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Abstract  ─ In this paper, the echo models with different 

micro-motion forms (spin, tumbling, precession, and 

nutation) of space cone-shaped target are built. Different 

from the ideal point scatterers model, the radar echo 

contains the contribution from the complex radar cross 

section (RCS) of point scatterer vs aspect angle. And a 

convolution neural network (CNN) model for micro-

motion forms classification based on the micro-Doppler 

characteristics in spectrograms is presented. The 

simulation results show that our method can discriminate 

different micro-motion forms effectively and the overall 

accuracy is 97.24%. Different levels of additive white 

Gaussian noise are added to simulate noise-contaminated 

radar echo. It has been found that the presented method 

has a stronger anti-noise ability than support vector 

machine (SVM). When the Signal-to-Noise Ratio (SNR) 

of Gaussian white noise is 10 dB, the overall accuracy of 

our algorithm is 29.79% higher than that of SVM. 

Index Terms ─ Convolution neural network, micro-

Doppler, micro-motion forms classification, space cone-

shaped target. 

I. INTRODUCTION
The micro-Doppler effect refers to Doppler 

modulations on the radar echo due to micro-motion 

dynamics (such as mechanical vibrations or rotations) of 

the target or any structure on the target, in addition to the 

constant Doppler frequency shift induced by the bulk 

motion of a radar target [1, 2]. Micro-Doppler is a unique 

signature of the target with movements and provides 

additional target features that are complementary to 

existing methods [2]. The micro-Doppler effect can be 

used to classify and identify the target, for example, 

human detection and activity classification [3] and the 

warhead and decoys of ballistic target [4]. 

Due to the interference by releasing decoys and the 

wobble under the action of the Earth's atmosphere, 

besides the translation along the line of sight (LOS) 

of the radar, the warhead will have spin, precession, 

and nutation. Many researches indicated that the micro-

Doppler signatures can be used to recognize and 

discriminate the warhead and the decoys [4-6]. The 

micro-motion parameters of the ballistic target reflect the 

important characteristics such as its structure, size, and 

micro-motion period. For radar imaging, to obtain a clear 

body image, the micro-Doppler component must be 

separated [7-9]. The premise of the success of these 

methods is to extract stable and effective micro-motion 

signatures.  

Conventionally, the micro-motion parameters 

estimation methods are based on the micro-motion form 

[10, 11]. However, it's hard to know the micro-motion 

form of the target, since radar usually observes non-

cooperative targets. And the traditional classification 

methods of micro-motion forms can be regarded as a 

kind of feature engineering, which means that they need 

to extract discriminative features from the raw echo data 

for classification algorithms.  

In general, the domain knowledge of micro-Doppler 

signals is required either in the design of time-varying 

signatures or from the extraction of features. These 

limitations result in poor adaptability of the algorithm 

and low anti-noise capability. In this paper, we propose 

a deep convolution neural network (CNN) model, which 

is based on the classical CNN devised by LeCun et al 

[12]. It can effectively discriminate the micro-motion 

forms from the radar echo, which makes the application 

of the parameter estimation methods more successful. 

CNN is an end-to-end learning that automatically learns 

features and discriminates patterns from data. Compared 

with the traditional method, CNN takes feature design, 

feature selection, feature extraction, and pattern 

recognition as a whole by optimizing a certain loss 

function. Through automatic learning features, it has 

achieved state-of-the-art results in many fields, such as 
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image classification [13, 14] and speech recognition 

[15, 16]. Thus, the influence of the preorder algorithm 

module on the subsequent algorithm module is reduced. 

This paper is organized as follows: in Section II, we 

develop the echo models of space cone-shaped target 

with four different micro-motion forms, and the details 

of the classification algorithm based on CNN are 

described. Next, in Section III, the simulation results are 

given, followed by the conclusion in Section IV.  

II. MICRO-MOTION FORMS

CLASSIFICATION 
A. Mathematical model

With the development of modern penetration

technology, cone-shaped decoys have appeared. Since 

the attitude control of the decoy is weak, the angle of 

precession and nutation will be larger, and even the 

decoy will tumble. Therefore, the echo models of 

four different forms of micro-motion (spin, tumbling, 

precession, and nutation) are given. 

Figure 1 gives the geometry of radar and cone-

shaped target with spin, tumbling, precession, and 

nutation. Three coordinate systems are introduced. The 

radar is stationary and located at the origin of the radar 

coordinate system (𝑈, 𝑉,𝑊) . The cone-shaped target 

is located at the local coordinate system (𝑥, 𝑦, 𝑧)  and 

spinning around its symmetric axis 𝑂′𝑧⃗⃗⃗⃗⃗⃗ . The origin of

the local coordinate system is at the center of mass of 

the target. The reference coordinate system (𝑢, 𝑣, 𝑤) is 

parallel to the radar coordinate system and shares the 

origin with the local coordinate system. The origin 𝑂′ is 

assumed to be at a distance 𝑅0 from the radar.
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Fig. 1. Geometry of radar and cone-shaped target with 

spin, tumbling, precession, and nutation. 

For simplicity, a target can be represented as a set of 

point scatterers. In the interest of brevity, the scatterer in 

the following text refers to the point scatterer. Under 

high-frequency electromagnetic waves, the scatterers of 

a cone-shaped target are mainly composed of cone 

top 𝑃0  and two cone bottoms 𝑃1  and 𝑃2 . If the radar

transmits a sinusoidal waveform with a carrier frequency 

𝑓0 , then the baseband of the returned signal from the

cone-shaped target is: 
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(1) 

where 𝑐  is the speed of the electromagnetic wave 

propagation, 𝑅𝑖  is the range from the radar to the

scatterer 𝑃𝑖 , and 𝑅𝐶𝑆𝑖 = √𝜎𝑖 𝑒𝑥𝑝{𝑗𝜑𝑖}  is the complex

radar cross section (RCS) of the scatterer 𝑃𝑖 , which will

vary in different attitudes, as shown in the Appendix. 

It is worth noting that the location of the scatterer 

𝑃𝑖(𝑖 = 0, 1, 2) is not fixed, and it will slide on the surface

of the target. For example, scatterer 𝑃0  is a moving

scatterer that slides on the surface of the spherical crown 

with the change of incident direction. The location of 𝑃0

is the point at which the incident ray passes through the 

center of the sphere and intersects with the sphere. 

Suppose a scatterer 𝑃  is located at 𝑟0⃗⃗  ⃗ =
(𝑥0, 𝑦0 , 𝑧0)

𝑇  represented in the target local coordinate

system (𝑥, 𝑦, 𝑧)  at instant of time 𝑡 = 0 , where the 

superscript T means transposition. Generally, the local 

coordinate system and the reference coordinate system 

do not coincide at the initial time. For the reference 

coordinate system, the position of point 𝑃 at time 𝑡 = 0 

can be calumniated as 𝑅𝑖𝑛𝑖𝑡 ⋅ 𝑟0⃗⃗  ⃗ , where 𝑅𝑖𝑛𝑖𝑡 is an initial

rotation matrix determined by Euler angles. After 

rotation, the point 𝑃  in the radar coordinate system at 

time 𝑡 = 0 is located at 𝑅0
⃗⃗ ⃗⃗ + 𝑅𝑖𝑛𝑖𝑡 ⋅ 𝑟0⃗⃗  ⃗.

Since the space cone-shaped target is rotationally 

symmetrical, its spin does not affect radar echo. Thus, 

the echo  is obtained as: 

 1 0 0

0

4
( ) exp ,P init

P

s t RCS j R R r




 
   

 
 (2) 

where 𝜆0  is the wavelength and ‖∙‖  represents the

Euclidean norm. 

In the process of unfolding, the force of decoy is 

more complex, which will cause its tumbling motion to 

be irregular. For simplicity, suppose that the target will 

tumble around  the center of mass about its axes 𝑥, 𝑦, 𝑧 

with an angular velocity �⃗⃗� = (𝜔𝑥 , 𝜔𝑦 , 𝜔𝑧)
𝑇. Therefore,

the unit vector of �⃗⃗�  is �⃗⃗� ′ = (𝜔𝑥
′ , 𝜔𝑦

′ , 𝜔𝑧
′ )𝑇 = �⃗⃗� /‖�⃗⃗� ‖ .

According to Rodrigues formula [17], at time 𝑡  the 

rotation matrix becomes: 
2ˆ ˆsin (1 cos ),tR I t t        (3) 

where Ω = ‖�⃗⃗� ‖ , �̂�′ is a skew symmetric matrix 

constructed by �⃗⃗� ′. 

After tumbling, the echo can be expressed as: 
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Precession refers to the coning motion of a target 

along the axis 𝑂′𝐴⃗⃗ ⃗⃗ ⃗⃗  , in addition to spinning around its 

symmetry axis 𝑂′𝑧⃗⃗⃗⃗⃗⃗ , as shown in Fig. 1. The angle 

between axis 𝑂′𝐴⃗⃗ ⃗⃗ ⃗⃗   and axis 𝑂′𝑧⃗⃗⃗⃗⃗⃗  is called the precession 

angle. Spinning and coning are both rotating motions, 

except that the axis of rotation is different. Therefore, 

Precession can be regarded as the spin of the target in the 

local coordinate system and then the coning motion in 

the reference coordinate system. At time 𝑡, the location 

of the scatterer 𝑃 in the reference coordinate system is 

𝑅𝑐 ⋅ 𝑅𝑖𝑛𝑖𝑡 ⋅ 𝑅𝑠 ⋅ 𝑟0⃗⃗  ⃗ , where 𝑅𝑐  is the rotation matrix of 

coning motion and 𝑅𝑠 is the rotation matrix of spinning 

motion, both of which are determined by equation (3). 

Thus, the echo of micro-Doppler modulations induced 

by precession is: 
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If the precession angle does not remain at a constant, 

the target will oscillate up and down between two limits. 

This motion is called nutation. After precession, the 

transient position vector of symmetry axis 𝑂′𝑧⃗⃗⃗⃗⃗⃗  is 𝑧𝑡⃗⃗  ⃗ =
𝑅𝑐 ⋅ 𝑅𝑖𝑛𝑖𝑡 ⋅ [0,0,1]𝑇. The target will then oscillates in the 

plane composed of vector 𝑧𝑡⃗⃗  ⃗ and unit vector �̂� = 𝑂′𝐴⃗⃗ ⃗⃗ ⃗⃗  .  

It is equivalent to rotating about the axis �̂� = 𝑂′𝐴⃗⃗ ⃗⃗ ⃗⃗  × 𝑧𝑡⃗⃗  ⃗, 
where × represents cross multiplication.  

Therefore, 𝑥′ = �̂� , 𝑦′ = �̂� × �̂�/‖�̂� × �̂�‖ , and 𝑧′ =
�̂�/‖�̂�‖  form a new coordinate system. The transition 

matrix from the reference coordinate system (𝑋, 𝑌, 𝑍)  

to the new coordinate system is 𝐴 = (𝑥′, 𝑦′, 𝑧′) . The 

rotation matrix of the target rotating around the 𝑧′ axis is 

𝐵, which is determined by oscillating frequency 𝑓𝑜 and 

oscillating amplitude 𝜃𝑜. Then, the echo is obtained as 

[2]: 
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where 𝑅𝑣 = 𝐴 ⋅ 𝐵 ⋅ 𝐴𝑇. 

 

B. Micro-motion forms classification based on 

convolution neural network 

As shown in equations (2), (4), (5), and (6), the 

echoes of the target with different micro-motion forms 

are very different. In frequency domain, the common 

method for analyzing echo signal is Fourier transform.  

Due to lack of localized time information, it is not 

suitable for analyzing a signal whose frequency changes 

over time. Compared with Fourier transform, a joint 

time-frequency analysis can provide localized time-

dependent frequency information, which is used to 

extract time-varying signatures for micro-motion forms 

classification. In this paper, the Wigner-Ville distribution 

(WVD) [18] is used to analyze the micro-Doppler. 

Different micro-motion forms present their  

unique micro-Doppler signatures. The micro-Doppler 

modulation caused by different micro-motion forms can 

be seen in the high-resolution spectrogram. By using 

spectrograms, we convert the micro-motion forms 

classification problem to an image recognition problem. 

Figure 2 shows the hierarchical structure of the CNN, 

which stacks multiple layers of simple neural network 

architecture, thus extracting the representation of data 

layer by layer. It takes color spectrograms as the input 

and learns the mapping between the spectrogram and  

its corresponding micro-motion form. CNN is mainly 

composed of four components. The first component is 

the convolution layer which consists of a set of learnable 

filters. Each filter has small receptive fields of input data 

and can be seen as a specific feature extractor. However, 

in convolution operation, if there is no nonlinear 

transformation in the network, the network will only 

learn the linear characteristics of the input, resulting in 

the network can’t deal with nonlinear problems, and  

the application scene is limited. The second component 

is the nonlinear activation function that carries on the 

nonlinear transformation to the result of the linear 

transformation. The commonly used activation functions 

are the Sigmoid function, the Restricted Linear Units 

(ReLU) function, and their variants. In this paper, we 

choose ReLU as the activation function, the formula of 

which is 𝑓(𝑥) = 𝑚𝑎𝑥( 0, 𝑥). The third component is the 

pooling layer, which subsamples the data according to 

certain rules while retaining the main information. By 

performing 2 × 2 pooling operation with max pooling, 

the data size will be halved. Thus, The pooling layer 

greatly reduces the network parameters and prevents 

overfitting. 
 

Spectrograms

Conv. 32@3×3/ReLU

Conv. 32@3×3/ReLU

Max pool 2×2

Conv. 64@3×3/ReLU

Max pool 2×2

Conv. 128@5×5/ReLU

Conv. 128@5×5/ReLU

Max pool 2×2

Conv. 256@5×5/ReLU

Max pool 2×2

FC 1024

Label distribution
 

 

Fig. 2. The hierarchical structure of the CNN. 

 

The last component is the full connection layer 
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(FCN), where all the input nodes are connected to all the 

output nodes. In the classification problem, Softmax 

function is typically used as an activation function for the 

output layer to obtain the probability of the category and 

can be expressed as: 

 
1

/ ,ji
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zz
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a e e


   (7) 

where 𝐿 represents the total number of target categories. 

The category of the target is determined by the neuron 

with the highest probability, which is 𝑎𝑟𝑔𝑚𝑎𝑥( 𝑎). 

Suppose the difference between the network output 

and the real value is 𝑙𝑜𝑠𝑠(𝑥), which is called the error 

function. The training of CNN can be divided into  

two processes: forward propagation and backward 

propagation. In the forward propagation, the output of 

the network is calculated according to the input image. 

And in the backward propagation, the network parameters 

are automatically updated by the error function. This 

parameter update method is called gradient descent 

(GD). It is an optimization method to find a local 

(preferably global) minimum of a function. For the 

network parameter 𝑤𝑖𝑗 , it is updated using: 

 1 ,ij ij ijw w w      (8) 

where 𝜏 is the gradient descent iteration and 𝛥𝑤𝑖𝑗
𝜏  is the 

weight update.  

𝛥𝑤𝑖𝑗
𝜏  is determined by: 

 
( )
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ij
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where 𝜂  is the learning rate and 𝑥  is the input 

spectrogram.  

According to the number of input samples used for 

each update of the weights, two variants of GD are 

generally used, namely on-line learning and batch 

learning. In on-line learning, the weights are updated for 

every input. In batch learning, the error function is 

calculated for a batch of input samples. If the selection 

of the input samples is random, the GD optimization 

method is called stochastic gradient descent (SGD). In 

this paper, the SGD is used and the batch size is 256. 

 

III. SIMULATION RESULT 

The echoes of four micro-motion forms are 

simulated and WVD is used to obtain the spectrograms. 

Assume that the operating frequency of radar is 10 GHz 

and the center of mass of the target is located at  

(𝑈 = 1000𝑚, 𝑉 = 5000𝑚,𝑊 = 5000𝑚). The azimuth 

angle 𝛼𝑃 and elevation angle 𝛽𝑃 of the coning axis 𝑂′𝐴⃗⃗ ⃗⃗ ⃗⃗   
range from 10° to 80° with an interval of 5°. Thus, there 

are 225 combinations of (𝛼𝑃 , 𝛽𝑃)  pairs. The initial  

Euler angles are (30°, 30°, 45°). For spin, the spinning 

frequency is from 1 Hz to 20 Hz with an interval of  

0.5 Hz. Assume that the range of each component of the 

angular velocity of rotation �⃗⃗�  is from 𝜋/2  rad/s to  

8𝜋 rad/s with an interval of 𝜋/4. Compared with spin, 

precession has rotation around the coning axis, and the 

frequency of rotation is from 2 Hz to 5 Hz with an 

interval of 0.5 Hz. Nutation is a periodic transformation 

of the precession angle based on precession. Assume  

that the wobble frequency is from 5 Hz to 7 Hz with an 

interval of 0.5 Hz and that the oscillating amplitude 

ranges from 1° to 5° with an interval of 1°. 
Suppose that the radar pulse repetition frequency 

(PRF) is 2000. The spectrograms are obtained by WVD 

analysis of 2s echo data. Since the RCS is related to 

polarization, the horizontal to horizontal (HH) and 

vertical to vertical (VV) polarization are considered. If 

the simulation is carried out according to the above 

conditions, the samples of each micro-motion form  

are uneven. Combined with the limited information 

contained in the spin, for precession, we randomly select 

21 frequencies from the spin frequencies, resulting in 

66,150 data. For nutation, we randomly select one 

frequency from the spin frequencies, resulting in 78,750 

data. The size of the spectrogram is normalized to 256 ×
256.  

In order to further approach the actual case, we 

consider not only the contribution from the complex 

RCS of point scatterer vs aspect angle, but also the 

change of the scatterer's location with target motion. 

They will have an impact on micro-Doppler modulation, 

making it difficult for the feature-based classification 

algorithms to discriminate different micro-motion forms. 

Figure 3 shows an example of spectrograms of a  

cone-shaped target with precession for HH and VV 

polarization. There are two visible scatterers in the time 

of 2 seconds, as shown in Fig. 3 (a). The curves of 

scatterer 𝑃0  and scatterer 𝑃1  are sinusoidal curve. The 

RCS of scatterer 𝑃1 is smaller for VV polarization than 

for HH polarization, resulting in discontinuity of its 

curve, as shown in Fig. 3 (b). Different polarization only 

affects the continuity of the curve and does not change 

the micro-Doppler characteristics of the target. Among 

the 176,400 data, 80% of spectrograms of each micro-

motion form are used as the training set and the rest as 

the test set. The convolution neural network shown in 

Fig. 2 is constructed.  
 

  
   (a) 
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  (b) 

 

Fig. 3. Micro-Doppler modulations of cone-shaped 

target induced by precession for (a) HH and (b) VV 

polarization. 

 
Different micro-motion parameters, such as the 

rotation frequency, will have effect on the amplitude and 

the period of the curve in spectrograms. The distinctions 

of different micro-motion forms are the curve 

characteristics of scatterers. The rotationally symmetrical 

target with spin does not effect micro-Doppler 

modulation. The micro-Doppler frequency shift is 

approximately 0. Thus, there is not much information 

contained in spectrogram, which is often a widened 

straight line. As far as tumbling is concerned, the 

amplitudes of different scatterers are the same. The 

difference between precession and tumbling is the 

amplitude of the curves. Although they are both 

sinusoidal curves, for precession, the amplitudes of 

curves are different. For nutation, there will be no more 

sinusoidal curves. The micro-Doppler of scatterers is 

modulated by the mixing of spinning, coning, and 

oscillating. At the same time, different polarizations  

will affect the continuity of the curve. Therefore, the 

method based on feature engineering is difficult to 

extract effective curve features from spectrograms, 

especially under noise. Different from other feature 

based classification algorithms, CNN learns from a large 

number of spectrograms to extract the common features 

in the same class and ignore the differences. It 

automatically extracts the features related to the 

classification tasks, so as to achieve higher accuracy than 

the traditional algorithm. 

With the increase of training epochs, the error on the 

training set becomes smaller and smaller, while the error 

on the test set decreases first and then increases. At this 

time, the network is overfitted. After 200 epochs, the 

parameters of the network are approximately optimal, 

and the overall accuracy is 97.24%. The confusion 

matrix for the micro-motion forms classification based 

on CNN is listed in Table 1. Each column in the table is 

the predicted label, each row is the true label, and the 

diagonal element is the number correctly classified.  

The last column is the classification accuracy of each 

category. In order to measure the overall performance of 

the algorithm in multiple classification problems, the 

overall accuracy is introduced, which can be expressed as: 
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where 𝑁 is the number of total samples, 𝑛 is the number 

of categories, and 𝐶𝑖𝑖 is the number correctly classified 

for class 𝑖. 
For spinning and tumbling, due to their simple 

micro-motion, their classification accuracy is higher. 

When the oscillating amplitude of the target is small or 

the wobble frequency is slow, the difference between 

nutation and precession will become smaller, and it is 

easy to misjudge the nutation as precession. However, 

the classification accuracy of nutation is still above 95%. 

In contrast, the support vector machine (SVM) which is 

a feature-based classification algorithm is also used  

for micro-motion forms classification. Since the size of 

spectrograms is 256 × 256, the number of features is  

too large for SVM. Therefore, we use the principal 

component analysis (PCA) as a pre-processing. The 

overall accuracy of SVM is 72.69%. It is 24.55% lower 

than that of CNN, which is identical to the theoretical 

analysis.  

 

Table 1: Confusion matrix for the micro-motion forms classification based on CNN 

 Spin Tumbling Precession Nutation Accuracy (%) 

Spin 3510 0 0 0 100 

Tumbling  2715 63 12 97.31 

Precession  59 12704 467 96.02 

Nutation  139 548 15063 95.64 

Additive Gaussian white noise of various Signal-to-

Noise Ratio (SNR) levels (5, 10, 15, and 20 dB) are added 

to simulate noise-contaminated radar echoes. Figure  

4 demonstrates the anti-noise capability of the two 

algorithms. With decreasing SNR, the performance of these 

algorithms decreases. The key point used to distinguish 

precession from nutation is that the micro-Doppler 

modulation of scatterer 𝑃0  is a sinusoidal curve. The 

sinusoidal curve will be destroyed in a low SNR, thus the 

classification error will be increased. But it is clearly seen 

that the performance of our algorithm is very good. When 

the SNR is 10 dB, the overall accuracy of our algorithm 

is still 91.03%, which is 29.79% higher than that of SVM. 

Therefore, our method has strong anti-noise capability. 
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Fig. 4. The anti-noise capability with Gaussian noise. 
 

IV. CONCLUSION 
In this paper, we describe the complex RCS 

variation in the target’s different attitudes; develop the 

echo models of space cone-shaped target with different 

micro-motion forms (spin, tumbling, precession, and 

nutation); propose a CNN model for micro-motion forms 

classification based on spectrograms. Compared with 

SVM, the method avoids artificial feature selection and 

feature extraction. Simulated results illustrate that CNN 

can exploit micro-Doppler features of space cone-shaped 

target and effectively discriminate different micro-motion 

forms. Since precession is a special kind of nutation with 

the oscillating amplitude 𝜃𝑛 = 0, the overall accuracy of 

them has decreased somewhat. However, compared with 

SVM, ours has a higher overall accuracy. As a result, we 

found that our algorithm effectively suppresses noise. 

When the SNR is higher than 10 dB, the overall accuracy 

of our algorithm is higher than 90%. 
 

APPENDIX 

The sharp cone is a special case of the blunt cone, at 

which the radius of the spherical crown of the blunt cone 

is 0. Suppose the bottom radius of the blunt cone is 𝑎, the 

half cone angle is 𝛼, and the spherical crown radius is 𝑏, 

as shown in Fig. 5.  
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Fig. 5. Geometry of blunt-cone target. 

The three scatterers are spherical crown 𝑃0 and two 

scatterers 𝑃1, 𝑃2 on the bottom edge (the intersections of 

the incident surface and the bottom edge). Since the blunt 

cone is axisymmetric, its attitudes can be characterized 

by the included angle 𝜃 between the incident ray and the 

symmetry axis of cone. Here, 𝜃 ranges from 0 to 𝜋. For 

scatterer 𝑃0, it is only visible in 0 ≤ 𝜃 < 𝜋/2 − 𝛼. Thus, 

the complex RCS of 𝑃0 is [19]: 

 

1
1 2

02
2

0

1

2
0

0

sin(2 (1 sin ))
1 , 0

cos

= ,                             0
2

0                                       
2

0,

k b
b

k b

b


 




   


 




    
 


  




 





 (11) 

where 𝑘0 = 2𝜋/𝜆0. 

For scatterer 𝑃1, its RCS is not only related to 𝜃, but 

also affected by polarization, which can be described as: 
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Here 𝑛 = 3/2 + 𝛼/𝜋. The upper sign applies when the 

polarization is VV polarization while the lower sign 

applies if it is HH polarization. 

When the electromagnetic wave is incident 

perpendicular to the conical surface, the divisor of 

equation (12) is 0. The RCS of scatterer 𝑃1  is mainly 

caused by the specular reflection of the conical surface. 

√𝜎1  should be calculated by the physical optical method 

[20, 21] and the maximum value is reached. At this point, 

𝜃  is equal to 𝜋/2 − 𝛼 , and the equation (12) can be 

modified to: 
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Near 𝜋/2 − 𝛼, if √𝜎1 calculated by equation (12) is 

greater than the maximum, it should be smoothed. 

Unlike scatterer 𝑃1, scatterer 𝑃2 is visible only when 

0 < 𝜃 ≤ 𝛼 or 𝜃 ≥ 𝜋/2. Its RCS is: 
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The equations (12) and (14) give the variation of the 

RCS of the bottom scatterers 𝑃1  and 𝑃2  with different 

attitudes. When 𝜃  is approximately 0 or 𝜋 , 𝑠𝑖𝑛 𝜃  will 

approach zero, at which point the equations (12) and (14) 

will become meaningless and need to be modified. When 

0 ≤ 𝜃 ≤ 𝛼 , the contribution from scatterers 𝑃1  and 𝑃2 

can be expressed as :
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where 𝐽𝑖 (𝑖 = 0, 1, 2) represents the Bessel function of 

first kind of order 𝑖. 

When 𝜃 > 𝜋 − 𝜃𝑐𝑎  and 2𝑘0𝑎 𝑠𝑖𝑛 𝜃𝑐𝑎 = 2.44 , the 

contribution from scatterers 𝑃1 and 𝑃2 can be expressed 

as [22]: 
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