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Abstract — The wireless communication system is one
of the most important facilities of fuel cell hybrid power
tram (FCHPT), which provides a strong guarantee for ef-
ficient and safe operation. As an indispensable part of the
RF front-end of the transmitter and receiver, the minia-
turization and high-performance trends of filtering power
dividers are becoming evident. Based on the principle of
filter power divider, a capacitor loaded power divider fil-
ter is designed and fabricated in this paper. The center
frequency of the designed power divider filter is 30 GHz,
the return loss Sy is less than —10 dB in the range from
29.2 to 31.6 GHz, and the insertion losses S»; and S3; are
less than 5.3 dB. The frequency shift of 1.8 GHz can be
achieved by changing the dielectric constant of the liquid
crystal with an applied bias voltage, which can be used
in millimeter wave communication system.

Keywords — Electronically controlled tuning, filter power
divider, liquid crystal material.

L. INTRODUCTION

Fuel cells as a promising technology that provide
electrical power with high efficiency, less noise, and
near-zero emissions have been successfully used in vehi-
cle, rail traffic, ship, and distributed generation. Fuel cell
hybrid power tram (FCHPT) is a new type of urban rail
transit locomotive, which has been widely studied and
successfully applied in the world. The wireless commu-
nication system is one of the most important facilities of
FCHPT, which is the core guarantee to ensure the safe,
reliable, and efficient operation of the tram.

In the wireless communication system of FCHPT,
the filtering power divider is an indispensable part of the
RF front-end of the transmitter and receiver. The filter
can let the desired signal through and suppress the spuri-
ous signal, while the power divider can realize the distri-
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bution and synthesis of power [} 2]]. In modern wireless
communication systems, these two devices are generally
designed independently and then cascaded by additional
matching networks or transmission lines. The traditional
design method makes the circuit have a larger physical
size, and the cascade between devices will introduce ad-
ditional mismatch and loss. The characteristics of filter
power divider are mainly determined by the design of fil-
ter. The filter with multi-frequency band can save space
and meet the needs of most work [3], but the working
frequency band is often fixed after the structure is de-
termined. As an extension of multi-band filter, the ad-
justable filtering power divider has the characteristics of
high integration, dynamic frequency selection, low loss,
and so on [4]. The technology is to realize reconfigurable
performance mainly including PIN [5f], varactor tuning
technology [6]], ideal switches [7, 8], MEMS system tun-
ing technology [9} [10], graphite [11], iron or ferrite tun-
ing technology [12| [13]], and so on. In addition, as a
new type of electromagnetic material, liquid crystal ma-
terial holds the characteristics of anisotropy of dielectric
constant, stable electromagnetic performance, and low
loss. Liquid crystal tuned microwave passive devices are
based primarily on liquid crystal electromagnetic effect.
When the low frequency bias voltage is applied to it, un-
der the action of the electric field, the director of the lig-
uid crystal molecule is driven to be consistent with the
bias voltage of the external electric field, which changes
the distribution state of the liquid crystal pointing vector
in space. At the same time, for the electromagnetic wave
with a certain polarization direction with liquid crystal
as the medium, the change of the spatial director of the
liquid crystal means that the refractive index of the inci-
dent wave is changed, so as to modulate the transmission
state of the electromagnetic wave transmitted in the lig-
uid crystal. At present, researchers at home and abroad
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have carried out a lot of research work on passive devices
based on liquid crystal materials, such as tunable phase
shift [14]], adaptive filter [L5]], tunable planar reflection
array antenna [16} [17], phased array antenna [18-520],
and frequency selective surface [21H23]. Liquid crys-
tal tunable technology has great application potential and
development prospects.

The traditional filter resonant structures include end
coupling [24], parallel coupling line [25]], comb line [26]],
hairpin type [27], cross toe type [28]], etc. All of the
above structures are realized by coupling lines, and the
input and output of traditional coupling line structures
are not on the same straight line. The end coupling size is
usually larger, comb line, hairpin type, or cross toe type,
and other structures require high machining accuracy, es-
pecially in the millimeter wave band. For the purpose of
integration and miniaturization of wireless communica-
tion system, an electronically controlled adjustable fil-
tering power divider is proposed in this paper. A capac-
itive electromagnetic cross-coupling resonator structure
is designed, and the capacitive coupling resonator is in-
tegrated into the two output terminals of the first-order
Wilkinson power divider. Then, by using the liquid crys-
tal material and electrifying the electrodes on the upper
and lower surface of the liquid crystal. The liquid crystal
molecular orientation will change with the voltage value,
which changes the dielectric constant of the liquid crys-
tal material, so as to tune the central frequency of the
filtering power divider. Its structure is relatively simple,
which meets the requirements of broadband miniatur-
ization of current electronic communication technology,
and adapts to a wider range of application scenarios.

II. THEORY AND DESIGN

A. Capacitor loaded power divider bandpass filter

Ideally, the structure of the capacitive loaded loss-
less transmission line resonator is shown in
Denoting the transmission coefficient by B = wyv/LC =
2m/Ag, where ay is the angular frequency, L and C
are expressed as distributed series inductors and paral-
lel capacitors, respectively. If the capacitance C be-
comes larger in the circuit, transmission coefficient will
decrease, and the slow-wave effect will appear, thus
reducing the size of the circuit. If the capacitance
C increases periodically, it can reduce the circuit size
and have band-stop characteristics. It has a good ef-
fect on the suppression of some frequencies. Cou-
pling equivalent circuits of two resonators are shown in

By using the two-port network theory to analyze
the coupling between two resonators, the capacitive cou-
pling between stages can be further equivalent to an ad-
mittance converter, and the equivalent circuit of inter-

stage coupling is shown in
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Fig. 1. Ideally loaded capacitive transmission line res-
onator.
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Fig. 2. Coupling equivalent circuit of two resonators.
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Fig. 3. Coupling equivalent circuit of two resonators.

If T-T" is equivalent to an electric wall, the resonant
frequency is
1
Jo=—F—7—=—. (D
* 2\ /L(CL+Cp)
If T-T’ is equivalent to a magnetic wall, the resonant
frequency is
1
Jm = 27\/L(CL—Cp)
Therefore, the coupling coefficient between the two
resonators is

@)

B i 3

g mt f: e CL
A capacitor loaded filter coupled with a resonant
unit, as shown in is adopted. In the design of
this structure, the multipath effect caused by the coupling
between multiple resonators makes the signal synthesize
with the same amplitude and phase at the output port.
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Fig. 4. The structure of capacitor loaded power divider
bandpass filter.

Table 1 Design parameters and their values

Parameters Value (mm)

dl 2.7

d2 3.7

d3 0.15
wl 0.15
w2 0.07
w3 0.27
w4 1.07

Through two identical coupling paths, not only compact
structure can be realized but also lower loss can be real-
ized. Based on this structure, modeling and simulation
are carried out in HFSS. The specific design parameters
are shown in [Table 11

The filter uses a Rogers 5880 substrate with a thick-
ness of & = 0.254 mm, with a relative dielectric constant
of 2.2 and a dielectric loss tangent of 0.0009. After the
above theoretical analysis, through the loading capaci-
tance introduced by the microstrip gap, the S parameter
of the filter is obtained according to the parameters of Ta-
ble 1. The results of equivalent circuit model and HFSS
simulation model are compared as shown in
Considering the limit of actual fabricated accuracy, the
simulation results in HFSS are poor compared with the
ideal circuit simulation results. But they still meet the re-
quirements and are basically consistent with the expecta-
tion, which verifies the effectiveness of the circuit. In the
HFSS simulation, the central frequency is at 30.9 GHz,
the insertion loss in the passband is less than 1.4 dB, and
the return loss is greater than 13 dB.

B. Filter-based Wilkinson power divider

The Wilkinson power divider’s function is to dis-
tribute the input signal equally or unequally to each out-
put port and maintain the same output phase. Although
the ring has similar functions, the Wilkinson power di-
vider has a broader bandwidth in the application.

The circuit structure of the microstrip Wilkinson
power divider is shown in [Figure 6/ Among them, the
characteristic impedance of the input port is Zy. Accord-
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Fig. 5. Comparison of S parameter simulation results.
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Fig. 6. Circuit structure of microstrip Wilkinson power
divider.

ing to the quarter wavelength impedance transformation
theory, the electrical length of the two branch microstrip
lines is A /4, the characteristic impedance is V27, and
the characteristic impedance of the output port is Zy.

The characteristic impedance of the microstrip lines
is 50 Q. The value of isolation resistance can be obtained
from the following formula:

R =Zpk+1/k, “)
where k = y/P3/P2, and when the power is evenly dis-
tributed, k is 1, then R =2 Z.

The linewidth of 50 Q mounted microstrip lines can
be calculated by the empirical formula

87 5.98h

= =T [0.8w+t)]’ ©)
where £ is the height of the substrate, ¢ is the line height,
and w is the width of the microstrip lines.

When the input signal enters from P1, P2 and P3
have equal amplitude and in-phase output. The power
divider is designed based on microstrip line; so transmis-
sion mode is quasi-TEM mode. The simulation results
of the frequency response of the first-order Wilkinson
power divider are shown in [Figure 7| including isola-
tion and transmission characteristics. As can be seen in
the energy is evenly divided within the effective
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Fig. 7. Simulation results of the first-order Wilkinson
power divider.

frequency band, the transmission attenuation of port is 4
dB, the curves of Sy; and S3; are basically consistent,
and the isolation of ports 2 and 3 is greater than 15 dB.

C. Adjustable filter power divider

The frequency selection performance of the filter-
ing power divider mainly depends on the filter. The
loading capacitor filter introduced above is cascaded at
the two outputs of the first-order Wilkinson power di-
vider to form the filtering power divider. The overall
structure model is shown in The size of the
whole structure of the filtering power divider is 35 mm
x 20 mm. Two layers of Rogers 5880 dielectric sub-
strate with a thickness of 0.254 mm and a dielectric con-
stant of 2.2 are used, and the second layer substrate is
slotted in the middle to fill the liquid crystal material.
The liquid crystal block area is 22 mm x 6 mm, and the
thickness is set to 0.254 mm. The frequency response
results are shown in The center frequency
of the filter is 30 GHz, the return loss S;; is less than
—10 dB in the range of 29.02—31.64 GHz, and the in-
sertion losses S»; and S3; are less than 5 dB. It can be
seen from [Figure 9| that the designed filtering power di-
vider achieves equal power division performance in the
operating frequency band and has the same amplitude
and phase.

Liquid crystal is an electromagnetic tuning material.
As shown in[Figure T0(a), with the different applied bias
voltage, the molecular orientation in it will change, re-
sulting in the change of dielectric constant. And then,
the corresponding resonant frequency of microstrip lines
with the same size will change, that is, frequency recon-
figuration is realized. When the liquid crystal molecule
is perpendicular to the direction of the electric field, the
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Capacitor loaded power
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Fig. 8. Structure of adjustable filtering power divider.
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Fig. 9. Simulation results of S parameter.

corresponding dielectric constant is €, , the liquid crystal
molecule is parallel to the direction of the electric field,
and the corresponding dielectric constant is g|. In the
simulation, the liquid crystal is set as a new material and
its dielectric constant is set as a variable for simulation.
In the actual measurement, the metal of the filter layer is
grounded and the metal base is loaded with bias voltage,
as shown in [Figure 10[b). The dielectric constant of lig-
uid crystal is adjusted by adjusting the bias voltage, so as
to realize the frequency reconfigurable characteristics of
filter power divider.

Then the dielectric constant of the liquid crystal
varies uniformly in the range of 2.2—2.8. As shown in
the center frequency of the passband of the fil-
ter power divider moves from 30 to 28.1 GHz to achieve
the 1.9-GHz frequency shift.

III. RESULTS AND DISCUSSION
To verify the feasibility of the filtering power di-
vider, it is processed and tested according to the structure
size of the filtering power divider. The prototype of the
filtering power divider is shown in The cir-

cuit structure shown in[Figure 12]is attached to the lower
surface of the upper dielectric substrate in the form of
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Fig. 10. Schematic diagram of liquid crystal bias voltage
control. (a) Tuning process. (b) Bias voltage loading
structure.
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Fig. 11. Simulation results of Sy; tuning.

inverted microstrip, and the dielectric constant of the lig-
uid crystal is controlled by the bias voltage between the
inverted microstrip patch and the metal base, to realize
the change of the resonance point. The orientation of
liquid crystal molecules is matched by coating a layer
of polyimide film on the metal copper foil of the filter
power splitter. After completing the phase matching, the
direction of all liquid crystal molecules is perpendicular
to the electric field.

The test platform is shown in |[Figure 13| which in-
cludes the PNA-X vector network analyzer and function
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a @) (ii) (i)

Fig. 12. Prototype of adjustable filtering power divider.
(a) Layered structure: (i) liquid crystal slot; (ii) inverted
microstrip filter; (iii) transition structure. (b) Integral
structure: (iv) liquid crystal injection hole.

Fig. 13. Measurement of power divider filter.

waveform generator. The function waveform signal gen-
erator provides 1-KHz low-frequency square wave signal
modulation voltage (0—20 V) for the experiment. The
dielectric constant of liquid crystal varies with the ap-
plied voltage, but excessive voltage will destroy the in-
ternal structure of liquid crystal molecules. Generally,
the applied voltage range is 0—20 V, and its electrical
tuning ability can be expressed as follows:
E—E|

T= . 6)

As can be seen from the bandwidth of
the filtering power divider is 2.46 GHz, the return loss

S11 is less than —10 dB in the range from 29.2 to 31.6
GHz, and the insertion losses S»; and S3; are less than
5.3 dB. It can be seen that the designed filtering power
divider achieves equal power division performance in
the working frequency band. Then, by changing the
voltage range of 0—20 V at both ends of the liquid
crystal, as shown in the center frequency of
the passband of the filtering power divider is shifted
from 29.9 to 28.1 GHz to achieve 1.8-GHz frequency
shift. Compared with the simulation results, the mea-
surement results are slightly worse, which may be due
to the generation of some bubbles during liquid crys-
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Table 2 Comparison of proposed work with others

Tuning
Ref. Frequency | Bandwidth | bandwidth

(GHz) (GHz) (GHz)
[29] 1.2 0.04 No
[30] 1.4 <0.2 No
[31] 1.4 <0.25 0.2
[32] 1 <0.2 0.4
This work 30 2.46 1.8

tal filling, which affects the performance, but it is still
within the acceptable range. The measurement results
show that the proposed liquid crystal filter power divider
can realize frequency tuning. The performance com-
parison with similar power division filters is shown in
[Table 2|

IV. CONCLUSION

In this paper, an electronically controlled filter
power divider of FCHPT based on liquid crystal is de-
signed by cascading the Wilkinson power divider with
the output port of the filter unit. Compared with most
of the low frequency filters, the designed power divider
filter integrates power distribution and filtering and can
work at 30 GHz. In addition, by changing the voltage
value, the liquid crystal pointing vector can be changed,
so as to change the effective dielectric constant of the lig-
uid crystal material, and then tune the center frequency
of the filter power divider. The tuning bandwidth of the
filtering power divider is 1.8 GHz (29.9—-28.1 GHz), and
the port isolation is less than 18 dB. In the continuously
adjustable range, the maximum insertion loss is 5.3 dB.
It realizes dynamic frequency selection and power distri-
bution, effectively simplifies the structure and size of the
system, and realizes the miniaturization and lightweight
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characteristics of the electronic system, thus reducing the
cost and suitable for millimeter-wave electronic commu-
nication systems.
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