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Abstract ─ In order to efficiently solve the dense 
complex linear systems arising from electric field 
integral equations (EFIE) formulation of electro-
magnetic scattering problems, the multilevel 
simple sparse method (MLSSM) is used to 
accelerate the matrix-vector product operations. 
Because of the nature of EFIE, the resulting linear 
systems from EFIE formulation are challenging to 
solve by iterative methods. In this paper, the two-
step preconditioner is used to alleviate the low 
convergence of Krylov subspace solvers, which 
combine the modified complex shifted precondi-
tioner and sparse approximate inversion (SAI) 
preconditioner. Numerical examples demonstrate 
that the two-step preconditioner can greatly 
improve the convergence of the generalized 
minimal residual method (GMRES) for the dense 
complex linear systems and reduce the compu-
tationnal time significantly.  
  
Index Terms ─ Electromagnetic (EM), 
generalized minimal residual method (GMRES), 
multilevel simple sparse method (MLSSM), 
preconditioner. 
 

I. INTRODUCTION 
The method of moments (MoM) [1-4] has 

found widespread application in a variety of 
electromagnetic problems. The resulting linear 
systems associated with the discretization of the 
electric field integral equation (EFIE) are large 
and dense for electrically large objects in electro-
magnetic scattering problems. It is basically 
impractical to solve the EFIE matrix equation 
using the direct method due to the memory usages 
of O(N2) and computational complexity of O(N3), 
where N is the number of unknowns. Making such 
solutions prohibitively expensive for large-scale 

problems, this difficulty can be circumvented by 
use of iterative solvers. One of the most popular 
techniques is the multilevel fast multipole 
algorithm (MLFMA) [5-6], which has complexity 
for a given accuracy. The MLFMA has been 
widely used in recent years to deal with 
electrically large problems due to its excellent 
computational efficiency. The multilevel fast far-
field algorithm [7] was proposed by L. Rossi in 
2000. The adaptive cross approximation method 
(ACA) is another fast iterative solution algorithm, 
which was proposed in 2000 by Bebendorf [8]. 
Similarly, the multilevel UV method has been 
successfully used to analyze the scattering from 
rough surfaces [9], propagation over terrain and 
urban environments, volume scattering from 
discrete scatterers. As opposed to MLFMA, the 
ACA and multilevel UV algorithm are purely 
algebraic and, therefore, do not depend on the 
Green’s function. 

The multilevel simple sparse method 
(MLSSM) was proposed by Canning and Adams 
[10-11]. Initially, the MLSSM is used to represent 
the impedance matrix sparsely in fast direct 
solution [12-14]. Based on the MLSSM, the 
iterative solution is introduced in [15] for EFIE 
formulation. It is well-known that EFIE provides a 
first-kind integral equation, which is ill-
conditioned and gives rise to linear systems that 
are challenging to solve by iterative methods. 
Although using combined field integral equation 
(CFIE) can alleviate this difficulty [16], it is not 
suitable for an object with opened structure. 
Therefore, it is natural to use preconditioning 
techniques to improve the condition number of the 
system and accelerate the convergence rate of 
iterative solvers before iteration.  

There are some simple preconditioners such as 
the diagonal or diagonal blocks of the coefficient 
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matrix, which can be effective only when the 
matrix has some degrees of diagonal dominance. 
Preconditioners based on incomplete LU 
factorizations have been successfully used on 
hybrid integral formulations [17], but they are 
sensitive to indefiniteness in the EFIE matrix, 
which leads to unstable triangular solvers and very 
poor preconditioners. Based on the hierarchical 
matrix, the H-LU preconditioner has been 
proposed in [18]. The SAI preconditioners are 
generally less prone to instabilities on indefinite 
systems [19-21], and outperform more classical 
approaches such as incomplete LU factorizations. 
The spectral multigrid and two-step preconditioner 
are proposed in [22-25], which seem to be 
efficient to electromagnetic problems. 

In order to accelerate the convergence rate of 
fast iterative solvers of MLSSM, the two-step 
preconditioner is used in this paper. Firstly, the 
SAI preconditioner is adopted in the two-step 
preconditioner. Secondly, the modified complex 
shifted preconditioner is used to shift the smallest 
eigenvalues close to one. Numerical experiments 
demonstrate that the two-step preconditioner of 
MLSSM is more efficient than SAI preconditioner. 
Especially, the two-step preconditioner is suitable 
for multiple right hand vectors problem. 

This paper is structured as follows: In Section 
II, the theory of the MLSSM is outlined. Then, the 
two-step preconditioner is presented in detail for 
the efficient solution of the dense linear system in 
Section III. In Section IV, some numerical results 
are presented to demonstrate the performance of 
the two-step preconditioner. Finally, conclusions 
are presented in Section V. 

 
II. MULTILEVEL SIMPLE SPARSE 

METHOD OF EFIE 
Consider a 3-D arbitrarily shaped perfectly 

electrically conducting (PEC) object immersed in 
a medium characterized by permittivity ε and 
permeability μ. The object is illuminated by an 
incident wave Ei that induces current Js on the 
surface S. The current Js satisfies the electric field 
integral equation: 

 ,       (1)  
where 

  .      (2)  

The discretization of EFIE with MoM using planar 
Rao-Wilton-Glisson (RWG) basis functions for 
surface modeling is presented in [1]. The surface 
of the object is usually meshed with one-tenth of 
the wavelength for accuracy. The resulting linear 
systems from EFIE formulation after Galerkin’s 
testing are briefly outlined as follows: 

 ,       (3)  

where 

 , 

(4)  
and 

 .              (5)  

For simplicity, let Z denote the coefficient matrix 
in (3), and in following. Then, 
the EFIE matrix equation (3) can be symbolically 
rewritten as: 

 ,                      (6)  
where is the column vector containing the 
unknown coefficients of the surface current 
expansion with RWG basis functions. The 
impedance matrix Z is dense in the sense that all 
entries are nonzero. 

The impedance matrix Z resulting from the 
discretization of EFIE formulation can be 
represented by the multilevel simply sparse 
method [14-15] based on a multilevel oc-tree as 
shown in Fig. 1. In [15], the structure of the 
MLSSM representation of the impedance matrix Z 
is given in a multilevel recursive manner 

 ,                      (7)  
where  is the reduced order impedance matrix 
and consists of only far-field interactions at level 

, which will be compressed in the coarser 
levels recursively up to level-3. There is no level 

 near-field interaction at the finest level . 
Thus, is the impedance matrix Z. In (7), is 
the sparse matrix containing all near-neighbour 
interactions at level of the oct-tree which were 
not represented at the finer level of the tree,  
are block diagonal unitary matrices that compress 
interaction between sources in non-touching 
groups at level . The pictorial representation of 
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impedance matrix of EFIE in MLSSM is shown in 
Fig. 2. 
 

 
Fig. 1. Construction of an oc-tree. 
 

   
Fig. 2. The pictorial representations of impedance 
matrix of EFIE in MLSSM. 
 

Based on the MLSSM representation of the 
impedance matrix Z, the efficient matrix vector 
product (MVP) is implemented as follows: 
 
Subroutine MVP (x, y, ) 
Begin = L: 3: -1 
      ; 
      ; 
      Call MVP ( , , -1); 

 
End 
 
 

III. TWO-STEP PRECONDITIONER 
The linear system resulting from 

EFIE with electromagnetic scattering MLSSM is 
often an ill-conditioned matrix and results in the 
low convergence of the Krylov subspace solvers, 
such as generalized minimal residual method 
(GMRES) [26]. In linear algebra, the convergence 
of the Krylov subspace solver is closely related to 
the condition number of impedance matrix Z. 
Denote the spectrum of Z in magnitude by 

 .              (8)  

Generally speaking, the condition number can be 
evaluated as follows: 

 .                  (9)  
In order to improve the convergence, the 

preconditioners are usually incorporated. 
According to (9), one can conclude that the 
smallest eigenvalues are responsible for slow 
convergence. The convergence of Krylov subspace 
solvers can be accelerated if by any means 
components in the residuals which correspond to 
the small eigenvalues can be removed during the 
iterations.  

The SAI preconditioner can improve matrix 
condition number by clustering most of the large 
eigenvalues close to one, but leaving a few close 
to the origin. In [24], the modified complex shifted 
preconditioner was proposed, which can shift the 
smallest eigenvalues of impedance matrix Z close 
to a priori fixed constant. Therefore, we adopt the 
preconditioner in a two-step manner in order to 
accelerate the convergence of Krylov subspace 
solvers of MLSSM. Firstly, the SAI preconditioner 
is used to cluster most large eigenvalues close to 
one. The EFIE matrix equation (6) is transformed 
into an equivalent form as follows 

  ,                         (10)  
where  is the corresponding SAI preconditioner 
matrix. Secondly, the modified complex shifted 
preconditioner is utilized to shift some eigenvalues 
to one. Then, we obtain the equivalent form as 
follows 

 ,                     (11)  
where  is the corresponding modified complex 
shifted preconditioner matrix. For simplicity, the 
above combining preconditioner is referred to as 
two-step preconditioner.  

In this paper, the construction of SAI precondi-
tioner matrix  is referred to [21-22]. For the 
modified complex shifted preconditioner matrix , 
we have constructed in efficient manners as in [25] 

 ,                     (12)  
where , , and are 
rectangular matrices with rank , which contain  
smallest eigenvalues of impedance matrix Z.  
 

IV. NUMERICAL RESULTS 
In this section, some numerical examples are 

simulated to demonstrate the efficiency of the two-
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step preconditioner. All computations are perform-
ed on Intel(R) Core(TM) 4 Quad CPU at 2.83 GHz 
and 8 GB of RAM in single precision. The 
restarted version of GMRES(m) is applied to solve 
linear systems, where m is the dimension size of 
Krylov subspace for GMRES and is set to be 30 in 
this paper. The iteration process is terminated 
when the normalized backward error is reduced by 
10-3 for all examples, and the limit of the 
maximum number of iterations is set as 10000. 

First, we consider the scattering of a perfectly 
electrically conducting (PEC) sphere with radius 
1m at 300 MHz. The incident angles of plane 
wave are . The sets of angles of 
interest for the bistatic RCS vary from 0 to 180 
degree. As shown in Fig. 3, comparison with 
analytical solution from Mie series is made for the 
bistatic RCS of the sphere. It can be found that 
there is an excellent agreement between them and 
this demonstrates the validation of our MLSSM 
and the two-step preconditioner. 

 

Fig. 3. Calculation results for bistatic RCS of the 
sphere with radius 1 m at 300 MHz. 
 

Second, we consider a PEC plane as shown in 
Fig. 4. The length of the plane is 2.04 m in the x-
axis direction, and width is 2.02 m in the y-axis 
direction. The frequency of the incident wave is 
1GHz and the incident direction is  

. The surface of the plane is meshed with 
one-tenth of the wavelength. The unknown of the 
PEC plane is 18264. The third example considers 
a VIAS geometry [27] as shown in Fig. 5. The 
frequency of the incident wave is 100 MHz and 

the incident direction is . The 
unknown of the VIAS geometry is 15377.  

 

Fig. 4. Convergence history of the GMRES(m) for 
solving system on the plane. 
 

 
Fig. 5. Convergence history of the GMRES(m) for 
solving system on the VIAS geometry. 
 
Table 1: Total number of iterations and solution 
time (in second) for the plane and VIAS geometry 

Object Unknown 

Iteration 
Number  Solution Time 

SAI Two-
step SAI Two-

step 

Plane 18264 442 44 
195 

s 22 s 

VIAS 15377 215 107 63 s 31 s 

 
The convergence histories of the GMRES 

algorithms with a two-step preconditioner and SAI 
preconditioner are displayed in Figs. 4-5 for the 
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above examples. It can be observed that when 
compared with the SAI preconditioned GMRES 
(m), the two-step preconditioner can decrease the 
number of iterations by a factor of 10.0 on the 
plane case, 2.0 on the VIAS case. The solution 
times are given in Table 1 for the above examples. 
It can be seen from Table 1 that a two-step 
preconditioner can reduce the solution time and 
iteration number greatly. 

In order to illustrate the performance of the 
two-step preconditioner further, the monostatic 
RCS of the above PEC sphere is calculated firstly. 
The interest angles vary from to in  
direction when  is fixed at . The error of 
monostatic RCS of the two-step preconditioner 
and Mie series is displayed in Fig. 6 for the 
metallic sphere. It can be seen that the maximum 
error of the monostatic RCS is less than 0.06 db 
and this demonstrates the validation of our 
MLSSM and the two-step preconditioner. 

Then, the above plane and VIAS examples are 
calculated. The interest angles vary from to 
in  direction when  is fixed at . The 
monostatic RCS of the two-step preconditioner 
and the SAI preconditioner are displayed in Figs. 
7-8 for the above examples. The number of 
iterations is reported for the monostatic RCS 
calculation in Figs. 9-10. 

 

Fig. 6. The error of monostatic RCS of two-step 
preconditioner and Mie series for the PEC sphere. 

 
Fig. 7. The monostatic RCS of the PEC plane for 

, . 

 
Fig. 8. The monostatic RCS of the PEC VIAS 
geometry for , . 

Fig. 9. Number of GMRES iterations for solving 
monostatic RCS on the plane. 
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Fig. 10. Number of GMRES iterations for solving 
monostatic RCS on the VIAS geometry. 
 

From Figs. 9-10, it can be seen that the number 
of iterations of the SAI preconditioner varies 
largely with respect to incident angles (i.e. RHS-
vectors), while that of the two-step preconditioner 
is more similar and almost constant for each 
example. This is the advantage of the two-step 
preconditioner. Therefore, the two-step precondi-
tioner is suitable for the multiple right hand 
vectors problem, such as the calculation of the 
monostatic RCS. 

 
V. CONCLUSION 

Because of the nature of the EFIE formulation, 
the linear system resulting from the 
electromagnetic scattering MLSSM is often an ill-
conditioned matrix and results in the low 
convergence of the Krylov subspace solvers. In 
this paper, the two-step preconditioner is used to 
accelerate the convergence of the Krylov subspace 
solvers in MLSSM. The numerical examples 
demonstrate that the two-step preconditioner is 
more effective than SAI preconditioner in terms of 
the CPU time in iterative procedure. Especially, 
the two-step preconditioner is suitable for the 
multiple right hand vectors problem. 
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