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Abstract – To ensure the safety of transportation and
prevent accidents, nondestructive testing by Eddy cur-
rent (EC) is proposed to check the conditions of indus-
trial parts. EC sensors are used for the inspection of
defects in conductive parts using coil fed by alterna-
tive current. These sensors are sensitive to defects,
easy to implement, and robust for industrial applica-
tions. In order to satisfy the requirement for both
reliability and speed during inspection operations, inno-
vative EC sensors that can provide higher sensitivity, bet-
ter spatial resolution, and more information about the
defect characteristics, such as microsensors, are devel-
oped. The miniaturization of these sensors’ coils con-
forms the sensor for micro-defects in critical parts and
in complex materials. In this paper, a microsensor ded-
icated to EC application is studied and characterized to
identify the coil parameters and to optimize the geom-
etry of the probe. An approach for the modeling of
microsensor dedicated to EC nondestructive applications
is proposed. The moving band finite element method
is implemented for this purpose to take into account
the movement of the sensor and to simplify the mod-
eling of EC testing configurations that use this kind of
sensor. Experimental validations were conducted on
a nickel-based alloy specimen. The real and imag-
inary parts of the impedance at every position of
the sensor computed by experiments and simulations
were consistent with each other. Simulation results
proved that the sensor was capable of detecting micro-
defects with a size starting from 0.1 mm under the
optimal excitation frequency of 0.8 MHz. It is not
only sensitive to micro-cracks, but also it distin-
guishes the different crack sizes (length, width, and
depth).

Keywords – Defect inspection, Eddy current (EC),
finite element method (FEM), microsensor, moving band
method, NDT.

I. INTRODUCTION
Most of the failures observed in industrial instal-

lations are associated with failure by the propagation
of cracks initiated in areas of mechanical field con-
centration as in the case of bogie systems in the rail-
ways or areas under cyclic and thermal loads as in the
case of the engine blades in the aircraft which affect
directly the transport operation and cause dramatical
accidents.

Failures and defects can not only be always
observed; while the crack is small enough, the struc-
ture can keep working despite its “illness.” Nondestruc-
tive evaluation (NDE) systems have been proposed and
developed against this background to ensure safety and
prevent accidents [1–5]. NDE is, above all, a tool for
quality and reliability control. Their aim is to check the
condition of industrial parts without the corresponding
examinations being able to affect their future use.

Condition-based maintenance (CBM) is a mainte-
nance strategy based on information and evaluation sta-
tus given by the NDE devices [6–9]. The detection of
micro-cracks or initiators of rupture can prevent not only
material disasters but also loss of human life and elimi-
nate failure within the embryonic stage.

Eddy current (EC) sensors are widely used for
the nondestructive inspection of electrically conducting
materials [10–14]. The investigation is done by scanning
the conductive plate with a coil fed by a time-harmonic
source current and then measuring the impedance vari-
ation of the same coil or another one. These sensors
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are sensitive to defects such as fatigue cracks, inclu-
sions, or corrosion, and they are also easy to imple-
ment and robust for industrial applications. However,
the increasing need for both reliability and speed during
inspection operations requires developing innovative EC
sensors that can provide higher sensitivity, better spa-
tial resolution, and more information about the defect
characteristics, such as the microsensors [15–17]. The
miniaturization of these sensors’ coils allows integrating
multi-coil systems on a single substrate [18–22]. Fur-
thermore, it enhances the magnetic coupling by reducing
the lift-off (the distance between the coil and the conduc-
tive specimen) [23–25].

In the context of Eddy current nondestructive test-
ing (ECNDT), it is interesting to use modeling, looking
for a model that reacts similarly to the component we are
studying [26–31]. This model will make it possible to
deduce the desired results. Modeling involves creating
a mathematical representation of a real problem using
certain assumptions. This representation allows users to
predict the behavior of the studied systems. The mod-
eling tools allow the design of sensors and the predic-
tion of their behavior without actual realization. These
tools have consequences on the development of produc-
tion tools, making it possible to reduce the cost of the
experimental phase.

The finite element method (FEM) is well appreci-
ated for its versatility [32–37]. However, the micro-coil
turn dimensions are characterized by their low thick-
ness compared to the other dimensions of the modeled
system; also the minimization of the lift-off thickness
is necessary to obtain the best control performance in
the ECNDT. The mesh of fine media can lead with
the FEM to convergence problems and possibly a poor
solution.

The originality of this paper lies in the implemen-
tation of an FEM approach that yields an efficiency to
model the 3D microsensor, taking into account the pres-
ence of thin geometrical domains (the micro-coil and the
lift-off) without degrading the mesh quality. Moreover,
the coil displacement in the 3D plane can be taken into
account without remeshing all the domains in each dis-
placement. For this purpose, the moving band method is
used. This method leads to optimal storage and ensures
fast convergence of the system.

The paper is organized as follows. In Section I, the
design of the sensor’s elements as well as the simpli-
fied geometry are introduced. In Section II, the sensor
is characterized and optimized. Section III reviews the
geometry of the problem and the motion band method.
Section IV describes the dual formulation implemented
for the EC microsensor. The results for impedance
variations calculated by the FEM model are presented
in Section V, where three applications are studied and

discussed. The first test case is an ECT configura-
tion where the probe consists of a micro-coil. The
results for impedance variations calculated by the FEM
model are compared to the reference model (experimen-
tal results) to show the applicability of the modeled
sensor. The second test case shows the influence of
lift-off on the coil impedance variations. The third test
case study the crack size effect on the EC signal which
enables us to identify the sensitivity of the ECNDT
device.

II. CONCEPTION
The proposed sensor consists, in fact, of a square flat

coil, distributed over a total thickness of 1.25 mm. The
length of the side is c = 2.6 mm, the width of tracks `p
= 100 µm, and the thickness ep = 25 µm. The coil fea-
tures five turns distributed over its entire surface with a
spacing of e = 100 µm. Figure 1 shows a schematic view
of the coil used in our application. This geometry gives
the coil the highest inductance value and it is favorable
in several points (Section III).

III. SENSOR CHARACTERIZATION
A. Geometrical characterization

It is interesting for the characterization to calculate
the two geometrical quantities, which are the developed
length of the wire and the effective total surface. The
developed length or the total wire length ltot can be cal-
culated by the following formula:

ltot =
n−1

∑
i=0

4(c− (e+ lp)i). (1)

The total effective surface Stot, which is the equiva-
lent surface of all the turns, is given by
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Fig. 1.Schematic view of the sensor. 
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Fig. 1. Schematic view of the sensor.
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developed length or the total wire length totl  can be 
calculated by the following formula: 
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where c is the external rib of the coil, e is the inter-line 
distance, pl is the line width, and n is the number of 
turns (seeFigure1). 
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The probe impedance with an excited currentI at a 
frequency fwhich is our parameter of interest can be 
computed by using the FE modeling developed in 
Section IV. 
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Stot =
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∑
i=0

(c−2(e+ lp) i)2, (2)

where c is the external rib of the coil, e is the inter-line
distance,lp is the line width, and n is the number of turns
(see Figure 1).
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where ε is the electric permittivity, e is the electric field,
and Ω is the whole computation area (sensor and air
box).

C. Sensitive element characterization
The sensitivity of a sensor is the ratio of the respec-

tive variations of the output quantity of the sensor and the
measurand. In the case of a coil used as an EC sensor,
a magnetic field b is transformed into a voltage V . The
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The emissive ability is the ratio of the emitted field b
and the current I required for its emission. Its expression
is obtained using that of the magnetic flux produced by
an inductance element L crossed by a current I, which
is written with b assumed to be uniform over the entire
effective area of the coil

Φ = LI = bStot.

The emissive ability Pe is given by

Pe =
b
I
=

L
Stot

. (14)

D. Optimization of the coil
The values of the geometrical, electrical, and physi-

cal characteristics are summarized in Table 1. The minia-
turization of the coils in the printed circuit board is favor-
able on several points: the sensitivity is very high and
the noise is very low. In all cases, the level noise is
lower than the noise generally provided by the instru-
mentation and is, therefore, not very disturbing. Also,
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Table 1 Numerical values of the coil characteristics cal-
culated at 800 kHz

Parameter Value

Geometrical
characterization

Number of turns
External length
Line width
Inter-line width
Developed length
Total surface

5
2.6 µm
100 µm
100 µm
36 mm
17.8 mm2

Electrical
characterization

Capacity C
Resistance R
Inductance L
Resonant frequency
f 0

79.65 f F
0.028 Ω

0.023 µm
1.98 MHz

Sensitive element Sensitivity S
Noise voltage vb
Equivalent noise field
Bb
Emissive ability Pe

89.42 V/T
0.214 µV
2.39 ηT
1.29 mT/A

the thermal noise calculation is carried out over a wide
range of frequencies, and, therefore, it is very strongly
overestimated. In addition, the resolution is significantly
improved by the printed coils: indeed, it is roughly pro-
portional to the footprint, which is very small for this
technology. The emitting power is inversely proportional
to the total effective area, which means that a solenoid
coil will emit a weaker field at an equal current.

IV. MODELING
The test case is related to Eddy current nondestruc-

tive testing (ECT). It consists of a printed coil placed
above a conductive plate. The inspected specimen is
a nickel-based alloy affected by a rectangular defect
(flaw). The parameters of the configuration are given in
Table 2. The following figure shows the geometry of
the considered problem. It is composed of two domains
where the first one, D1, contains a coil, Ωt0 , where a
uniform current density j0 is imposed, and the second
one, D2, contains a nickel alloy plate noted by Ωc which
includes the flaw Ωd . These domains are separated by a
meshed region D0 called the lift-off.

The FEM program was written using the developed
ANSYS program with conjunction with Matlab. The cal-
culation is carried out in the context of harmonic quasi-
stationary regime.

The displacement of the sensor along the conductive
plate is formed using the motion band method defined
from the extension of the 2D FEM. Figures 4 and 5 show
the scheme illustrating this technique. It consists of two
steps.

Create a geometrical band, during which the moving
zone is subdivided into elementary regions of the identi-
cal length∆x. Then the geometry is all meshed.
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Fig. 3. (a) Description of the studied problem. (b) 3D mesh of the geometry. 
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Fig. 5. Moving band technique for sensor displacement:
after probe displacement.

Locate in the geometrical band (moving zone) the
regions corresponding to the sensor and the air, and
then the physical properties of the sensor and the air are
assigned at each step displacement.

V. DUAL FORMULATIONS FOR EDDY
CURRENT PROBLEMS

Most three-dimensional finite element formulations
of EC problems can be classified into two dual formula-
tions. One works with the variables of the Ampere’s law
system, and the other uses the variables of the Faraday’s
law system. We will be interested in the two electric and
magnetic formulations in combined potentials.
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A. Magnetic formulation
The magnetic field h is then expressed by the sum

of electric potential vectors t and t0, and the gradient of
the magnetic scalar potential ϕ

h = t+ t0−gradϕ ,
with n× t|

Γh
= 0 and ϕ|

Γh
= 0, (15)

such as curl ( t) =j and curl ( t0) =j0, with j and j0
being the density of ECs and the density of current
source. By introducing these equalities into the Faraday
law and the flow conservation law, the system to solve is
written as{

div(µ (t+ t0 -gradϕ)) = 0 in Ω

curl ( 1
σ

curl t)+ jωµ (t−gradϕ) = 0 in Ωc
, (16)

with ω being the current/voltage pulsation,
µ=µ0.µr (µ0 = 4π10−7H/m) and µr the relative
permeability of the material used as inductor. The
electric vector potential t and the magnetic scalar
potential in an element are then expressed by

ϕ =
Nn
∑

n=1
wnϕn (17)

t =
Na
∑

a=1
wata (18)

where wn is the vector of nodal shape functions, ϕn is
the value of ϕ at the nth node, w a is the vector of edge
shape functions, and ta is the circulation of t along the
ath edge. The matrix form of the system of equation is
written as follows:(

RN CAN
Ct

AN MA +RA

)(
Φ

T

)
=

(
S
0

)
,

with Φ =


ϕ1
.
.
ϕ

Nn

 T =


t1
.
.
tNa

 (19)

The system thus obtained is symmetrical and the
matrix terms are

RNnm = jω
∫

Ω
µ gradwn · gradwm dΩ

CANan =− jω
∫

Ωc
µ gradwn · wa dΩ

MAab = jω
∫

Ωc
µ wa · wb dΩ

RAab =
∫

Ωc
1
σ

curl ( wa) · curl ( wb)dΩ

Sm = jω
∫

Ωt
µ grad(wm) · t0dΩ

(20)

where RN is the stiffness matrix of the nodes, RA is the
stiffness matrix of the edges,MA is the mass matrix of the
edges,CAN is the node-edge coupling matrix, and S is the
source term.

The vectors Φ and T contain the unknowns of the
system which are, respectively, the values of the mag-
netic scalar potential at the nodes and the circulations
of the electric vector potential along the edges of the
mesh.

B. Electric formulation
The electric field e can be expressed by the com-

bination of the magnetic vector potential a and electric
scalar potential ψ{

e =− jω( a+gradψ) with
b = curl a . (21)

The conduction current density j is thus calculated
as

j = ji + j0
=−σ jω(a+gradψ)+ curl t0.

(22)

Following the same procedure as for t−ϕ formu-
lation: The magnetic vector potential a and the electric
scalar potential ψ are then expressed by

ψ =
Nn

∑
n=1

wnψn (23)

a =
Na

∑
a=1

waaa. (24)

In the same way as the t−ϕ formulation, the mag-
netic vector potential a is discretized by edge elements,
while the electric scalar potential ψ is discretized by
nodal elements. The system of equations is written
within the matrix form(

RN CAN
Ct

AN MA +RA

) (
Ψ

A

)
=

(
0
S

)

and Ψ =


ψ1
.
.
ψNn

 A =


a1
.
.
aNa

 .

(25)

The system thus obtained is symmetrical and the
matrix terms are

RNnm = jω
∫

Ωc
σ gradwn · gradwm dΩ

CANan = jω
∫

Ωc
σ wa · grad wm dΩ

MAab = jω
∫

Ω
σ wa · wb dΩ

RAab =
∫

Ω

1
µ

curl ( wa) · curl ( wb)dΩ

Sb =
∫

Ωt
curl(wb) · t0dΩ

. (26)

The vectors Ψ and A are the unknowns of
the system, respectively, the values of the electric
scalar potential at the nodes and the circulations of
the magnetic vector potential at the edges of the
mesh.

VI. APPLICATIONS
Our study relies on analyzing the data of scans, allot-

ted by little displacements of the detector, parallel to the
crack on the conductive plate. The change of the real and
imaginary parts of the coil impedance reflects the change
in the physical parameters of a test specimen in the pres-
ence of defects. The real part of the coil impedance is
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Table 2 Dimensions of the problem
Turn width 100 µm
Turn thickness 25 µm
Gap between turns 100 µm
Plate thickness 3 mm
Plate conductivity 0,76 MS/m
Relative permeability of the plate 1
Lift-off thickness 50 µm
Excitation frequency 800 kHz
Length of the flaw 800 µm
Width of the flaw 100 µm
Depth of the flaw 400 µm

determined by calculating the Joule losses in the con-
ductive media. The imaginary part of this impedance is
determined from the magnetic energy stored in the entire
meshed space.

For both dual formulations, the variations of the
real part and the variation of the imaginary part of the
impedance due to the flaw are calculated by subtract-
ing for each of them the values with and without flaw.
∆Xn = (X −X0)/X0 and ∆Rn = (R−R0)/X0 with X ,R
being the reactance and resistance of the coil in presence
of the conducting domain. X0,R0 are the reactance and
resistance of the empty coil (absence of the plate).

A. Application I
The parameters of the configuration are given in

Table 2.
Figure 6 illustrates the distribution of ECs produced

by the coil. As can be seen in Figure 6(a), a circular-
shaped EC loop is produced beneath the surface of the
material. The current density is null in the defect zone

in the presence of defects. The real part of the coil 
impedance is determined by calculating the Joule losses 
in the conductive media. The imaginary part of this 
impedance is determined from the magnetic energy 
stored in the entire meshed space. 

For both dual formulations, the variations of the 
real part and the variation of the imaginary part of the 
impedance due to the flaw are calculated by subtracting 
for each of them the values with and without flaw. 

0 0( ) /nX X X X∆ = − and 0 0( ) /nR R R X∆ = − with
,X R being thereactance and resistance of the coil in 

presence of the conducting domain. 0 0,X R arethe 
reactance and resistance of the empty coil (absence of 
the plate). 

A. Application I 
The parameters of the configuration are given in 

Table 2. 
 
Table 2: Dimensions of the problem  

Turn width 100 µm 

Turn thickness  25 µm 

Gap between turns 100 µm 

Plate thickness 3 mm 

Plate conductivity  0,76 MS/m 
Relative permeability of the plate 1 
Lift-off thickness 50 µm 
Excitation frequency 800 kHz 
Length of the flaw 800 µm 
Width of the flaw 100 µm 

Depth of the flaw 400 µm 

 
Figure6 illustrates the distribution of ECs produced 

by the coil. As can be seen in Figure6(a), a circular-
shaped EC loop is produced beneath the surface of the 
material. The current density is null in the defect zone 
because the conductivity is zero ( σj = e ), and it is 
also very significant in the surface and it decreases 
gradually as we head to the bottom because of the skin 
effect as shown in Figure6(b). 

 

 

 

Fig. 6. Eddy current distribution. (a) Top view.(b) Front 
view. 

 
Figure7(a) and(b) presents the variation of 

resistance and reactance as a function of the position of 
the symmetry axis of the coil relatively to the center of 
the flaw. The impedance real part (resistance) presents 
a trough curve and the imaginary part (reactance) 
presents a crest curve.  

As seen from the defect response curve of the 
impedance imaginary part [Figure7(b)], the defect 
response begins to rise when the crack is near to the 
bottom edge of the coil, and it reaches a climax when 
the sensor coincides with the first edge of the defect and 
starts to decrease as the sensor leaves the other edge of 
the defect. It can be observed from the next figures that 
there isa good agreement between the FEM results 
issued from the magnetic and the electric formulation 
and the experimental results. These signals represent 
the signatures of the crack. 
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Fig. 6. Eddy current distribution. (a) Top view. (b) Front
view.

because the conductivity is zero (j = σe), and it is also
very significant in the surface and it decreases gradually
as we head to the bottom because of the skin effect as
shown in Figure 6(b).

Figure 7(a) and (b) presents the variation of resis-
tance and reactance as a function of the position of the
symmetry axis of the coil relatively to the center of the
flaw. The impedance real part (resistance) presents a
trough curve and the imaginary part (reactance) presents
a crest curve. As seen from the defect response curve of
the impedance imaginary part [Figure 7(b)], the defect
response begins to rise when the crack is near to the bot-
tom edge of the coil, and it reaches a climax when the
sensor coincides with the first edge of the defect and
starts to decrease as the sensor leaves the other edge
of the defect. It can be observed from the next figures
that there is a good agreement between the FEM results

 
 

 
 

Fig. 7. The variation of normalized impedance of the 

system as a function of displacement of the sensor. (a) 

Impedance real part. (b) Impedance imaginary part. 

 

B. Application II 
As the lift-off is a predominant factor in the EC 

detection performance, the modeling must take into 

account the physical phenomena associated with its 

values. The geometrical and physical parameters of the 

problem are summarized in Table 2 The lift-off varies 

within a range of 0.1−11 mm. the resistance and 

reactance of the coil were calculated with both the 

electrical and magnetic formulations and shown in Fig. 

8(a) and (b). The results presented in these figures show 

that the influence on the coil impedance of a lift-off less 

than 1 mm is negligible. Indeed, for a lift-off of less 

than 1 mm, the reactance and the resistance of the coil 

are almost constant. On the other hand, beyond this 

value, the lift-off has a strong influence on the 

impedance, and it is essential to take this into account 

in the modeling. The results also show that the two 

curves obtained by the two electric and magnetic 

formulations are in good agreement. This value (1 mm) 

depends on the coil used. In a general way, an increase 

in the size of the coil will lead to an increase in these 

values. 

 

 
 

Fig. 8. (a) Normalized resistance. (b) Normalized 

reactance variation as a function of the lift-off. 

 

C. Application III 
The study of the crack size effect on the EC signal 

will enable us to identify the ECNDT device sensitivity. 

 

Effect analysis of crack width: 
In the previous works, the authors were more 

interested in studying the effect of the length and depth 

of the crack on the EC signal, while only a few of them 

were interested in studying the width effect. 

The model used is the same one used for 

application I by changing the geometric parameters of 

the defect. The frequency of the sensor is fixed at 0.8 

MHz and the lift-off at 0.0625 mm (application II), and 

the length of the plate is much greater than that of the 

 

 

 

 

Fig. 7. The variation of normalized impedance of the
system as a function of displacement of the sensor. (a)
Impedance real part. (b) Impedance imaginary part.
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issued from the magnetic and the electric formulation
and the experimental results. These signals represent the
signatures of the crack.

B. Application II
As the lift-off is a predominant factor in the EC

detection performance, the modeling must take into
account the physical phenomena associated with its val-
ues. The geometrical and physical parameters of the
problem are summarized in Table 2. The lift-off varies
within a range of 0.1−11 mm. the resistance and reac-
tance of the coil were calculated with both the electri-
cal and magnetic formulations and shown in Figure 8(a)
and (b). The results presented in these figures show
that the influence on the coil impedance of a lift-off
less than 1 mm is negligible. Indeed, for a lift-off of
less than 1 mm, the reactance and the resistance of the
coil are almost constant. On the other hand, beyond
this value, the lift-off has a strong influence on the
impedance, and it is essential to take this into account
in the modeling. The results also show that the two
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case, we fix the crack beneath the center of the sensor 

where its output is in the maximum. The graphs of the 

 

 

 

Fig. 8. (a) Normalized resistance. (b) Normalized reac-
tance variation as a function of the lift-off.

curves obtained by the two electric and magnetic for-
mulations are in good agreement. This value (1 mm)
depends on the coil used. In a general way, an increase
in the size of the coil will lead to an increase in these
values.

C. Application III
The study of the crack size effect on the EC

signal will enable us to identify the ECNDT device sen-
sitivity.

Effect analysis of crack width:
In the previous works, the authors were more inter-

ested in studying the effect of the length and depth of the
crack on the EC signal, while only a few of them were
interested in studying the width effect.

The model used is the same one used for application
I by changing the geometric parameters of the defect.
The frequency of the sensor is fixed at 0.8 MHz and theimpedance real part and imaginary part versus crack 

width are shown in Fig. 9(a) and (b), respectively. 

 

  

 
 

Fig. 9. (a) Normalized impedance real part. (b) 

Normalized impedance imaginary part variation as a 

function of the crack width. 

 

Effect analysis of crack length: 

Next the influence of crack length on the sensor 

response is studied. The lift-off is set to be 0.0625 mm, 

and cracks of identical width (0.1 mm) and depth (0.4 

mm) having different lengths are altered. Data of scans 

are carried out by small displacements of the sensor 

with a step of 0.1 mm, parallel to the crack on the 

surface of the material. Fig. 10(a) and (b) presents EC 

signatures of the resistance and reactance variations 

with respect to the sensor displacement produced by 

cracks having different lengths. Based on the curves of 

impedance real part and imaginary part, the shapes of 

the curves for all the defects are similar; however, the 

defect length influences the width and the peak value of 

the response curve. As the crack length grows, the 

width of the curve grows and the peak value increases. 

 

  

 
 

Fig. 10. (a) Normalized impedance real part. (b) 

Normalized impedance imaginary part variation of 

cracks having different lengths. 

 

Effect analysis of crack depth: 

Defects with depths of 0.1, 0.2, and 0.4 mm are 

studied. All the defects are 0.8 mm in length and 0.1 

mm in width. Fig. 11(a) and (b) shows EC signatures of 

the impedance real part and imaginary part variations 

with respect to the sensor displacement produced by 

defects having different depths. As can be seen, the 

waveforms are similar; however, the crack depth 

influences the peak value of the response curves. The 

deeper the crack is, the greater the peak will be. 

  

 

 

 

 

Fig. 9. (a) Normalized impedance real part. (b) Normal-
ized impedance imaginary part variation as a function of
the crack width.
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lift-off at 0.0625 mm (application II), and the length of
the plate is much greater than that of the crack, the crack
length and depth are fixed at 0.8 and 0.4 mm, respec-
tively, while the width is varying between 0.1 and 3 mm
for a step of 0.1 mm. In this case, we fix the crack
beneath the center of the sensor where its output is in
the maximum. The graphs of the impedance real part
and imaginary part versus crack width are shown in Fig-
ure 9(a) and (b), respectively.

Effect analysis of crack length:
Next the influence of crack length on the sensor

response is studied. The lift-off is set to be 0.0625
mm, and cracks of identical width (0.1 mm) and depth
(0.4 mm) having different lengths are altered. Data
of scans are carried out by small displacements of the
sensor with a step of 0.1 mm, parallel to the crack
on the surface of the material. Figure 10(a) and (b)

impedance real part and imaginary part versus crack 

width are shown in Fig. 9(a) and (b), respectively. 

 

  

 
 

Fig. 9. (a) Normalized impedance real part. (b) 

Normalized impedance imaginary part variation as a 

function of the crack width. 
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Fig. 10. (a) Normalized impedance real part. (b) 

Normalized impedance imaginary part variation of 

cracks having different lengths. 

 

Effect analysis of crack depth: 

Defects with depths of 0.1, 0.2, and 0.4 mm are 

studied. All the defects are 0.8 mm in length and 0.1 

mm in width. Fig. 11(a) and (b) shows EC signatures of 
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Fig. 10. (a) Normalized impedance real part. (b) Nor-
malized impedance imaginary part variation of cracks
having different lengths.

presents EC signatures of the resistance and reactance
variations with respect to the sensor displacement pro-
duced by cracks having different lengths. Based on
the curves of impedance real part and imaginary part,
the shapes of the curves for all the defects are similar;
however, the defect length influences the width and the
peak value of the response curve. As the crack length
grows, the width of the curve grows and the peak value
increases.

Effect analysis of crack depth:
Defects with depths of 0.1, 0.2, and 0.4 mm are stud-

ied. All the defects are 0.8 mm in length and 0.1 mm in
width. Figure 11(a) and (b) shows EC signatures of the
impedance real part and imaginary part variations with
respect to the sensor displacement produced by defects
having different depths. As can be seen, the waveforms
are similar; however, the crack depth influences the peak

  

 
 

Fig. 11. (a) Normalized impedance real part. (b) 

Normalized impedance imaginary part variation of 

cracks having different depths. 

 

EC signal and the depth limit: 

Next, the depth limit is studied; the crack length 

and width are fixed at 0.8 and 0.1 mm, respectively, 

while the depth is varying between 0.1 and 3 mm for a 

step of 0.1 mm. In this case, we fix the crack beneath 

the center of the sensor where its output is in the 

maximum. The graph of the impedance real part and 

imaginary part versus crack depth are shown in Fig. 

12(a) and (b), respectively.    

 

  

 
 

Fig. 12. (a) Normalized impedance real part. (b) 

Normalized impedance imaginary part variation as a 

function of the crack depth. 

   
As can be seen, at the beginning, the resistance 

values decrease rapidly, then slow down gradually with 

increasing crack depth, and then stabilize when the 

crack depth reaches 2.5 mm. On the other hand, the 

reactance values increase rapidly at the beginning and 

slow down gradually, while the crack depth increases 

and then stabilizes when the crack depth reaches 2 mm. 

The reason is that when we use a high frequency 

excitation, the EC will be spread out much more on the 

surface of the material so that the sensor will not be 

very sensitive to deep defects as it is with the shallow 

defects. Both Fig. 12(a) and (b) show that the depth 

limit is not the same for the impedance real part and 

imaginary part. The real part is more sensitive to the 

crack depth than the imaginary part. 

  

VII. CONCLUSION 

A microsensor dedicated to the ECNDT 

application is proposed in this paper. An FEM approach 

  

 

 

Fig. 11. (a) Normalized impedance real part. (b) Nor-
malized impedance imaginary part variation of cracks
having different depths.
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value of the response curves. The deeper the crack is, the
greater the peak will be.

EC signal and the depth limit:
Next, the depth limit is studied; the crack length and

width are fixed at 0.8 and 0.1 mm, respectively, while
the depth is varying between 0.1 and 3 mm for a step
of 0.1 mm. In this case, we fix the crack beneath the
center of the sensor where its output is in the maximum.
The graph of the impedance real part and imaginary part
versus crack depth are shown in Figure 12(a) and (b),
respectively.

As can be seen, at the beginning, the resistance
values decrease rapidly, then slow down gradually with
increasing crack depth, and then stabilize when the crack
depth reaches 2.5 mm. On the other hand, the reactance
values increase rapidly at the beginning and slow down
gradually, while the crack depth increases and then sta-
bilizes when the crack depth reaches 2 mm. The rea-
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Fig. 12. (a) Normalized impedance real part. (b) 

Normalized impedance imaginary part variation as a 

function of the crack depth. 
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Fig. 12. (a) Normalized impedance real part. (b) Nor-
malized impedance imaginary part variation as a func-
tion of the crack depth.

son is that when we use a high frequency excitation, the
EC will be spread out much more on the surface of the
material so that the sensor will not be very sensitive to
deep defects as it is with the shallow defects. Both Fig-
ures 12(a) and (b) show that the depth limit is not the
same for the impedance real part and imaginary part.
The real part is more sensitive to the crack depth than
the imaginary part.

VII. CONCLUSION
A microsensor dedicated to the ECNDT application

is proposed in this paper. An FEM approach that yields
an efficiency to model the 3D microsensor, taking into
account the presence of thin geometrical domains and
the sensor displacement in the 3D plane without remesh-
ing all the domains in each displacement, has been pro-
posed. The real and imaginary parts of the impedance
at every position of the sensor computed by experi-
ments and simulations were consistent with each other
for the first application. The optimal lift-off, which is
less than 1 mm, is determined by FEM simulation in
the second application and taken into account in all the
applications (I and III). The principle of the sensor and
the response of cracks with different sizes are demon-
strated by simulation, and the results are very close
because both the proposed differential formulations (in
terms of the magnetic formulation and the electric for-
mulation) can deal with currents flowing in conductors
and are well fitted for computing fields within the cur-
rent regions with accuracy. The difference between the
impedance values obtained using the magnetic formu-
lation and the electric formulation did not exceed, in
any case, 0.1%. The novel sensor has the following
advantages:

1. The design of the sensor conforms it to the small
geometry.

2. It provides high spatial resolution and high detec-
tion efficiency.

3. The sensor was capable of detecting micro-defects
with a size starting from 0.1 mm under the optimal
excitation frequency of 0.8 MHz.

4. The sensor can distinguish the different crack sizes
(length, width, and depth).

Future research will be required to extend the pro-
posed sensor for solving problems with complex geome-
try and arbitrary defect.
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