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Abstract – In this paper, a triangular facets based, highly
accurate, and adaptive finite-difference time-domain
(FDTD) mesh generation technique is presented. There
are two innovations in the implementation of this tech-
nique. One is adaptive mesh lines placement method.
The mesh lines are automatically set to be dense where
the object has fine structure and sparse where the object
has rough structure based on the incremental placement
of the triangular mesh vertices. The other is ray col-
umn tracing method. Ray columns in the normal direc-
tion of the coordinate plane are employed to intersect
the surface facets to make the mesh generation results
highly accurate. The generating FDTD results of the
numerical examples show that the proposed technique
can well-restore objects with complex edge structures.
The simulation results are in good agreement with the
theoretical results.

Index Terms – Adaptive, FDTD, mesh generation, ray
column tracing.

I. INTRODUCTION
The finite-difference time-domain (FDTD) algo-

rithm is implemented by calculating the electric and
magnetic fields on each Yee cell [1-3]. The Yee cells,
whose sizes and related material parameters are simulta-
neously employed in the iterative formulas of the FDTD
algorithm, must be established before FDTD simulation.
Unlike unstructured meshes [4, 5], which can be easily
obtained by computer-aided design (CAD) or some open
source programs, there are relatively few ways to obtain
the structured cuboid meshes. Therefore, the transforma-
tion from unstructured meshes to structured meshes has
attracted much attention [6-13].

Since the ray tracing method (RTM) was proposed
by Sun in 1993 [6], it has been widely used in mesh
generation for FDTD simulation. The RTMs proposed

before mainly casted single ray to intersect the surface
facets for each two-dimensional (2D) grid on the projec-
tion plane. This kind of processing may lead to missing
mapping at the edge of the target. In practice, edge struc-
ture of a target may have a great influence on its overall
electromagnetic performance [14-16]. For example, slot
design at the edge of patch antennas can not only real-
ize miniaturization but also reduce antenna radar cross
section (RCS). In addition, the biologically inspired
antennas usually have complex edge structures. There-
fore, the precision of edge mesh conversion needs to be
considered.

For complex objects, if a uniform mesh generation
method (UMGM) is employed, there will be a problem
of large number of mesh cells, compared with employing
a non-uniform mesh generation method (NUMGM). The
increase in the number of mesh cells caused by using the
UMGM than the NUMGM then can result in problems
such as high memory consumption and long simulation
time. Therefore, in contrast to the UMGM, the NUMGM
is more suitable for complex objects mesh generation.
A key step in NUMGM is to place proper mesh lines
[[12], 17-20]. In reference [12], a non-uniform mesh
lines placement method is presented for multi-object
scenarios. An NUMGM for overlapping objects was
proposed by Kanai in reference [17]. The NUMGMs
proposed before were implemented based on the condi-
tion that the bounding box of each object was known. In
other words, they solved a complex problem by break-
ing it down into a group of individual objects. The
non-uniform mesh lines were placed by setting reason-
able grid sizes in the overlapping part and the adja-
cent part of the objects. However, in the field of elec-
tromagnetism, some electromagnetic devices, such as
multi-frequency antenna, broad band frequency selective
surface (FSS), are too complex to be easily and quickly
separated into several independent objects. Therefore,
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an adaptive mesh lines placement method based on the
incremental placement of the triangular mesh vertices is
proposed in this paper. Obviously, the choice of triangu-
lation in the preparation of the triangulated mesh is crit-
ical to the performance of the proposed NUMGM. We
choose Altair FEKO v2019.1 [21] to get the triangular
meshes. Since FEKO is a mature commercial electro-
magnetic simulation software and has been globally used
in high-frequency electromagnetic simulation for over
20 years, the triangular mesh generation results of it are
reliable.

In this paper, an adaptive FDTD mesh generation
technique is proposed. This technique presents high
accuracy in FDTD mesh generation, especially at the
edge part of the target. Two key methods are employed
to achieve this capability. One is ray column tracing
method (RCTM), and the other is adaptive mesh lines
placement method. Numerical examples are given and
discretized. The simulation and theoretical results show
that the proposed mesh generation technique can prop-
erly restore the target with fine structure, especially at
the edge part.

II. RAY COLUMN TRACING METHOD
For RTM, generally, a single ray perpendicular to

a grid on the coordinate plane is employed to intersect
the plane where the triangular facet is located [6]. The
triangular facets mentioned in this section are obtained
by .STL files exported from CAD software. The specific
operation is to build a model in CAD and save it as. STL
format. As shown in Figure 1, the shaded part without
slash lines are the Yee cells transformed by RTM, while
the shaded part with slash lines are the Yee cells of miss-
ing marks.

In this paper, RCTM is proposed. For each grid on
the coordinate plane, multiple rays in the normal direc-

Fig. 1. The transformed Yee cells of the 2D triangle by
RTM.

Fig. 2. Triangular facet ABC and its projection DEF.

tion are selected to intersect the facets in one tracing
process. Taking one triangular facet as an example, the
RCTM is described in detail as follows.

First, project the triangular facet ABC. onto XOY
plane and denote its projection as DEF, as shown in
Figure 2.

Second, find out the maximum and minimum values
of triangle DEF in the x-direction and confirm the start-
ing and ending mesh numbers in the x-direction accord-
ingly. Denote the starting number as xs and the ending
number as xe. Taking the grids numbered i in the x-
direction as examples, calculate the intersection points
of their two adjacent grid lines and the three sides of
triangle DEF. Determine the maximum and minimum
y values of these intersection points and mark the grids
between them as shown in Figure 3(a). In this way, the
triangle DEF is discretized as shown in Figure 3(b).

Third, for the grids inside triangle DEF, obtain the
intersections of the rays perpendicular to the four nodes
of each grid and triangle ABC, respectively. For the grids
at the edge of triangle DEF, figure out the intersection
points of their adjacent grid lines and the three sides of
triangle DEF first and then obtain the intersections of
the rays perpendicular to these points and triangle ABC
severally. The three-dimensional (3D) RCTM is shown
in Figure 4.

Take a hexagonal star ring as an example to illustrate
the validity of the proposed RCTM in edge mesh gener-
ation. The hexagonal star ring is shown in Figure 5(a),
and its triangulation is shown in Figure 5(b).

Figures 6 and 7 show the resulting Yee cells of
the hexagonal star ring obtained by RTM and RCTM,
respectively. The mesh size in Figure 6 is 5 mm, and the
mesh size in Figure 7 is 2 mm.

It can be seen from Figure 6 that, when the mesh
size is 5 mm, there are obvious missing marks in the
discretization result obtained by RTM. Although the
Yee cells transformed by RCTM are not completely
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Fig. 2. Triangular facet ABC and its projection DEF. 
 

Second, find out the maximum and minimum 
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points of their two adjacent grid lines and the three 
sides of triangle DEF. Determine the maximum and 
minimum y values of these intersection points and mark 
the grids between them as shown in Figure3(a). In this 
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Comment [U1]: Author: Please provide 
the expansion of the acronym "FEKO" at 
the instance where it is first mentioned in 
the text. 

Fig. 3. 2D ray column tracing method. (a) The dis-
cretization result of grids numbered i in the x-direction
and (b) the discretization result of the triangle DEF.

Fig. 3. 2D ray column tracing method.(a) The 
discretization result of grids numbered i in the x-
direction and (b) the discretization result of the triangle 
DEF. 
 

Third, for the grids inside triangle DEF, obtain the 
intersections of the rays perpendicular to the four nodes 
of each grid and triangle ABC, respectively. For the 
grids at the edge of triangle DEF, figure out the 
intersection points of their adjacent grid lines and the 
three sides of triangle DEF first and then obtain the 
intersections of the rays perpendicular to these points 
and triangle ABC severally. The three-dimensional (3D) 
RCTM is shown in Figure4. 
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Fig. 4. 3D ray column tracing method: (a) grids inside 
DEF and (b) grids at the edge of DEF. 

 
Takea hexagonal star ring as an example to 

illustrate the validity of the proposed RCTM in edge 
mesh generation. The hexagonal star ring is shown in 
Figure 5(a), and its triangulation is shown in 
Figure5(b).  

 

 
(a)       (b) 

 
Fig. 5. The structure and triangulationof the hexagonal 
star ring: (a) the structure and (b) the triangulation. 

Figures6 and 7 show the resulting Yee cells of the 
hexagonal star ring obtained by RTM and RCTM, 
respectively. The mesh size in Figure6 is 5 mm, and the 
mesh size in Figure7 is 2 mm. 
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Fig. 6. The discretization results of the hexagonal star 
ring when the grid size is 5mm: (a) by RCTM and (b) 
by RTM. 
 

 
(a)                                           (b) 

 
Fig. 7. The discretization results of the hexagonal star 
ring when the grid size is 2mm: (a) by RCTM and (b) 
by RTM. 

 
It can be seen from Figure6 that, when the mesh 

size is 5 mm, there are obvious missing marks in the 
discretization result obtained by RTM. Although the 
Yee cells transformed by RCTM are not completely 
appropriate to the original structure, the accuracy of 

Fig. 4. 3D ray column tracing method: (a) grids inside
DEF and (b) grids at the edge of DEF.

Fig. 5. The structure and triangulation of the hexagonal
star ring: (a) the structure and (b) the triangulation.

Fig. 3. 2D ray column tracing method.(a) The 
discretization result of grids numbered i in the x-
direction and (b) the discretization result of the triangle 
DEF. 
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Fig. 5. The structure and triangulationof the hexagonal 
star ring: (a) the structure and (b) the triangulation. 

Figures6 and 7 show the resulting Yee cells of the 
hexagonal star ring obtained by RTM and RCTM, 
respectively. The mesh size in Figure6 is 5 mm, and the 
mesh size in Figure7 is 2 mm. 
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Fig. 6. The discretization results of the hexagonal star 
ring when the grid size is 5mm: (a) by RCTM and (b) 
by RTM. 
 

 
(a)                                           (b) 

 
Fig. 7. The discretization results of the hexagonal star 
ring when the grid size is 2mm: (a) by RCTM and (b) 
by RTM. 

 
It can be seen from Figure6 that, when the mesh 

size is 5 mm, there are obvious missing marks in the 
discretization result obtained by RTM. Although the 
Yee cells transformed by RCTM are not completely 
appropriate to the original structure, the accuracy of 

Fig. 6. The discretization results of the hexagonal star
ring when the grid size is 5 mm: (a) by RCTM and (b)
by RTM.

Fig. 7. The discretization results of the hexagonal star
ring when the grid size is 2 mm: (a) by RCTM and (b)
by RTM.

appropriate to the original structure, the accuracy of
RCTM is obviously improved compared with that of
RTM. When the mesh size is 2 mm, as shown in Figure 7,
both RCTM and RTM perform better. However, the
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transformation result of RCTM is closer to the original
shape and size of the target than that of RTM.

III. ADAPTIVE MESH LINES PLACEMENT
METHOD

In the process of structured cuboid mesh generation,
the first step is to create efficient structured mesh lines,
which must satisfy the numerical dispersion requirement
of the FDTD method and can be adapted to geometric
models. These mesh lines can provide spatial coordi-
nate information for subsequent material mapping. Tak-
ing an object with fine structure into account, if it is
discretized by uniform mesh, there will be a problem
of huge mesh quantity. This problem can be solved by
using non-uniform meshes. In this paper, an adaptive
mesh lines placement method is proposed, which can set
mesh lines automatically according to the mechanical
structure and the electromagnetic characteristics of the
target.

In the implementation of the adaptive mesh lines
placement method, the object is modeled and meshed by
FEKO software. The mesh generation results are saved
as .STL file. Since FEKO is a powerful 3D full wave
electromagnetic simulation software, we can use its tri-
angulation results as the basis of the NUMGM proposed
in this paper. The adaptive mesh lines placement method
is illustrated as follows.

(1) Determine the minimum wavelength, denoted as
λmin, in terms of frequency and material property.
Constrained by the typical rule of FDTD spatial
discretization, the maximum mesh size, dmax, of
the entire computing space should satisfy dmax =≤
λmin/10.

(2) Calculate the side lengths of each triangular facet
and find out the minimum side length lmin. Set the
minimum interval of the entire computing space to
be dmin = lmin/2.

(3) Project each triangular facet onto three principal
coordinate planes, respectively. Find out the max-
imum and minimum coordinates along three axes
and calculate the differences between them sever-
ally, as shown in Figure 8. Denote these differences
as ∆x,∆y, and ∆z.

(4) Sort all the ∆x,∆y, and ∆z from the smallest one
to largest one and insert the starting and ending
coordinates of them on the corresponding axes,
respectively. Let us take the x-axis treatment as an
example. If ∆x is equal to zero, this means that the
triangular facet is perpendicular to the XOZ plane.
At this point, the ∆x needs to be adjusted to a suit-
able value to represent the thickness of the verti-
cal plane. If ∆x is greater than zero and less than
dmin, change the value of ∆x to dmin to ensure that

RCTM is obviously improved compared with that of 
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Fig. 8. The projections of the facet on three coordinate 
planes. 
 

(4) Sort all the Δx, Δy, and Δz from the smallest 
one to largest one and insert the starting and ending 
coordinates of them on the corresponding axes, 
respectively. Let us take the x-axis treatment as an 
example. If Δx is equal to zero, this means that the 
triangular facet is perpendicular to the XOZ plane. At 
this point, the Δx needs to be adjusted to a suitable 
value to represent the thickness of the vertical plane. If 
Δx is greater than zero and less than dmin, change the 
value ofΔx to dmin to ensure that the minimum mesh 
size of the entire space is dmin.Takea cylinder as an 
example to explain how we decide where to put the 
mesh lines when Δx is less than dmin. The cylinder and 
its triangulation are shown in Figure9. When we project 
the triangular facets onto the XOY plane, we will find 
that the intervals determined by the vertices of the 
triangular facets are smaller than dmin.At this point, we 
should change Δx to dmin. 
 

 
 
Fig. 9. The cylinder and its triangulation. 
 

(5) Finally, for the intervals greater than dmax on the 

Fig. 8. The projections of the facet on three coordinate
planes.

Fig. 9. The cylinder and its triangulation.

the minimum mesh size of the entire space is dmin.
Take a cylinder as an example to explain how we
decide where to put the mesh lines when ∆x is less
than dmin. The cylinder and its triangulation are
shown in Figure 9. When we project the triangu-
lar facets onto the XOY plane, we will find that the
intervals determined by the vertices of the triangu-
lar facets are smaller than dmin. At this point, we
should change ∆x to dmin.

(5) Finally, for the intervals greater than dmax on the
coordinate axes, divide them equally with the value
of d. Taking an internal whose length is L as
an example, let the integer N = ceil(L/dmax), then
d = L/N.

Figures 10(a) and (b) show the overall and local
structures of a parabolic antenna. The parabolic antenna
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Fig. 10. The structure of the parabolic antenna: (a) the
overall structure and (b) the structure of the horn antenna.

Fig. 11. The triangulation of the parabolic antenna.

is fed by a horn antenna and it works at the cen-
ter frequency of 2.45 GHz. As shown in Figures
10(a) and (b), the maximum size of the antenna is
the diameter of the parabola, which is 600 mm, and
the minimum size of the antenna is the diameter of
the coaxial probe inner conductor, which is 2 mm.
The ratio of the maximum size to the minimum size
is 300.

Figure 11 shows the triangulation of the parabolic
antenna obtained from FEKO 2019.1. FEKO software
has its own mesh function. When we build a model
in FEKO and set it to the working frequency, the soft-
ware will automatically generate the appropriate trian-
gular meshes.

Table 1: The total mesh numbers of the parabolic antenna
generated by UMGM and NUMGM

UMGM NUMGM
Mesh number 529205 102776
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d. Taking an internal whose length L is an example, let 

the integer N = ceil (L/dmax), then d = L/N. 

Figures 10(a) and (b) show the overall and local 

structures of a parabolic antenna. The parabolic antenna 

is fed by a horn antenna and it works at the center 

frequency of 2.45 GHz. As shown in Figures 10(a) and 

(b), the maximum size of the antenna is the diameter of 

the parabola, which is 600 mm, and the minimum size 

of the antenna is the diameter of the coaxial probe inner 

conductor, which is 2 mm. The ratio of the maximum 

size to the minimum size is 300. 

 

 
(a)                                 (b) 

Fig. 10. The structure of the parabolic antenna: (a) the 

overall structure and (b) the structure of the horn 

antenna.  
Figure 11 shows the triangulation of the parabolic 

antenna obtained from FEKO 2019.1. FEKO software 

has its own mesh function. When we build a model in 

FEKO and set it to the working frequency, the software 

will automatically generate the appropriate triangular 

meshes.  

 

 
 

Fig. 11. The triangulation of the parabolic antenna. 

 

Figure 12 shows the discretization results of the 

parabolic antenna, the horn antenna, and the coaxial 

probe. The maximum mesh size is 6.1 mm, and the 

minimum mesh size is 0.5 mm. It can be seen from 

Figure 12 that the adaptive mesh lines placement 

method proposed in this paper can set dense meshes in 

the fine part and sparse meshes in the other part. The 

discretization results are in good agreement with the 

antenna model. 
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Fig. 12. The discretization results of the parabolic 

antenna: (a) the overall discretization result, (b) the 

discretization result of the horn antenna, and (c) the 

discretization result of the coaxial probe. 

 

Table 1 shows the total mesh numbers of the 

parabolic antenna obtained by UMGM and NUMGM. 

The mesh size of the UMGM is 0.5 mm. The maximum 

and minimum mesh sizes of the NUMGM are 6.1 and 

0.5 mm. We can see from Table 1 that the number of 

mesh cells of the target using NUMGM is about 1/5 of 

that using UMGM.  

 

Table 1: The total mesh numbers of the parabolic 

antenna generated by UMGM and NUMGM 

 UMGM NUMGM 

Fig. 12. The discretization results of the parabolic
antenna: (a) the overall discretization result, (b) the dis-
cretization result of the horn antenna, and (c) the dis-
cretization result of the coaxial probe.

Figure 12 shows the discretization results of the
parabolic antenna, the horn antenna, and the coaxial
probe. The maximum mesh size is 6.1 mm, and the min-
imum mesh size is 0.5 mm. It can be seen from Figure
12 that the adaptive mesh lines placement method pro-
posed in this paper can set dense meshes in the fine part
and sparse meshes in the other part. The discretization
results are in good agreement with the antenna model.

Table 1 shows the total mesh numbers of the
parabolic antenna obtained by UMGM and NUMGM.
The mesh size of the UMGM is 0.5 mm. The maximum
and minimum mesh sizes of the NUMGM are 6.1 and
0.5 mm. We can see from Table 1 that the number of
mesh cells of the target using NUMGM is about 1/5 of
that using UMGM.

IV. NUMERICAL EXAMPLES AND
SIMULATION RESULTS

Numerical examples are given to illustrate the effi-
ciency of the adaptive mesh generation technique pro-
posed in this paper. The first example is a metal
sphere, and the second example is a band-stop FSS. The
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Fig. 13. The structure and Yee cells of the sphere: (a) the
structure and triangulation of the sphere and (b) the Yee
cells distribution of the sphere.

that using UMGM.  
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antenna generated by UMGM and NUMGM 
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Mesh number 529205 102776 
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proposed in this paper. The first example is a metal 
sphere, and the second example is a band-stop FSS. The 
structures and the generating FDTD grids of the 
numerical examples are represented, respectively. We 
also give some simulation results of the numerical 
examples by performing the novel mesh generation 
technique. 
 
A. Metal Sphere 

Figure13 shows the structure and the resulting 
FDTD meshes of a metal sphere. The radius of the 
sphere is 1m, and the mesh size is 0.025m. The RCS of 
the metal sphere simulated by the FDTD method is 
shown in Figure 14. As comparison, we also give the 
Mie series result of the sphere’s RCS [22]. It can be 
seen from Figure14 that the simulated result is in good 
agreement with the theoretical result. 
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Fig. 13. The structure and Yee cells of the sphere: (a) 
the structure and triangulation of the sphere and (b) the 
Yee cells distribution of the sphere. 
 

 
 
Fig. 14. The RCS of the metal sphere. 
 
B. Band-stop FSS 

A band-stop FSS is shown in Figure15(a), and its 
triangulation is shown in Figure 15(b). In order to 
realize the miniaturization and broad band-stop 
characteristics, a relatively complex structure was 
employed in the design of this FSS, especially in the 
design of the edge part.  

As shown in Figure15(a), the parameters of the 
patch is n = 19 mm, w = 1.5 mm, andl = 1 mm. The 
radii of the four rings are r1 = 2.5 mm, r2 = 2 mm, r3 = 
1.5 mm, andr4 = 1 mm, respectively. The width of each 
ring is 0.2 mm. The length of the substrate is P = 20 
mm and the thickness of the substrate is h = 3.2 mm.  

The FDTD meshes of the band-stop FSS generated 
by RCTM are shown in Figure16. The mesh size is 0.2 
mm. It can be seen from Figure16 that the FSS is well-
restored in the FDTD grid. 
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Fig. 14. The RCS of the metal sphere.
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Fig. 15. The structure and triangulation of the FSS.(a) 
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Fig. 18. The S21 of the FSS obtained by FDTD method
and CST Studio Suite simulation.

The radii of the four rings are r1 = 2.5 mm, r2 = 2
mm, r3 = 1.5 mm, and r4 = 1 mm, respectively. The
width of each ring is 0.2 mm. The length of the sub-
strate is P = 20 mm and the thickness of the substrate is
h = 3.2 mm.

The FDTD meshes of the band-stop FSS generated
by RCTM are shown in Figure 16. The mesh size is 0.2
mm. It can be seen from Figure 16 that the FSS is well-
restored in the FDTD grid.

The transient Ex values at a point which is 1 mm
backward of the FSS is shown in Figure 17. We can see
that the FDTD result is in good agreement with the result
obtained by CST Studio Suite 2020 [23]. CST Studio
Suite is a high-performance 3D EM analysis software
package for designing, analyzing, and optimizing elec-
tromagnetic components and systems.

Figure 18 shows the S21 curves of the FSS obtained
by FDTD method and CST Studio Suite, respectively.

The calculated S21 shows reasonable agreement with
the CST Studio Suite one, which represents that the
mesh generation technique proposed in this paper has
the ability to deal with the target with complex edge
structure.

V. CONCLUSION
Based on the triangular facets obtained by the .STL

file of the object, an adaptive mesh generation technique
is proposed for 3D FDTD simulation in this paper. First,
RCTM is introduced. As opposed to RTM, for each
grid on the coordinate plane, the RCTM employs mul-
tiple rays in the normal direction to intersect the tri-
angular facets. The implementation of RCTM makes
the mesh generation technique have high accuracy in
edge structure mesh transformation. Second, according
to the vertex coordinates of the triangular facets, adap-
tive mesh lines placement method is illustrated. For
an object with fine structure, the mesh lines placement
method can automatically set dense meshes in fine struc-
ture and sparse meshes in rough structure. A metal
sphere and a band-stop FSS are given as numerical
examples. Simulated and theoretical results show that
the proposed mesh generation technique is flexible and
accurate.
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