
Shape Reconstruction of Three Dimensional Conducting Objects Using 

Opposition-Based Differential Evolution  
 

 

Mojtaba Maddahali 1, Ahad Tavakoli 1, and Mojtaba Dehmollaian 2 
 

1 Department of Electrical Engineering 

Amirkabir University of Technology, Tehran, 15875-4413, Iran 

tavakoli@aut.ac.ir, maddahali@aut.ac.ir 

 
2 School of Electrical and Computer Engineering 

University of Tehran, Tehran, 14395-515, Iran 

m.dehmollaian@ece.ut.ac.ir 

 

 

Abstract ─ In this paper, shape reconstruction of three 

dimensional conducting objects using radar cross 

section (RCS) of the scatterer and opposition-based 

differential evolution is investigated. The shape of the 

scatterer is modeled with nonuniform rational B-spline 

(NURBS) surfaces composed of more than one Bezier 

patches. NURBS are piecewise polynomial with 

unknown coefficients that are determined in the 

procedure of shape reconstruction. Opposition-based 

differential evolution (ODE) is then employed as an 

optimization tool to find the unknown coefficients. 

Physical optics approximation is used to predict RCS of 

the large conducting scatterer in various directions and 

at multiple frequencies. The effect of noise is also 

considered in the inverse process.  

  

Index Terms ─ Inverse scattering, NURBS modeling, 

opposition-based differential evolution, physical optics 

approximation. 

 

I. INTRODUCTION 
The objective of inverse scattering methods is to 

discover features of an object by means of the 

electromagnetic (EM) scattered field. These methods 

have several applications such as nondestructive 

testing, biomedical imaging, and ground-penetrating 

radars. The complexity encountered in inverse scattering 

is mostly due to ill-posed and nonlinear problems. 

Mathematical algorithms of inverse scattering problems 

are mostly categorized into the time-domain or the 

frequency-domain solutions. The time-reversal method 

is an example of time-domain solutions [1]. Optimization 

methods are mostly utilized in widely used frequency-

domain approaches. Optimization methods are 

commonly used for reconstruction of two dimensional 

conducting and dielectric objects [2-5]. In [2], the shape 

of the scatterer is modeled with the cubic B-spline 

curves. These curves are piecewise polynomial where 

their coefficients are determined by control points. The 

control points are found such that a specific measure of 

difference between reconstructed and original scattered 

fields is minimized. This approach could be generalized 

to three dimensional problems. In this case, the structure 

is modeled with non-uniform rational B-spline (NURBS) 

surfaces. NURBS are also piecewise polynomials 

where their coefficients are defined by a set of control 

points and associated weights. For computational 

purposes, NURBS surfaces are decomposed into Bezier 

surfaces. These surfaces are also piecewise polynomials. 

In [6], a NURBS surface composed of only one Bezier 

patch is considered and genetic algorithm (GA) is used 

to reconstruct the shape of a three dimensional 

conducting object. 

Generally, NURBS surfaces have a complex 

geometry and are composed of more than one Bezier 

surface. This paper tries to reconstruct a more complex 

structure composed of more than one Bezier surface. 

The geometrical continuity of the surfaces complicates 

the reconstruction approach. The proposed algorithm is 

based on opposition-based differential evolution (ODE) 

as an optimization tool, because unlike GA, the ODE is 

simple to implement; it does not require coding and 

decoding of population members. In each iteration of 

the optimization algorithm, RCS of the reconstructed 

conducting body is calculated using physical optics 

(PO) approximation. The paper is organized as follow. 

Section II presents a brief review of NURBS modeling. 

Computation of PO integral is discussed in Section III. 

The inverse problem is discussed in Section IV. Some 

simulation results are presented in Section V. Concluding 

remarks are given in Section VI. 
 

II. GEOMETRIC DESCRIPTION OF THE 

BODIES 
In this paper, non-uniform rational B-spline 

surfaces are used for geometric modeling of the bodies. 
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The main reason for this choice is that a small amount 

of information is needed for accurate representation of 

complex objects. NURBS surfaces are specified with  

a set of control points, associated weights, and knot 

vectors. A NURBS surface is expanded as a set of 

Bezier patches. Geometrical parameter calculation of 

Bezier patches is easier than the NURBS surfaces. In 

the following, we discuss the concept of rational Bezier 

curves and then extend it to the three-dimensional 

surfaces. Rational Bezier curves could be formulated as 

follows [7]: 
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where 
3

ib R , = 0, ,i m , are the control points, 

iw R , = 0,..,i m , are the associated weights, the 

integer m  is the curve degree, and ( )m

iB u , = 0, ,i m , 

are the Bernstein polynomials given by: 
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u is a parameter between zero and one that shapes the 

curve. When these control points move through space 

on another Bezier curve, a Bezier surface is formed. 

The resultant surface could be formulated as follows:  
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where 
3

ijb R , = 0, ,i m , = 0, ,j n , are the control 

points, ijw R , = 0, ,i m , = 0, ,j n , are the 

associated weights, and the integers m and n are degrees 

of the surface. Similar to u, v is a parameter between 

zero and one that shapes the other dimension of the 

surface. When a set of Bezier surfaces are connected by 

a specific continuity rule, a B-spline surface is formed. 

The resulting B-spline surface has an appealing 

property of local control ability [7]. A B-spline surface 

can be expanded as a linear combination of B-spline 

basis functions [9]. 
 

III. PHYSICAL OPTICS 
When the dimensions of the conducting object are 

large compared to the wavelength, the backscattering 

electric field is specified by [9]:  
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where   is the operating wavelength, 0E  is the 

polarization of the incident field, k̂  is the wave vector, 

r  is the position vector, ds  is the differential element 

of the surface, n̂  is the normal vector at the surface 

point, 
0k  is the wave number, and I  is the physical 

optics integral. For a Bezier surface, I  is written as 

follows: 
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Any surface can be formed with composition of 

three kinds of Bezier surfaces, (a) singly curved, (b) 

doubly curved, and (c) plane patch. PO integral can be 

evaluated for these kinds of surfaces as explained in 

continue. 

 

A. Singly curved surfaces 

When the degree of a Bezier surface is equal to 

one, then a singly curved surface is formed as shown in 

Fig. 1 (a). In other words, this surface is formed when a 

curve moves on a straight line in space. Suppose that 

the surface is linear along parameter v, then the phase 

term in PO integral can be written as follows:  

 0 1 0 1( , ) = ( ) ( ) = 2 . ( ) 2 . ( ),f u v f u vf u k r u v k r u   (7) 

thus, the PO integral is  
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Integration with respect to the parameter v  can be 

computed by expanding ( , )g u v  in Taylor series around 

0 = 0.5v  and then calculating the integral of each term 

in the series analytically, then we have,  
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Integration with respect to the parameter u  can be 

evaluated via a trapezoidal numerical method. In some 

references, this integral is computed with stationary 

phase method [8-10]; however our simulations show 

that numerical method is more accurate. 

 

B. Doubly curved surfaces 

When both degrees of a Bezier surface is greater 

than one, a doubly curved surface is formed as shown 

in Fig. 1 (b). In this case, currents near the certain 

critical points produce the main contribution of the 

scattered field. There are three kinds of critical points: 

stationary phase points, boundary points, and vertex 
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points as shown in Fig. 2. The phase term of the 

integrand is expanded in Taylor series around the 

critical points and then physical optics integral is easily 

calculated. This method is explained in [8-10]. 

 

C. Plane patches 

When both degrees are equal to one, a plane patch 

is formed as shown in Fig. 1 (c). For plane patch, PO 

integral can be evaluated using Gordon method [11]. 

 

 
 

Fig. 1. Three kinds of Bezier surfaces and their control 

points: (a) singly curved surface, (b) doubly curved 

surface, and (c) plane patch [8]. 

 

 
 

Fig. 2. critical points over the Bezier surface [5]. 

 

IV. INVERSE SCATTERING 
In the inverse scattering procedure, the control 

points of the rational spline surface are optimally 

located such that the RCS of the reconstructed scatterer 

in multiple directions and at several frequencies 

approaches the RCS of the original scatterer. Here, the 

shape of the scatterer is approximated by a degree- n  

surface that is constructed by rational spline curves 

(Fig. 3). The shape of these curves and the distance 

between them are determined by an optimization 

algorithm. Therefore, arbitrary objects can be 

reconstructed. Compared to the reference [6], an exact 

algorithm for reconstruction is presented here, and 

some complex objects are rebuilt as well. In addition, in 

this case, other issues such as the effect of the 

shadowing of a surface by another surface, is taken into 

consideration by the authors while nothing is concerned 

in reference [6] regarding this effect.  

 
 

Fig. 3. Control points of the object. 

 

A. Optimization algorithm 

The opposition-based differential evolution is our 

optimization approach as follows. If the problem has 
D  unknown parameters, then NP parameter vectors of 
D -dimension are produced in the first step [12]:  

 , , = 1,...., .i jx i NP  (12) 

Then, the opposite population is calculated by: 

 , ,= ,i j j j i jox a b x   (13) 

where ja  and jb  are the lower and upper bounds of the 

thj  dimension of the parameter vector respectively. If 

the cost function of ,i jox  is lower than ,i jx , then ,i jx  is 

replaced by ,i jox . According to probability principles, 

this happens 50% of the time. In the second step, a 

mutant vector is produced for each target vector as:  

 1

1 2 3= .( ),G G G G

i r r rv x F x x    (14) 

where G is the generation index and 
1 2 3, ,r r r  are three 

mutually different integers that also differ from target 

index .i  F is also the mutuant constant that is usually 

taken to be 0.8. Next, from the combination of the 

mutant vector and the target vector, the trial vector is 

produced: 
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In this equation, jh  is a random number in the interval 

[0,1] , (0,1)H  is a crossover constant selected by the 

user, and l  is a random integer [1,2,..., ]D . If the cost 

function of 1G

iu   is smaller than 1G

ix  , then 1G

ix   is 

replaced by the trial vector. Similarly, opposite of the 

current population is generated by: 

 , ,= ,G G G G

i j j j i jox MIN MAX x   (17) 

where 
G

jMIN  and 
G

jMAX  are the minimum and 

maximum of thj  dimension in the current population. 

Now, a random number between [0,1]  is generated and 
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if it is lower than the preselected jumping rate 
rJ , then 

,

G

i jx  is compared with ,

G

i jox  and the one with a lower 

cost function is selected as the member of the current 

population. Here, the selected parameters of the 

opposition-based differential evolution are listed in 

Table 1. 
 

B. RCS based cost function 

The cost function for this optimization is defined 

as:  
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where 
true

  and 
rec

  are radar-cross sections of the 

original and the reconstructed scatterer respectively. 

The cost function is minimized to find the location of 

control points, p  and the distance between curves. For 

considering the noise effect, the original RCS is 

modified as follows [6]: 

 
2
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In this equation, 
2

, ,    is the rms of the original 

RCS, NL is the noise level, and rand  is a random 

number picked from the interval [0,1] . In this paper, 

the radar cross section of the scatterer is used in the cost 

function, so that the phase of the scattered field is not 

taken into account, and the transmission of the object is 

obtained. 
 

V. NUMERICAL RESULTS 
For the first example, the reconstruction of 

perfectly conducting cone modeled with one NURBS 

surface composed of three Bezier surfaces is presented. 

The cone has the height of 1m and the bottom radius of 

1m and the top radius of 0.5m as shown in Fig. 4 (a). In 

the reconstruction procedure, the degree of the surface 

and weight coefficients are selected a-priori. In addition, 

we assume that the curvature of the surface is negative. 

It should be noted that the weight of control points and 

the degree of surface can also be considered as the 

optimization parameters; however, in this state, the 

volume of computations is enormous and it is not 

considered here as just a generalized method for 

complex structures was aimed. This cone is modeled 

with 6x2 control points. The scattered filed is evaluated 

at 45  points that are uniformly located around the object 

at = 60 ,75 ,90    and at frequencies of 0.4,0.8,1.2 .GHz  

Figure 4 (b) displays the reconstructed cone. The average 

cost function for five simulations as a function of 

number of iterations are depicted in Fig. 4 (c). The RCS 

of the original and the reconstructed cones are presented 

in Fig. 4 (d). A very good agreement between the 

original cone and the reconstructed cone is observed. 

 

 
 (a) 

 
 (b) 

 
 (c) 

 
 (d) 

 

Fig. 4. (a) Original half cone, (b) reconstructed half 

cone, (c) average cost function, and (d) radar cross 

section of the original and the reconstructed cone at 

= 1.2f GHz  and = / 4.   
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 (a) 

 
 (b) 

 
 (c) 

 
 (d) 

 

Fig. 5. (a) Original cone cylinder, (b) reconstructed 

cone cylinder, (c) average cost function, and (d) radar 

cross section of the original and the reconstructed cone-

cylinder at = 1.2f GHz  and = / 4.   

 

Table 1: Opposition-based differential evolution 

parameters 

Jumping Rate Mutant Constant Crossover Rate 

0.5 0.8 0.5 

 

To evaluate the accuracy of the reconstruction 

procedure, a shape error is defined as follow [6]: 
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where = 2vnetN mn m n   is the number of elements in 

the vector net and ,i jp  is the Euclidean norm given 

by: 

 2 2 2

, , , ,= .i j i j i j i jp x y z   (21) 

0,1

,i jp  and 
1,0

,i jp  are related to the control points as:  

 
0,1 1,0

, , 1 , , 1, ,= = .i j i j i j i j i j i jp p p p p p      (22) 

In the simulation, the shape error for a half cone is 

calculated to be 0.04423. In the presence of a noise 

level of 10% , the shape error is 0.04725. For the 

second example, the reconstruction of perfectly 

conducting cone-cylinder modeled with one NURBS 

surface composed of six Bezier surfaces is presented. 

The cone-cylinder has the height of 1m for both the 

cone and the cylinder and radius of 1m at the bottom 

and 0.5m at the top. Similar to the previous example, 

Fig. 5 shows the target and the simulation results. Here, 

the shape error for cone-cylinder is calculated to be 

0.071. In the presence of a noise level of 10% , the 

shape error is 0.1527. In the following, we can consider 

this issue for the reconstruction of buried objects by 

taking into account the effect of a background layer. 

 

VI. CONCLUSION 
In this paper, the PO approximation, the ODE 

algorithm, and NURBS modeling are used to 

reconstruct three-dimensional conducting objects. 

NURBS surface are used to model unknown scatterers 

by a minimum number of parameters. The reconstruction 

is done by applying the ODE algorithm as an 

optimization tool. Here, NURBS surfaces composed of 

more than one Bezier surface is reconstructed. A very 

good agreement between the original object and the 

reconstructed object is achieved. 
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