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Abstract ─ This paper introduces a heterogeneous 

CPU+GPU co-processing implementation of the method 

of moments (MoM) for broadband full-wave 

electromagnetic analysis of grid-like spatial shields for 

protecting structures against LEMP effects. Broadband 

capacity of the approach is achieved through supporting 

MoM by adaptive frequency sampling and implicit 

rational interpolation of the observed quantity via Stoer-

Bulirsch algorithm. The overall application performance 

is increased by hardware acceleration, i.e., by employing 

CPU+GPU co-processing. Sample numerical results for 

a lightning protection system directly hit by lightning 

show that reliable rational interpolation can be done  

at substantially reduced computational effort compared 

to that of conventional uniform sampling, and the 

CPU+GPU co-processing offers additional noticeable 

speedup over the CPU single-thread implementation of 

the method. 

 

Index Terms ─ CPU+GPU co-processing, grid-like 

shield, lightning protection system, method of moments, 

rational interpolation, Stoer-Bulirsch algorithm. 
 

I. INTRODUCTION 
Wire meshes in the form of spatial grid-like 

structures are widely used as lightning protection systems 

(LPS) designed to reduce aggressive high-intensity 

electromagnetic (EM) effects caused by lightning 

strikes. For effective design of LPS, prediction of its 

response to lightning induced electromagnetic excitation 

is of vital importance. Therefore, a considerable research 

effort has been devoted over the last years to the 

development of accurate and efficient techniques for  

EM analysis of complex LPSs. For spatial grid-like 

structures composed of arbitrarily arranged conductors, 

perhaps the best choice is the full-wave method of 

moments (MoM) formulated in the frequency domain 

(FD) [1]. When a wideband response of a structure is 

required, the investigation is usually carried out by point-

by-point frequency swept computations, i.e., evaluation 

of samples of the required physical observable over a 

predefined set of uniformly spaced frequency nodes. The 

approach is computationally inefficient, since EM 

simulation must be performed repeatedly at many 

frequencies resulting in that the computation time can be 

unacceptably long for complex resonant structures. 

Among available approaches aimed at reducing the 

number of EM simulations needed for reconstruction of 

the system response, and thus, minimizing the overall 

processing time is the rational-function interpolation 

approach based upon the assumption that the system 

response can be represented by a rational polynomial [2]. 

The approach usually involves adaptive procedures for 

selecting the interpolation nodes and the rational 

interpolant order. In this study, we employ an adaptive 

frequency sampling (AFS) technique based upon 

interval halving (bisection) in combination with the 

rational interpolation implemented through Stoer-

Bulirsch (SB) algorithm [3]. The details of the formulation 

are given in [4, 5]. 

Till the end of Pentium IV era, the possibility of 

MoM-based wide-band simulation of LPS structures  

on PC-based workstations was seriously limited. For 

example, the runtime needed for a wide-band simulation 

from 1 kHz to 20 MHz of a single-layer grid-like LPS 

type 1 (10 m × 10 m × 10 m) [6] discretized into 2224 

wire segments was about one week [7]. The situation has 

changed dramatically with the introduction, about 2006, 

of powerful multi-core CPU technologies and the unified 

graphics and computing Graphics Processing Unit (GPU) 

architecture known as Nvidia CUDA (Compute Unified 

Device Architecture). Multi-core processors and CUDA-

enabled GPUs offer an inexpensive massively parallel 

programmable hardware platform very attractive for use 

in scientific computing. It is now well known that by 

extending a traditional CPU-based computation model 

through adoption of the General-Purpose computing  

on GPU (GPGPU) paradigm, the performance of EM 

simulations can be remarkably increased. 

In this paper, a CUDA-enabled heterogeneous 

CPU+GPU co-processing implementation of the method 

of moments supported by AFS and implicit rational 

interpolation for electromagnetic simulation of grid-like 

lightning shields over a wide frequency band is outlined. 
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The approach employs the technique described in [8] for 

mapping CPU sequential MoM procedures to parallel 

GPU platform. For consistence of presentation, we 

briefly summarize partial concepts of the overall 

approach including AFS-SB algorithm and CUDA-

based CPU+GPU implementation of the relevant 

computer program. The potential of the approach is 

demonstrated by a numerical example involving grid-

like LPS under direct strike. 

The key components of a hardware platform engaged 

in this study were the Intel Core i7-3820 Quad-Core 

Processor and GeForce GTX 680 graphics card. Software 

tools included Intel Fortran, PGI Fortran, CULA and 

Intel MKL libraries. The overall approach constitutes  

an example of the integration of the advanced 

computational electromagnetics technique with modern 

architecture of a rather typical low-cost PC-style 

workstation for the purpose of increasing efficiency of 

the application-oriented EM simulator. 

 

II. METHOD 

A. Matrix approximant to the integral equation 

The approach outlined in this paper adopts (for 

wires) the frequency-domain mixed-potential electric 

field integral equation (EFIE) formulation developed in 

[9] for analyzing an arbitrary configuration of conducting 

bodies and wires. For the sake of completeness, the 

formulation is briefly outlined here. 

For a wire residing in a simple medium (𝜀, 𝜇) and 

illuminated by an incident time-harmonic (exp (j𝜔𝑡)) 

EM field (E𝑖 ,H𝑖), the EFIE for the total axial current 

𝐈(𝑙) excited on the wire can be written as [9]: 

(j𝜔A + ∇ϕ)∙1𝑙 = 1𝑙∙E
𝑖 , (1) 

with conventional notation A and ϕ employed for the 

magnetic vector potential and electric scalar potential, 

respectively, and 1𝑙 denoting the unit vector locally 

parallel to the wire axis. For the wire approximated by a 

series of broken line segments, the unknown current is 

expanded as a linear combination of one-dimensional 

(triangle) RWG-type functions: 

I(𝑙) ≅ ∑ 𝐼𝑛T𝑛(𝑙)𝑁
𝑛=1  , (2) 

where 

T𝑛(𝑙)

= {

𝟏𝑛
+(𝑙 − 𝑙𝑛−1)/𝛥𝑛

+      if   𝑙𝑛−1 ≤ 𝑙 ≤ 𝑙𝑛 ,

𝟏𝑛
−(𝑙𝑛+1 − 𝑙)/𝛥𝑛

−      if   𝑙𝑛 ≤ 𝑙 ≤ 𝑙𝑛+1 ,

0                    otherwise,

 
(3) 

and 

𝛥𝑛
+ = |r𝑛 − r𝑛−1|    and    𝛥𝑛

+ = |r𝑛+1 − r𝑛|, (4) 

with 𝑙 and r𝑖 denoting the arc length along the wire axis 

and a position vector of the i-th point subdividing the 

wire into segments, respectively. The EFIE-MoM  

procedure leads to the matrix equation: 

Z(𝑓)I(𝑓) = V(𝑓), (5) 

in which Z𝑁×𝑁  denotes the MoM-generated system 

matrix with elements (m, n = 1, 2, …, N): 

𝑍𝑚𝑛 = 𝑗𝜔[A𝑛(r𝑚−1 2⁄ ) ∙ (r𝑚 − r𝑚−1 2⁄ ) 

      + A𝑛(r𝑚+1 2⁄ ) ∙ (r𝑚+1 2⁄ − r𝑚)] 

   + 𝜙𝑛(r𝑚+1 2⁄ ) − 𝜙𝑛(r𝑚−1 2⁄ ), 

(6) 

where A𝑛(𝐫) and ϕ𝑛(𝐫) denote A and ϕ values from n-

th basis function at the observation point specified by 𝐫, 

respectively, with 

r𝑚−1/2 =
r𝑚−1 + r𝑚

2
    ,    r𝑚+1/2

=
r𝑚 + r𝑚+1

2
.       

(7) 

The unknown current expansion coefficients constitute a 

column vector I𝑁×1, and the elements of a column vector 

V𝑁×1 representing the excitation are given by (m = 1, 2, 

…, N): 

𝑉𝑚 = E𝑖(r𝑚−1 2⁄ ) ∙ (r𝑚 − r𝑚−1 2⁄ ) 

        +E𝑖(r𝑚+1 2⁄ ) ∙ (r𝑚+1 2⁄ − r𝑚). 
(8) 

The complex valued dense impedance matrix 𝐙  is 

frequency, 𝑓(= 𝜔 2𝜋⁄ ), dependent and, therefore, the 

matrix equation must be set up and then solved repeatedly 

for each individual frequency within a set of discrete 

frequencies of interest. The Equation (5) can be solved by 

standard methods of linear algebra. In this paper, only the 

LU decomposition is considered in GPU context, since the 

technique is widely used in MoM simulations. 
 

B. Adaptive frequency sampling 

An adaptive frequency sampling scheme employed 

in this study consists in performing repetitive bisection 

of each of initially chosen frequency intervals until a 

specified convergence criterion is met for the observable 

𝐻(𝑓). The efficiency of sampling process is noticeably 

improved by way of interpolation of the quantity of 

interest by a rational function,  𝑅(𝑓), fitting the support 

point {𝑓𝑖  , 𝐻𝑖 ; 𝑖 = 0, 1, 2, ⋯ , 𝑁}. Such the function is 

defined as a quotient of polynomials 𝑃𝐿(𝑓) and 𝑄𝑀(𝑓) 

of orders 𝐿 and 𝑀, respectively, that is 

𝑅𝐿,𝑀(𝑓) =
𝑃𝐿(𝑓)

𝑄𝑀(𝑓)
=

∑ 𝑝𝑖𝑓𝑖𝐿
𝑖=0

1 + ∑ 𝑞𝑗𝑓𝑗𝑀
𝑗=1

, (9) 

where 𝐿 + 𝑀 = 𝑁. Instead of constructing 𝑅𝐿,𝑀 

explicitly, we employ in this study a recursive tabular 

algorithm developed by Stoer and Bulirsch, which 

generates implicitly the so-called diagonal rational 

interpolant [3]. A combination of SB algorithm with 

bisectional AFS results in the AFS-SB adaptive frequency 

sampling scheme. This latter is controlled by error 
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surrogates. To be precise, for the interval [𝑓𝑖−1, 𝑓𝑖], three 

approximate values for 𝐻: �̂�𝑚, �̂�𝑚
+  and �̂�𝑚

−  are computed 

at the midpoint 𝑓𝑚 from three rational fitting models 𝑅𝐿,𝑀, 

𝑅𝐿+1,𝑀−1 and 𝑅𝐿−1,𝑀+1, respectively. Then, the absolute 

values of relative errors between �̂�𝑚
+  and �̂�𝑚, and �̂�𝑚

−  

and �̂�𝑚, respectively, are computed for the purpose of 

controlling the AFS-SB process. When one of the errors 

(or both of them) exceed(s) the assumed convergence 

tolerance, , a new sample 𝐻𝑚 is computed at 𝑓𝑚 via 

MoM, the number of support points for the rational fitting 

model is thus increased by one, and the bisection process 

continues until the convergence criterion is met. 

 
C. GPU+CPU co-processing 

As already mentioned in the introductory section, 

the GeForce GTX 680 CUDA-capable device has  

been used to accelerate the MoM solution process. The  

device has 4 GB of GDDR5 memory and 8 Kepler-based 

Streaming Multiprocessors (SMXs) comprised of 8×192 

CUDA cores. Each SMX has access to 64 KB of on-chip 

memory configured as 48 KB of shared memory and 16 

KB of L1 cache. The device has the capability to overlap 

kernel execution and data transfer between the device 

and host memory, offers fully IEEE-754 compliant 

single and double precision floating point operations, 

supports concurrent kernel execution, and employs a 

dynamic voltage and frequency scaling (DVFS) technique 

[10]. 

Solution of the integral equation via MoM involves 

two computationally intensive phases, i.e., assembling 

the system matrix 𝒁 and the solution of the linear  

system given by (5). Correspondingly, the CPU+GPU 

implementation of the MoM scheme has been divided 

into two relevant parts. The matrix assembly part is 

ported on the GPU device and handled by a highly 

optimized CUDA Fortran kernels [8]. To maximally 

exploit the compute capability of the device, blocks of 

16×16 threads using 40 registers each are employed in 

computing the system matrix 𝒁. The SMX with 64 K 

register file accommodates six such blocks, resulting in 

thread capacity of 1536 threads in each SMX utilizing 

61440 registers, that is, 94% of the register file. 

For the solution of the linear system given by (5), 

the routine cula_device_zgesv()from a commercial 

library CULA Tools [11] is employed when the matrix 

𝒁 fits into GPU memory. When the matrix is too big to 

reside in GPU memory, an out-of-core-like approach 

described in [12] is followed. In brief, the LU 

decomposition process of the 𝒁 matrix is divided into 

numerous tasks on top of blocks of its columns called 

panels. The panels are factorized on the CPU using a 

multi-core routine such as zgetf2() from the MKL 

library, while the trailing submatrices are updated on 

both the CPU and GPU with the use of highly optimized 

MKL/CUDA kernels. The pseudo-code for the proposed 

LU decomposition scheme is presented in Fig. 1. Note 

that four different CUDA streams are created to manage 

the computations (line 8). The initial data is assumed to 

be on the CPU, and when the GPU is executing the task, 

the data need to be copied from the host and sent back to 

be used for updating the impedance matrix. All data 

transfers are asynchronous, allowing the overlapping 

with kernel executions (line 16 and 19). To reduce CPU 

idle time, a concept known as a look-ahead is employed 

[13]. After performing LU factorization of the matrix, 

the backward substitution executed on the CPU yields a 

solution to the matrix equation (line 27). 

Various aspects of GPU+CPU co-processing in 

solving dense linear algebra problems are discussed from 

general and CEM perspectives in [13, 14] and [15-17], 

respectively. 

 

 
 

Fig. 1. Pseudo-code for out-of-core-like LU decomposition 

of MoM matrix. 
 

III. RESULTS 
To demonstrate the efficiency of the proposed 

approach, a lightning protection system directly hit by 

lightning is considered. The LPS, serving as a building 

shielding structure from the lightning electromagnetic 

pulse (LEMP), is modeled by a grounded wire-mesh 

cage. A perfectly electrically conducting (PEC) ground 

plane is assumed and taken into account by the method 

of images. The dimensions of the building are (length × 

width × height) 10 m × 10 m × 50 m. The model is based 

on the type 3 grid-like large volume shield considered in 
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[6]. The shield is assumed to be made of perfectly 

conducting wires of radius 4 mm forming a square mesh 

of 0.5 m × 0.5 m (see Fig. 2 (a)). The lightning is assumed 

to strike a corner of the building. The lightning channel 

is represented by a vertical lossy monopole antenna  

of the height 2 km and radius 5 cm, loaded with the 

distributed inductance of 4.5 H/m in series with the 

resistance of 1 Ω/m [18]. The monopole is fed at its base 

by a delta-gap unit-voltage generator. The entire structure 

including LPS and lightning channel is discretized into 

linear segments of 1 m in length. The total number of 

segments is 18710, and the number of unknowns (basis 

functions) associated with the structure is 27109. 
 

 
 

Fig. 2. Model of grid-like LPS with lightning channel 

and vertical wire located inside the protected volume. 
 

As a numerical example, the electric field/current 

transmittance: 

𝑇𝐸 𝐼⁄ (𝑓) =  |𝐄(𝑓)| |𝐼𝑔(𝑓)|⁄  , (10) 

where 𝐄(𝑓) denotes the electric field intensity at the 

centre of the shielded volume (𝑥 = 5m, 𝑦 = 5m, 𝑧 = 25m) 

and 𝐼𝑔 is the current at the channel base (i.e., at the  

feed-point of the equivalent monopole antenna) has  

been computed. The resulting frequency run of the 

transmittance in the range from 1 kHz to 20 MHz is 

shown in Fig. 3 in the linear and logarithmic scales. The 

empty circles represent data points (EM samples) 

generated by the AFS-SB/GPU algorithm outlined in 

Section II. As can be seen, the AFS-SB/GPU results 

compare very well with those derived from FEKO [19]. 

The computations of 𝑇𝐸/𝐼 were performed for the 

frequency range from 1 kHz to 20001 kHz with the  

initial frequency step ∆𝑓 =  2 MHz and the convergence 

tolerance  = 0.01. The AFS-SB algorithm generated 

totally 149 non-uniformly spaced frequency samples  

of 𝑇𝐸/𝐼 with the frequency step locally decreased to  

3.90625 kHz. To achieve the same convergence level 

with uniform sampling, 5121 samples taken with  
∆𝑓 =  3.90625 kHz would be required so that the AFS-

SB algorithm offers about 34.4x reduction of the number 

of EM samples. Moreover, engaging GPU device in both 

phases of MoM solution, that is, assembling the system 

matrix 𝒁 and solving the system of linear Equations (5), 

accelerates computations by a factor of 6.7 for each 

frequency sample. The total wall-clock simulation time 

was 16 h 16 min, and the improvement in performance 

with a speedup ratio of about 34.4×6.7 = 230x was 

achieved compared to a reference single-thread sequential 

CPU implementation of the uniform sampling scheme. 

When a parallel four-core CPU OpenMP version of the 

code is taken as a reference, the above figure drops to 

about 64x. 

The knowledge of voltages induced in electrical 

circuits inside a protected volume/building is crucial for 

the design of LPS. To mimic the situation of interest, 

a long vertical cylindrical wire of radius 0.89 mm was 

placed in the protected volume parallel to the down 

conductors of the LPS system and connected directly 

between midpoints of the roof and the floor coinciding 

with PEC ground (see Fig. 2 (b)). The wire was discretized 

into 100 0.5-m segments resulting in that the total 

number of basis functions associated with the considered 

structure increased to 27210. The task was to calculate 

the voltage/current transmittance defined as: 

𝑇𝑈 𝐼⁄ (𝑓) = |𝑈(𝑓) 𝐼𝑔(𝑓)⁄ |, (11) 

where 𝑈 is the open-circuit voltage at point 𝑃 located in 

the middle of the wire (see Fig. 2 (b)) and 𝐼𝑔 denotes the 

current at the lightning channel base. Figure 4 shows the 

frequency run of the transmittance of interest in the range 

from 1 kHz to 20 MHz using a convention similar to that 

applied for 𝑇𝐸/𝐼. Again, the AFS-SB/GPU results are  

in excellent agreement with the results derived from a 

commercial full-wave EM simulator FEKO [19]. This 

time the AFS-SB algorithm launched for the frequency 

range from 1 kHz to 20001 kHz with the initial  
∆𝑓= 2 MHz and  = 0.01 generated 70 non-uniformly 

spaced frequency samples of 𝑇𝑈 𝐼⁄ (𝑓) with the frequency 

step locally refined to 31.25 kHz. This implies that 641 

samples uniformly spaced at every 31.25 kHz would be 

required to achieve the same convergence level. Hence, 

the number of samples needed for reconstruction of 

𝑇𝑈 𝐼⁄ (𝑓) is reduced by a factor of about 9.2. The overall 

improvement in performance with a speedup ratio of 

about 17x was achieved compared to the four-core 

parallel OpenMP version of the code. The total wall-

clock simulation time was 7 h 41 minutes. 
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Fig. 3. Electric field/current transmittance 𝑇𝐸/𝐼. 

 

 
 

Fig. 4. Voltage/current transmittance 𝑇𝑈/𝐼. 

IV. CONCLUSION 
The fast technique based on method of moments for 

wideband analysis of lightning protection systems is 

presented in the paper. Broadband capability of the 

technique is attained through supporting MoM by the 

dynamic adaptive frequency sampling employing the 

interval halving scheme backed by the recursive tabular 

Stoer-Bulirsch rational interpolation algorithm. The 

approach offers significant reduction in the number of 

EM samples needed for reconstruction of the response of 

the system. Further speedup of numerical MoM-based 

simulations is achieved by GPU hardware acceleration. 

In case of GeForce GTX 680 CUDA-capable device 

used in this study, the improvement in performance with 

a speedup ratio of about 6.7x for each frequency sample 

is reached compared to the single-thread sequential  

CPU implementation of the algorithm. Numerical 

examples for the grid-like LPS directly hit by lightning 

are presented to illustrate the usefulness and efficiency 

of the approach. From a broader perspective, the 

approach described in this paper represents an example 

of utilizing the potential for technical computing 

provided by CPU+GPU architectures of low-cost PC-

based workstations. 
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