size;
 array_name[i][j] =

&array_name_tmp[map_address];
}

}

In the C programming language, the data inside

the memory is contiguous in y-z plane. Suppose that
the y_size and z_size are equal to 8, the data
structure of the array array_name in the y-z plane is
shown in Fig. 5. The memory addresses of the data
elements (0,0,0), (0,0,1)…(0,0,7) is contiguous,
likewise, the addresses of (0,1,0), (0,1,1)…(0,1,7) is
contiguous too. The address of (0,0,7) is contiguous
with the element (0,1,0). When we calculate the
electric and magnetic fields in the y-z plane, we
only need to know the address of the first element
(supposed to be (0,0,0)) and the total number of
elements (supposed to be 64), and then the 64
elements (0,0,0), (0,0,1), (0,0,2)…(0,7,7) are
sequentially read in memory. In this case, the
memory access is contiguous and therefore the
cache hit ratio is relatively high.

Fig. 5. Data structure in the y-z plane.

B. The partition of CPML boundary

The updating equation given in (1) is used to
calculate the fields in the computational domain.
However, the updating equation inside the PML
layers should include two more extra terms, as
shown in (2) [2]. The Κ value inside the
computational domain equals to 1, and two Ψ
terms in (2) are related to the PML material. Firstly,
we update the electric and magnetic fields in the
entire domain. We use the SSE instruction sets to
load 4 float data into a SSE register at the same
time. Secondly, we compute two Ψ terms and
update the electric and magnetic fields only in the
PML layers. The data division inside the PML
layers is shown in Fig. 6.

1 1
2 2

, ,

1
1 1 1 1 1 1 1 1, , , , , , , ,
2 2 2 2 2 2 2 2

1 1 1 1
2 2 2 2

1 1 1 11, , , , , 1, , ,
2 2 2 2

11
22

1 1 1 1, , , ,
2 2 2 2

.i i

z x z y

n n
z a z bi j k i j k i j k i j k

n n n n

y y x xi j k i j k i j k i j k

x y

nn

H Hi j k i j k

H D H D

E E E E

x y
+ +

+

+ + + + + + + +

+ + + +

+ + + + + +

++

+ + + +

= −

− −

 −
Κ ∆ Κ ∆

 +Ψ −Ψ

 (2)

C. Three-level parallel architecture

The ordinary parallel FDTD code based on the
MPI library or OpenMP is the one-level or the two-
level parallel technique. In this paper, the FDTD
code is the three-level parallel in which SSE is
involved.

The first level parallelism is based on MPI in
which the computational domain is broken into
small sub-domains according to the number of
available CPUs or nodes. The field update on the
interface of each sub-domain is not independent,

z

(0,0,0)

(0,0,1)

(0,0,2)

(0,0,3)

(0,1,0)

(0,1,1)

(0,1,2)

(0,1,3)

(0,2,0)

(0,2,1)

(0,2,2)

(0,2,3)

(0,3,0)

(0,3,1)

(0,3,2)

(0,3,3)

(0,4,0)

(0,4,1)

(0,4,2)

(0,4,3)

(0,5,0)

(0,5,1)

(0,5,2)

(0,5,3)

(0,0,4)

(0,0,5)

(0,1,4)

(0,1,5)

(0,2,4)

(0,2,5)

(0,3,4)

(0,3,5)

(0,4,4)

(0,4,5)

(0,5,4)

(0,5,5)

(0,0,6) (0,1,6) (0,2,6) (0,3,6) (0,4,6) (0,5,6)

(0,0,7) (0,1,7) (0,2,7) (0,3,7) (0,4,7) (0,5,7)

(0,6,0)

(0,6,1)

(0,6,2)

(0,6,3)

(0,6,4)

(0,6,5)

(0,6,6)

(0,6,7)

(0,7,0)

(0,7,1)

(0,7,2)

(0,7,3)

(0,7,4)

(0,7,5)

(0,7,6)

(0,7,7)

y

3ZHANG, YANG, YU: ENHANCED PARALLEL FDTD METHOD USING SSE INSTRUCTION SETS

namely, the field update on the interface requires
the information from its neighbours through the
MPI functions. However, the internal field update is
independent which results in the high efficient
parallel performance.

Fig. 6. Division of different regions inside the
entire domain.

The second level parallelism is based on

OpenMP. In the first place, several threads are
generated by OpenMP based on the number of
available cores; in the second place, the each thread
is assigned to each core for the simulation. The
framework of the algorithm is described as follows
(In this paper, the parameters imin and imax are the
lowest suffix and largest suffix respectively along
x-axis of a computational domain; jmin and jmax
are the lowest suffix and largest suffix respectively
along y-axis; likewise, kmin and kmax are the
lowest suffix and largest suffix respectively along
z-axis. These six parameters define a cuboid
computational domain which will be assigned to
core, CPU or node.):

#pragma omp parallel private(num_threads, thread_num) {
 thread_num = omp_get_thread_num();
 num_threads = omp_get_num_threads();
 float imaxf = (float)imax / (float)num_threads;

 for (i = imin + (int)((float)thread_num * imaxf);
 i <= (int)((float)(thread_num + 1) * imaxf);
 i ++) {

 for(j = jmin; j <= jmax; j++){
 for(k = kmin; k <= kmax; k ++){
 //Calculation
 }

 }
 }

}

The third level parallelism is based on the SSE
instruction sets. As mentioned earlier, ordinary
arithmetic operations get one result but the SIMD
computations get four results at the same time. This
paper will concentrate on the SSE acceleration
technique and code implementation.

D. SSE acceleration implementation

We here implement the SSE instruction sets to
field update in the FDTD method and the field
update inside the PML layers. Due to the data
discontinuity inside the memory as shown in Fig. 6,
the implementation of SSE inside the PML layer
will degrade the performance of SSE. Firstly, we
compute the magnetic components in the z-axis
inside the entire computational domain following
steps described below [17-18]:
(1) Define some __m128 variables that SSE
requires and assign values to them (as operands of
SSE computations);
(2) Load the coefficient into the SSE registers;
(3) Convert the float pointer to the SSE 128 bit
pointer;
(4) Unroll the inner loop and reduce the cycle index
to one-fourth of original numbers;
(5) Calculate the magnetic fields. The code
implementation is described below:

// define __m128 variables
__m128 *vhz;
__m128 *vex, *vex_max, *vey, *vey_max;
__m128 vpHi, vpHj;
__m128 vDA = _mm_load1_ps(&DA);
for (i = imin; i <= imax; i ++){

// Load coefficient
vpHi = _mm_load1_ps(&pHi [i]);
for(j = jmin; j <= jmax; j++){

// Load coefficient
vpHj = _mm_load1_ps(&pHj [j]);
// Convert float pointer to SSE 128 bit pointer

z

y

CPML media along y-axis

CPML media along z-axis

CPML media along z-axis and y-axis

Source

Computational domain in free space

PEC boundary

4 ACES JOURNAL, VOL. 27, NO. 1, JANUARY 2012

vhz = (__m128 *)hz[i][j];
 vex = (__m128 *)ex[i][j];
 vex_max = (__m128 *)ex[i][j+1];
 vey = (__m128 *)ey[i][j];
 vey_max = (__m128 *)ey[i+1][j];
 // reduce the cycle index

for(k = 0, vk = 0; k <= kmax / 4; k += 4, vk++){
 // calculate the magnetic field

vhz[vk]=_mm_sub_ps(_mm_mul_ps(vDA,vhz[vk]),
_mm_sub_ps(_mm_mul_ps(vpHi,_mm_sub_ps(vey_max

[vk],vey[vk])),_mm_mul_ps(vpHj,_mm_sub_ps(vex_max
[vk], vex[vk]))));
}

}
}

The update processing of the electric and

magnetic fields inside the PML region is similar to
those inside the entire computational domain. For
example, when we calculate the magnetic field
component along y-axis in the PML region, we
can reference to the steps earlier and the pseudo-
code is shown as follows:

__m128 *vhx;
__m128 *vez, *vez_max;
__m128 vBeta_PML, vpHj_PML;
__m128 vDB = _mm_load1_ps(&DB);
__m128 *vpusai_hxz;
for (i = imin; i <= imax; i ++) {

for(j = jmin_pml; j <= jmax_pml; j++){
vBeta_PML = _mm_load1_ps(&Beta_PML [j]);
vpHj_PML = _mm_load1_ps(&pHj_PML [j]);

 vhx = (__m128 *)hx[i][j];
 vez = (__m128 *)ez[i][j];
 vez_max = (__m128 *)ez[i][j+1];
 vpusai_hxz = (__m128 *)pusai_hxz[i][j-jshift];
 for(k = 0, vk = 0; k <= kmax / 4; k += 4, vk++){

// Calculate Ψ
vpusai_hxz[vk]=_mm_add_ps(_mm_mul_ps(vBeta_PML

,
vpusai_hxz[vk]),_mm_mul_ps(vpHj_PML,mm_sub_ps(vez

_max [vk], vez[vk])));
 // Update the magnetic field in PML domain

vhx[vk]=_mm_sub_ps(vhx[vk],_mm_mul_ps(vDB,
vpusai_hxz[vk]));
}

}
 }

To optimize the procedure and to improve the

cache hit ratio, we can combine the calculation of

electric and magnetic fields with the treatment of
the PML boundary in the following scheme.

for (i = imin; i <= imax; i ++) {

for(j = jmin; j <= jmax; j++){
 while (vk < vkmax) {

// calculate the electric or magnetic field
}
if (the value of j belongs to CPML domain){
 // add the PML boundary
}

 }
}

IV. EXPERIMENTAL RESULTS

To demonstrate the acceleration efficiency by
using the SSE instruction sets, we use the FDTD
code enhanced with the SSE instruction sets to
simulate the simple example that includes only
one point source and field distribution output in
one surface. The computational domain is
separately divided into 40×40×40, 80×80×80,
120×120×120, 160×160×160, and 200×200×200
uniform cells, respectively, and is truncated by a
6-layer CPML. The excitation pulse is taken to be
a pure Gaussian pulse and the excitation source is
located at the center of the computational domain,
as shown in Fig. 6. The numerical experiments
were carried out on a PC cluster with Gigabit
Ethernet. Every PC of the PC cluster is installed
with an Intel Core 2 Duo CPU E7500, 2.93GHz.
The experimental results for 600 time steps are
summarized in Table 1. We observe from Table 1
that the SSE instruction sets can reduce the
computing time of the FDTD simulation. The
acceleration factor increases with the growth of
the number of cells since the PML region will
have less relative contribution to the simulation
time when the problem size becomes larger if we
fix the number of PML layers to be 6.

The ideal acceleration factor should be 4 since
the vector unit based on the SSE instruction sets is
four times faster than the floating point unit.
However, due to the discontinuous data in the
PML boundary, communication between
processes and so on, the performance of the code
will be reduced. That is to say, without MPI and
OpenMP, the performance of the code only based
on SSE instruction sets will increase to some
extent. In this paper we achieve an acceleration
factor of 2.44 when the number of cells is 8

5ZHANG, YANG, YU: ENHANCED PARALLEL FDTD METHOD USING SSE INSTRUCTION SETS

million and a 6-layer PML is applied to truncate
the computational domain.

Table 1: Acceleration factor by using SSE
instruction sets (Time: Second)

Number
Of
cells

Coed
Based
on

Compu-
ting
time

Accele-
ration
factor

0.064
Mcells

MPI+
OpenMP 3.59

1.65 MPI+
OpenMp

+SSE
2.18

0.512
Mcells

MPI+
OpenMP 18.21

1.93 MPI+
OpenMp

+SSE
9.45

1.728
Mcells

MPI+
OpenMP 50.27

2.17 MPI+
OpenMp

+SSE
23.20

4.096
Mcells

MPI+
OpenMP 110.89

2.36 MPI+
OpenMp

+SSE
46.92

8
Mcells

MPI+
OpenMP 196.86

2.44 MPI+
OpenMp

+SSE
80.84

In the practical problems, the simulation

factors such as outputs, dispersive media, and
near-to-far field transformation will influence the
SSE performance due to the discontiguous data
structure inside memory. However, it can be
improved by optimizing the cache hit ratio.

V. ENGINEERING APPLICATION
In this part, we use the parallel FDTD code

accelerated by using the SSE acceleration to
simulate a waveguide (WR75) filter problem [19].
The filter includes five cavities and is excited by
TE10 mode at one end, as shown in Fig. 7. The
output parameter transmission coefficient for the
TE10 mode measured at another end. The purpose
is to investigate the performance of SSE

acceleration on the 2-CPU (16 threads)
workstation for the practical problem.

For the sake of comparison, we use the FEM
method [20] to simulate the same problem and plot
the results in the Fig. 8. It is evident from Fig. 8 to
observe the good agreement. It is worthwhile to
mention that the results are the same with and
without the SSE acceleration.

The parallel FDTD performance with the SSE
acceleration is summarized in Table 2. It is
observed from Table 2 that the SSE can accelerate
the FDTD code 2.37 times for this practical
problem.

Fig. 7. Configuration of waveguide filter.

VI. CONCLUSION
In this paper, we propose a new hardware

acceleration technique based on the SSE
instruction sets and gives an implementation on
both the PC cluster and workstation platforms. The
result shows that this technique can improve the
computing efficiency without any extra hardware
investment, and provide an efficient and
economical technique for the electromagnetic
simulations. The further work will be to optimize
the data structure inside the memory to further
improve the SSE performance and to accelerate
the FDTD simulation using AVX.

6 ACES JOURNAL, VOL. 27, NO. 1, JANUARY 2012

Fig. 8. Transmission coefficient of waveguide
filter.

Table 2: Parallel FDTD performance with the SSE
acceleration

FDTD with
SSE
Acceleration

FDTD
without SSE
Acceleration

Workstation 2×AMD Opteron 6128 2.0GHz
Memory
Usage 37 MB 37 MB

Simulation
time 145 sec. 345 sec.

REFERENCES

[1] K. S. Yee, “Numerical Solution of Initial Boundary
Value Problems Involving Maxwell´s Equations in
Isotropic Media,” IEEE Trans. Antennas
Propagat., vol. AP-14, pp. 302-307, 1966.

[2] A. Taflove and S. Hagness, Computational
Electrodynamics: The Finite-Difference Time
Domain Method, Artech House, Norwood, May
2005.

[3] W. Yu, R. Mittra, T. Su, et al., Parallel Finite
Difference Time Domain Method, Communication
University of China Press, July, 2005.

[4] W. Yu, et al., “A Robust Parallel Conformal FDTD
Processing Package using the MPI Library,” IEEE
Antennas and Propagation Magazine, vol. 47, no.
3, pp. 39-59, June 2005.

[5] Y. Zhang, W. Ding, and C. H. Liang, “Study on the
Optimum Virtual Topology for MPI Based Parallel
Conformal FDTD Algorithm on PC Clusters,” J. of
Electromagn. Waves and Appl., vol. 19, no. 13, pp.
1817-1831, 2005.

[6] W. Gropp, E. Lusk, and A. Skjellum, Using MPI:
Portable Parallel Programming with the

Message-Passing Interface. 2nd ed., MIT Press,
Cambridge, Nov., 1999.

[7] https://computing.llnl.gov/tutorials/openMP/
[8] V. Demir and A. Z. Elsherbeni, “Compute Unified

Device Architecture (CUDA) based Finite-
Difference Time-Domain (FDTD)
Implementation,” Applied Computational
Electromagnetic Society (ACES) Journal, vol. 25,
no. 4, pp. 303-314, Apr. 2010.

[9] N. Takada, T. Shimobaba, N. Masuda, and T. Ito,
“Improved Performance of FDTD Computation
using a Thread Block Constructed as a Two-
Dimensional Array with CUDA,” Applied
Computational Electromagnetic Society (ACES)
Journal, vol. 25, no. 12, pp. 1061-1069, Dec.
2010.

[10] M. Ujaldon, “Using GPUs for Accelerating
Electromagnetic Simulations,” Applied
Computational Electromagnetic Society (ACES)
Journal, vol. 25, no. 4, pp. 294-302, Apr. 2010.

[11] M. Weldon, L. Maxwell, D. Cyca, M. Hughes, C.
Whelan, and M. Okoniewski, “A Practical Look
at GPU-Accelerated FDTD Performance,” Applied
Computational Electromagnetic Society (ACES)
Journal, vol. 25, no. 4, pp. 315-322, Apr. 2010.

[12] M. J. Inman, A. Z. Elsherbeni, J. G. Maloney, and
B. N. Baker, “Practical Implementation of a
CPML Absorbing Boundary for GPU Accelerated
FDTD Technique,” Applied Computational
Electromagnetic Society (ACES) Journal, vol. 23,
no. 1, pp. 16-22, Mar. 2008.

[13] N. Takada, N. Masuda, T. Tanaka, Y. Abe, and T.
Ito, “A GPU Implementation of the 2-D Finite-
Difference Time-Domain Code using High Level
Shader Language,” Applied Compuational
Electromagnetic Society (ACES) Journal, vol. 23,
no. 4, pp. 309-316, Dec. 2008.

[14] Intel Corporation, Intel Architecture Optimization
Reference Manual, Available:
http://www.intel.com/design/pentiumii/manuals/2
45127.htm.

[15] http://www.tecchannel.de/server/hardware/437111
/wechsel_an_der_spitze_intels_neue_core_prozess
oren/index9.html

[16] http://software.intel.com/en-
us/articles/introduction-to-intel-advanced-vector-
extensions/

[17] W. Yu, “A Novel Hardware Acceleration
Technique for High Performance Parallel FDTD
Method,” Microwave Technology &
Computational Electromagnetics (ICMTCE), 2011
IEEE International Conference on, pp. 441-444,
May 2011.

[18] W. Yu, X. Yang, Y. Liu, et al., Advanced FDTD
Methods: Parallelization, Acceleration, and

11.5 11.6 11.7 11.8 11.9 12 12.1 12.2 12.3 12.4 12.5
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

frequency (GHz)

S
21

(d
B

)

FDTD
FEM

7ZHANG, YANG, YU: ENHANCED PARALLEL FDTD METHOD USING SSE INSTRUCTION SETS

Engineering Applications, Artech House, Boston,
June 2011.

[19] M. Yu, “Power-Handling Capability for RF
Filters,” IEEE Microwave Magazine, vol. 8, no. 5,
pp. 89-97, Oct. 2007.

[20] J. M. Jin, The Finite Element Method in
Electromagnetics, New York: John Wiley & Sons,
2002.

Lihong Zhang is presently
working on her Ph.D. in parallel
computing and will graduate next
year from Communication
University of China. Her research
interests include parallel processing
techniques, numerical methods and
software development.

Xiaoling Yang is a research
associate in Material Research
Institute of Pennsylvania State
University. He received his B.S.
and M.S. in Communication and
Mathematics from Tianjin
University in 2001 and 2004,
respectively. He has published

three books related to the FDTD method, parallel
processing techniques, software development
technique, and simulation techniques. He has published
over 20 technical papers. His research interests include
numerical methods, visual languages and software
development.

Wenhua Yu is with 2COMU, Inc.
and serves as the president of
2COMU. He was with
Pennsylvania State University from
1996 to 2011. He received his
Ph.D. in Electrical Engineering
from the Southwest Jiaotong
University in 1994. He worked at

the Beijing Institute of Technology as a Postdoctoral
Research Associate from February 1995 to August
1996. He has published six books related to the FDTD
method, parallel processing techniques, software
development technique, and simulation techniques from
2003 to 2011. He has published over 150 technical
papers and four book chapters. He is a senior member
of IEEE. His research interests include computational
electromagnetic methods, software development
techniques, parallel processing techniques, and
simulation and design of the antennas, antenna arrays
and microwave circuits.

8 ACES JOURNAL, VOL. 27, NO. 1, JANUARY 2012

