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Abstract ─ This paper introduces a new design for a 

highly efficient and more compact size dual frequency 

wireless power transfer (WPT) system, which can 

operate at both 0.65 GHz and 1.56 GHz bands. The idea 

of the structure depends on designing a symmetrical 

system containing Tx and Rx. Each Tx and Rx has a  

feed line on the top layer with two stubs; each stub has 

different dimensions than the other one. The bottom 

layer contains two C-shaped defected ground structures 

(DGS). By changing the dimensions of one stub, the 

frequency resonance corresponds to this stub is changed 

without any change on the other resonance. The system 

has a size of 20 × 20 mm2. Further, the system achieves 

efficiencies of 72 % and 89 % at 0.65 GHz and 1.56 GHz, 

respectively with a transmission distance of 8 mm. The 

proposed dual frequency WPT is implemented and 

verified. Good concurrences among electromagnetic 

(EM) simulations and the measurements have been 

attained. The system is suitable for recharging short-

range applications. 

 

Index Terms ─ Dual Band (DB), stub, Wireless Power 

Transfer (WPT). 
 

I. INTRODUCTION 
Wireless power transfer (WPT) technology comes 

with the promise of cutting the last cord by allowing 

recharge electronics devices as easily as data and the 

power will be transferred through the air without cables. 

WPT technology has been attracted many researchers in 

recent and previous periods for its impact in numerous 

prospective uses for instance sensor networks, 

controllable automated equipment (tablets, mobile 

phones, etc.), RFIDs, and so on [1-5]. The size of the 

system (particularly the receiver), the power transferring 

distance, and the efficiency are the furthermost key 

factors to be addressed in designing the building blocks 

of the WPT systems. Initially, the researchers have 

employed the coils for designing WPT systems and they 

have investigated the effects of the coil’s parameters  

on the coupling efficiency and the working frequency. 

WPT is now applied as a viable method to power many 

types of devices including portable consumer electronics 

[6], electric vehicles [7], and biomedical implants [8]. 

Numerous of the short-range WPT methods are 

employing lumped components [9]. However, these 

components have sensible drawbacks in execution such 

as occupying an excessive space. In addition, they  

are lossy. Nonetheless, they are preferred in WPT 

applications at low frequencies.  

Newly, defected ground structure (DGS) is the 

innovative technology that is presently used for 

designing WPT systems [10-13]. Some designs of the 

DGS are investigated and implemented for WPT like the 

C-shaped design [14]. Most of the published ideas 

investigate the usage of the modified DGS for obtaining 

single band operations [15].  

Lately, they have improved the DGS to realize  

a dual band near-field WPT system [16-18]. However, 

the dual-band WPT has many benefits over the single 

band systems as implemented in [16]. The authors in  

[10] studied the WPT system by employing the DGS 

technique. Firstly, they suggested an H-shaped DGS with 

a size of 25 × 25 mm2 and an efficiency of 68% at  

0.3 GHz at a transmission distance of 5 mm. Secondly, 

the structure is enhanced and developed to be semi H-

shaped. The system has a size of 20 × 20 mm2 with an 

efficiency of 73%. In [11], a dual frequency system is 

proposed. Further, it depends on two circular DGS 

resonators whereas each circular is responsible for 

frequency resonance. The system has a size of 30 × 15 

mm2 and the efficiencies are 71% and 71% at 0.3 GHz 

and 0.7 GHz with a transmission distance of 16 mm. In 

[17], a dual band system is proposed with a size of  

12.5 × 8.9 cm2 and efficiencies of 78% and 70.6% at  

6.78 MHz and 200 kHz, respectively. In [19], the author 
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introduced a dual-band rectifying circuit for wireless 

power transmission working at 2.45 GHz and 5.8 GHz. 

This system showed peak RF-to-DC efficiencies of 66.8% 

and 51.5% at 2.45 GHz and 5.8 GHz, respectively.  

Recently, the DGS resonators are extensively 

explored for single and dual band operations of the WPT 

applications [10-12,15,18-22]. 

In this paper, a new dual frequency WPT system  

is proposed. The system introduces a new idea which 

designs two stubs with different sizes for obtaining dual 

band frequencies. The size of the system is 20 × 20 mm2 

with efficiencies of 72% and 89% at 0.65 and 1.56 GHz, 

respectively. 
 

II. COUPLED RESONATOR DESIGN 
Listed below the configuration of the suggested dual 

frequency system. Figure 1 (a) shows the top view which 

contains a feed line with a width of W_f and a length  

of 19.5 mm. The stubs are designed on the top with 

different sizes, that responsible for dual band frequency 

operation. Figure 1 (b) shows the bottom layer which 

contains a C-shaped DGS with the same shorted points 

connected with the top view. The design parameters are 

recorded in Table 1. Figure 2 (a) shows the setting of the 

suggested geometry of the coupled resonators which are 

parted by a space of h mm. Figure 2 (b) represents the 

equivalent circuit of the system. The equivalent circuit 

presents a dual band resonance circuit and each circuit  

is considered as a separate one. The equivalent circuit 

contains (Lp1 and Cp1) which are the parallel elements of 

the tank circuit related to the first resonance frequency 

and (Lp3 and Cp3) are related to the second resonance 

frequency. 
 

 

      (a) 

 

      (b) 

 

Fig. 1. Top and bottom layers of the proposed design: (a) 

top layer and (b) bottom layer. 

 

Table 1: List of parameters 

Value / Type Parameter 

Rogers 4003C Substrate 

3.55 εr 

0.83 mm 
Thickness of 

substrate (t) 

20 mm L 

8 mm Lr1 

11 mm Lr2 

1.5 mm Wr1 

0.5 mm g 

2 mm W_f 

1.75 mm Wr2 

20 mm W 

0.5 mm Gr 

2 mm Wr3 

5.5 mm Wr4 
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    (b) 

 
     (c) 
 

Fig. 2. Equivalent circuit and 3-D view. (a) 3-D view.  

(b) The equivalent circuit of the system. (c) The pi-

equivalent circuit (π) of the system. 
 

It is desired to compute and extract the values of the 

equivalent circuit parameters (Cp, Lp, Lm1, Lm2, and Cs) 

from the simulation consequences for validations. Where 

M1 and M2 are the mutual couplings between two 

resonators [22], Lm1 and Lm2 are the mutual inductances 

[22], and Cs is the series capacitance. Equations (1) and 

(2) are employed to calculate the equivalent circuit 

parameters [21]: 
 

                              𝐶𝑃 =
5𝑓𝑐

𝜋[𝑓0
2 − 𝑓𝑐

2]
   𝑝𝐹,                      (1) 

 

                               𝐿𝑃 =
250

𝐶𝑃[𝜋𝑓0]2
    𝑛𝐻,                         (2) 

 

where fc is the cutoff frequency and fo is the center 

resonance frequency at each band alone. 

At the first resonance frequency, the frequencies  

are fc1 = 0.59372 GHz and fo1 = 0.64793 GHz. By 

substitution in equation (1) and (2), the extracted 

parameters are Cp1 = Cp2 = 14 pF and Lp1 = Lp2 = 4.29 nH. 

In the same way at the second resonance frequency, the 

frequencies are fc2 = 1.4516 GHz and fo2 = 1.5613 GHz. 

By substitution in equation (1) and (2), the extracted 

parameters are Cp3 = Cp4 = 6.98 pF and Lp3 = Lp4 = 1.48 nH. 

Figure 3 compares the simulation results of the 

equivalent circuit of the proposed design employing the 

extracted parameters using the advanced design system 

(ADS) and the electromagnetic (EM) simulation by the 

computer simulation technology (CST). The used EM 

simulator is a 3D full wave solver based on a numerical 

analysis technique using finite difference time domain 

(FDTD) approach that computes the S-parameters. As a 

result, acceptable correspondence is observed between 

the two results. 
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Fig. 3. Comparison between the equivalent circuit (ADS) 

and EM simulation (CST). 

 

A. The study of transmission distance h 

Figure (4) demonstrates the effect of the distance h  

on the S-parameters. To find out the optimum distance 

amid Tx (transmitter) and Rx (receiver), the transmission 

distances are examined within multiple ranges at 6 mm,  

8 mm, and 10 mm. The splitting between Tx and Rx  

is noticeable at 6 mm, while the two resonances are 

acceptable at 10 mm as discussed in [10]. From this study, 

the 8 mm separation is a suitable transmission distance to 

be used for this design. 
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Fig. 4. The study of transmission distance h: (a) S21 

parameters and (b) S11 parameters. 

 

B. Parametric study of Lr2  

Figure 5 shows the effect of changing the length of 

Lr2 from 7 mm to 11 mm. The study displays the changing 

of the second resonance without any effect on the first 

resonance frequency. This is suitable for controlling the 

second resonance while the first resonance is kept 

constant. 
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Fig. 5. Parametric study of the length Lr2: (a) S11 

parameters and (b) S21 parameters. 

 

III. EXPERIMENTAL RESULTS 
The proposed construction is fabricated and verified 

for validations with the specifications in Table 1. The 

fabrication of the proposed structure was done by a 

photolithographic method and the layers of the fabricated 

prototype are shown in Fig. 6 (a). Figure 6 (b) shows the 

configuration of the proposed structure at a separation 

distance of 8 mm. The measurements are done using the 

R&S ZVB20 vector network analyzer. The photograph 

of the fabricated sample is shown in Fig. 6 (a). Figure 6 

(c) shows the comparison of the simulation and the 

measurements. The obtained measurements are in good 

correspondence with the simulation as displayed in Fig. 

6 (c). 

The coupling efficiency (ƞ) of the system is 

calculated using equation (3) [10,20]. The figure of 

merits (FoM) demonstrates the performance of the 

system and calculated using equation (4) [10,20]. The 

measurement results are presented in Fig. 6 (c). The 

system achieved efficiencies of 72% and 89% at 0.65 

GHz and 1.56 GHz at a transmission distance of 8 mm. 

The estimated FoMs using equation (4) are 0.288 and 

0.356 at 0.65 GHz and 1.56 GHz, respectively: 
 

                                       ƞ  =
|𝑠21|2

1−|𝑠11|2  ,                               (3)  

                                    𝐹𝑜𝑀 = ƞ ×
ℎ

√𝐴
 ,                             (4)  
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where ƞ is the coupling efficiency and A is the total area 

of the resonator.   
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Fig. 6. The fabricated structure and experimental 

measurements. (a) Top and bottom views. (b) 

Measurement setting at a distance of 8 mm. (c) 

comparison between the measurement and simulation at 

a distance of 8 mm. 

 

Table 2 offers a comparison between the proposed 

structure and other recent works in terms of size, FoM, 

efficiency, and separation distance. From Table 2, the 

proposed design has worthy FoM and size compared to 

the previous cited works. 

 

 

Table 2: The differences between the suggested structure 

and previous works 

This work [22] [17] [21] System 

650 and 

1560 

280 and 

490 

0.2 and 

6.78 

570 and 

2440 
MHz 

8 6 25 12 h (mm) 

72 and 89 
91.2 and 

79.43 

70.6 and 

78 
69 and 81 ƞ𝑊𝑃𝑇% 

0.288 and 

0.356 

0.27and 

0.23 

0.17 and 

0.19 

0.331 and 

0.388 
FoM 

20 × 20 20 × 20 125 × 89 25 × 25 
Size 

(mm2) 

 

IV. CONCLUSION 
The dual frequency system is designed, analyzed, 

and fabricated. The system achieved efficiencies of 72% 

and 89% at 0.65 GHz and 1.56 GHz, correspondingly  

at 8 mm separation. The system has a compact size 

which is suitable for recharging electronics devices and 

biomedical devices. The experimental performance of 

the suggested design is in an appropriate concurrence 

with the simulated one.    
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