
 

 
Abstract—This paper introduced a meshless method 
based on radial basis function (RBF) interpolation to 
solve Hallen’s integral equation (HIE) of the thin wire. 
The unknown current Iz(z) is interpolated by RBF at the 
center nodes and point matching method is applied to 
HIE at the collocation nodes. To validate the present 
method, the input impedance and induced current of 
dipole antenna are computed with the r5-RBF and Wu’s 
RBF, respectively. The results show that the present 
method is a steady numerical approach for solving HIE.  
  
Index Terms—Hallen’s integral equation, meshless 
method, point matching method, radial basis functions. 

I. INTRODUCTION 
In the past several decades, various numerical 

techniques have been used to solve Hallen’s integral 
equation (HIE) and evaluate electromagnetic field, 
induced current distribution, and input impedance of thin 
linear antenna. Mei firstly proposed classical moment 
method (MOM) to solve HIE [1]. Now, various 
advanced numerical approaches were applied to HIE, 
such as high accurate computation[2], hybrid 
procedure[4], Galerkin’s methods [5], high-order 
numerical solution [6], entire-domain basis functions in 
Galerkin’s methods [7], and some combined algorithm 
with MOM[3].  

The techniques mentioned above are grid-based or 
mesh-based ones. In recent years, meshfree or meshless 
methods (MLMs) based on a set of nodes scattering 
within the problem domain have gained much attention 
in the engineering communities [8] and significantly 
developed in the electromagnetic engineering area 
[9]-[11]. Nicomedes proposed the improve Moving 
Least Square to solve the combined field integral 
equation [12]. Galerkin-Bubnov Integral Equation 
Method [13] was used to solve time-domain HIE. In this 
paper, we introduce a meshless method based on radial 
basis function interpolation (MLM-RBF) to solve HIE. 
RBF interpolation is a powerful technique that was first 
proposed by Kansa in 1990 to solve partial difference 
equations (PDEs) [14]. MLM-RBF is a numerical 
method by which unknown functions of PDEs or integral 
equations  are  interpolated  at   the  scattered  nodes  and  

 
point matching method is applied to the equations at the 
collocation nodes. 

Section II describes the MLM-RBF formulation of 
HIE. It also presents the process of impedance matrix 
calculation. In Section III, the numerical results using 
two different RBFs are discussed in detail. Conclusion is 
given in Section IV. 

II. FORMULATION 
Figure 1 shows a perfectly conducting long and ẑ

-oriented thin wire of L in length whose radius R0 is 
much less than L and wavelength λ . The HIE of the 
thin and straight wire can be expressed as [15]  
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where 2 2( ')R z z a= − +  and k represents propagation 
constant. Through a series of processing steps [15], the 
above equation can be simplified as 
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whereη is wave impedance, D1 and D2 are unknown 
constants.  
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Fig. 1. Model of thin wire (a) and node distribution (b). 

The unknown function zI  in (2) can be interpolated 
approximately by a series of RBF:  
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where ( )Iφ r is the radial basis function centered at a set 
of independent points 1, , , ,I N ∈Ω r r r (also called 
center nodes, see Fig.1 (b)); Ia  are unknown coefficients 
to be computed. 
  Substituting (3) into (2), we get 
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where IL  is the integral domain at the center node Iz  
and ( ') ( ' )I Iz z zφ φ= − . Then, point-matching method 
(PMM) is applied to the above equation at a set of 
collocation nodes 1, , , ,J Mz z z  ( M N≥ ) (see Fig.1 (b)) 
which distribute on the wire surface. Thus, we get 
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where ' 2 2( )J JR z z a= − + . The resulting matrix of the 
above equation is of the form 
 [ ][ ]1 2 1 2, , ,TD D= +Za s s b  (6) 
where the elements of impedance matrix Z are 
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and the vector elements of right-hand side of (6) 
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A. Calculation of unknown constant D1 and D2 
To obtain the unknown vector a in (6), the constant D1 

and D2 should be determined first. This can be done by 
using the current boundary condition at the ends of the 
wire, i.e., Iz(-L/2)=Iz(L/2)=0. From(6), we have 
 [ ][ ]1 1

1 2 1 2, , TD D− −= +a Z s s Z b  (9) 
Defining 1 2[ ] [ , ]T T=U u u , where 1

Tu =[1,0,...,0] and 2
Tu

=[0,...,0,1] and multiplying both sides of (9) by [U]T, we 
get 
 [ ] [ ] [ ][ ] [ ]1 1

1 2 1 2, , 0,T T T TD D− −= + =U a U Z s s U Z b  
   (10) 

Solving (10), we get 
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B. Calculation of matrix element 
When the collocation node zJ does not locate in the 

range of the supported domain centered at zI, the matrix 
elements of (7) can be computed via an Q-point 
numerical quadrature [15]: 
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where 
_ _

2 2( )J Iq J J IqR z z a= − + .   
When zJ locates in the range of the supported domain 

centered at zI, as shown in Fig. 2, there exists the quasi- 
singular integral in (7). To improve the integral accuracy, 
a very small domain ∆z centered at zJ is extracted from LI 
of (7). Thus, there exist three integral domains in IL : 
[zI–dmI, zJ–∆z/2], [zJ–∆z/2, zJ+∆z/2], and [zJ+∆z/2, 
zI+dmI] (see Fig.2), where mId  is the radius of supported 
domain of RBF centered at zI. In ∆z, the integral item 

( ' )Iz zφ − in (7) is treated as a constant value ( )J Iz zφ −
and the Green’s function item is expanded by the 
small-argument approximation [15]. Thus, (7) in the 
integral domain ∆z can be rewritten as： 
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In other two domains, (7) is also computed by the 
Q-point numerical quadrature (12).  

Each element in (7) needs to be calculated with the 
Q-point numerical quadrature, not a simple expression in 
MOM [15]. Thus, the amount of calculation of 
MLM-RBF is more than that of MOM in solving HIE.  

zzI dmIzJ

z∆
LI

( )J Izϕ −z

( )Iϕ z

zI'

 
Fig. 2. Collocation node zJ located in the range of 
the supported domain centered at zI 

From (6), the unknown coefficient vector a can be 
solved. Then substituting a into(3), we can get the 
current distribution of the thin wire. 

III. NUMERICAL RESULTS 
In order to validate the present method, the input 

impedance and induced current distribution of a thin 
wire are calculated by MLM-RBF. Here, a delta-gap 
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source ( ') ( ')i
zE z zδ=  at the center of the wire is adopted, 

as shown in Fig. 1(a). The length and radius of the wire 
are set as L=λ/2 and a=10-3λ, respectively. Uniform node 
distribution is adopted on the wire axis and the distance 
between nodes is h. To analyze the accuracy of the 
present numerical algorithm, the results of MLM-RBF 
are compared with those of mesh-based MOM on the 
condition that the node distribution (grid distribution) is 
the same. In this work, two different kinds of MOM are 
taken as referenced methods, which are PMM with pulse 
basis function and Galerkin’s method with triangle basis 
function. The former is directly used to solve HIE and 
this process is called Hallen/Pulse approach. The later is 
used to solve electric field integral equation (EFIE) of 
arbitrarily shaped thin wired (ATW) model [15] and this 
process is called ATW/Triangle approach. 

There are many different types of RBFs. Here, two 
typical RBFs are chosen. One is the quintic RBF:  
 5( )I rφ =r  (14) 
which is a globally supported RBF without shape 
parameter. Another is the compactly supported RBF 
given by Wu [16]: 
 ( ) ( )6 2 3 4 5( ) 1 6 36 82 72 30 5I r r r r r rφ

+
= − + + + + +r (15) 
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First, we compare the rates of convergence of the 
input impedance versus the node number by MLM-RBF 
with those by referenced methods. Figure 3 (a) shows 
the results of r5 RBF-based MLM (MLM-r5-RBF). We 
can see that, like ATW/Triangle approach, the input 
impedance of MLM-RBF converges fast to a stable 
value when the node number is only 12 (i.e. 24 nodes 
per wavelength). In sharp contrast to r5-RBF case, the 
input impedance of the Hallen/Pulse approach converges 
slowly: more than 200 segments are needed to obtain a 
good convergence. However, the results of 
MLM-r5-RBF could be inaccurate when node number 
exceeds 90. This is because the condition number of 
impedance matrix constructed by r5 RBF is too large 
(more than 1410 ) when node number exceeds 90. The r5 
RBF is a power function, its value at the center point is 
zero. Its conforming impedance matrix is not strictly 
diagonally dominant matrices that condition number is 
very large. 

In Wu’s RBF case (dmI=2.4*h), it can be seen that the 
input impedance converges more slowly than in r5 RBF 
case, but still faster than Hallen/Pulse approach, as 
shown in Fig. 3 (b). The input resistance computed by 
Wu’s RBF-based MLM (MLM-Wu-RBF) is in good 
agreement with that by ATW/Triangle approach when 
node number exceeds 50. For the input reactance of 

MLM-Wu-RBF, 100 nodes are needed to obtain good 
convergence results. However, 300 segments are needed 
for Hallen/Pulse approach. Due to the compactly 
supported property of Wu’s RBF, the generated 
impedance matrix is strip and sparse. The condition 
number of the impedance matrix is only 58 when node 
number reaches 250, which is far less than that of the 
impedance matrix of r5 RBF case.  

In Wu’s RBF case, besides the node number N, there 
is another parameter dmI to influence the calculation 
accuracy.  Figure 4 shows the input impedance versus 
dmI of Wu’s RBF. From the figure, we can see that the 
input impedance increases quickly to the peak-value and 
then decreases slowly as dmI increases. In addition, there 
exists a range of steady dmI within which the relative 
errors of peak-value are small. For example, when 
N=101, the relative error of the peak-value of input 
resistance is under 1.6% when dmI ranges from 1.8*h to 
6*h. From the figure, we can also see that the range of 
steady dmI widens as the node number increases. General, 
the dmI parameter of Wu’s RBF in HIE is set the 2*h to 
5*h that the calculation accuracy is good.  

 
(a) r5-RBF 

 
(b) Wu’s RBF (dmI=2.4*h) 

Fig. 3. Input impedance of a / 2λ dipole for (a) r5 RBF 
and (b) Wu’s RBF. 
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Fig. 4. Input impedance versus supported domain dmI of 
Wu’s RBF.  

Then, we compare the induced current distributions 
between MLM-RBF and reference methods. Figure 5 
shows the induced current in r5 RBF case and induced 
current versus the dmI in Wu’s RBF case when N=41. In 
r5 RBF case, the maximum error relative to ATW/ 
Triangle approach at the center node is 4%. In Wu’s 
RBF case, the maximum error at the center node is 8% 
when dmI ranges from 1.8*h to 6*h. When dmI= 2.7*h, 
4.2*h, and 5.7*h, the current curves are close to those of 
ATW/Triangle approach. However, when dmI is not 
within the steady range (from 1.8*h to 6*h), there exist 
great errors. For example, when dmI= 1.2*h, the 
maximum error is 36% at the center node. 

 
Fig. 5. Induced current distribution on a / 2λ dipole 

(node number is 41).  
 
Finally, we consider the generalization of the present 

method. Taking Wu’s RBF for example, we suppose that 
the dmI is set 2.4*h and a node number per wavelength is 
at approximately 15, and then the input impedance 
versus the dipole length ranging from 0.2 λ to 3.5λ  is 
computed; the results are shown in Fig. 6. The results of 
MLM-Wu-RBF are in good agreement with those of 
ATW/Triangle approach almost at every data point, 
which seems to show that MLM-Wu-RBF is a feasible 
and stable algorithm to solving HIE when dmI is in the 
steady range. 

 

 
(a) Input Resistance 

 
(b) Input Reactance 

Fig. 6. Input impedance versus dipole length in Wu’s 
RBF case. 

IV. CONCLUSION 
In this letter, MLM-RBF is applied to solve HIE of 

thin wire. The results show that the convergent rates of 
MLM-RBF are faster than those of MOM. In addition, 
there exists a steady range of dmI for Wu’s RBF within 
which the results reach certain accuracy. And the steady 
range of parameter dmI widens as the node number 
increases. The induced current distributions of r5 RBF 
and Wu’s RBF within the steady-range parameter dmI are 
in agreement with the referenced methods. For the r5 
RBF case, the condition number of impedance matrix is 
too large that some problems cannot be solved. For the 
Wu’s RBF case, when the sample nodes and dmI are set 
as certain values, the impedances varying with the length 
of wire are also in agreement with the referenced results, 
which seems that MLM-RBF can be a general algorithm 
to computing HIE. But the calculation burden of filling 
its matrix is somewhat heavier than that of MOM.  
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